Chapter\# 3: LOGARITHMS

Dxercise 3.1:

Q1.Express each of the following numbers in scientific notation.
i. $\quad 5700$
A. $=5.7 \times 10^{3}$
ii. $49,800,000$
A. $=4.98 \times 10^{7}$
iii. $96,000,000$
A. $\quad=9.6 \times 10^{7}$
iv. 416.9
A. $=4.2 \times 10^{2}$
v. 83,000
A. $=8.3 \times 10^{4}$
vi. 0.00643
A. $=6.43 \times 10^{-3}$
vii. 0.0074
A. $=7.4 \times 10^{-3}$
viii. $60,000,000$
A. $\quad=6.0 \times 10^{7}$
ix. $\quad 0.000000000395$
A. $=3.95 \times 10^{9}$
x. $\frac{275,000}{0.0025}$
$=\frac{2.75 \times 10^{5}}{2.5 \times 10^{-3}}$
$=\frac{2.75}{2.5} \times 10^{5} \times 10^{3}$
$=1.1 \times 10^{5+3}$
$=1.1 \times 10^{8}$

Q2. Express the following numbers in ordinary notation.
i. $\quad 6 \times 10^{-4}$
$=0.006$
ii. $\quad 5.06 \times 10^{10}$
$=50,600,000,000$
iii. $\quad 9.018 \times 10^{-6}$
$=0.000009018$
iv. $\quad 7.865 \times 10^{8}$
$=7,86,500,000$

Dxercise 3.2:

Q1. Find the common logarithm of the following numbers:
i. $\quad 232.92$

Characteristics $=2$

$$
\text { Mantissa }=0.3672
$$

$$
\log 232.92=2.3672
$$

ii. $\quad \mathbf{2 9 . 3 2 6}$

$$
\begin{array}{r}
\text { Characteristics }=1 \\
\text { Mantissa }=0.4672 \\
\log 29.326=1.4672
\end{array}
$$

iii. 0.00032

Characteristics $=-4$
Mantissa $=0.5051$

$$
\log 0.00032=\overline{4} .5051
$$

iv. 0.3206

Characteristics $=-1$
Mantissa $=0.5059$

$$
\log 0.3206=\overline{1} .5059
$$

Q2. If $\log 31.09=1.4926$, find the values of following:
i. $\quad \log 3.109$

Characteristics $=0$
Mantissa $=0.4926$
$\log 3.109=0.4926$
ii. $\quad \log 310.9$

Characteristics $=2$
Mantissa $=0.4926$
$\log 310.9=2.4926$
iii. $\quad \log \mathbf{0 . 0 0 3 1 0 9}$

Characteristics $=-3$
Mantissa $=0.4926$
$\log 0.003109=\overline{3} .4926$
iv. $\quad \log 0.3109$

Characteristics $=-1$
Mantissa $=0.4926$
$\log 0.3109=\overline{1} .4926$

Q3. Find the numbers whose common logarithms are:
i. 3.5621

Since it is log of any number. So,
Characteristics $=3$
Mantissa $=0.5621$
by looking mantissa in antilog table we get 3.6484
\Rightarrow Characteristics change the place of decimal.
So, Antilog $3.5621=3648.4$
ii. $\overline{\mathbf{1}} \mathbf{7 4 2 7}$

Since it is \log of any number. So,
Characteristics $=-1$
Mantissa $=0.7427$
by looking mantissa in antilog table we get 5.5297
\Rightarrow Characteristics change the place of decimal.
So, Antilog $5.5297=0.55297 \cong 0.5530$
Q4. What replacement for the unknown in each of following will make the statement true?
i. $\quad \log _{3} 81=L$

Writing in exponential form:
$3^{L}=81$
$3^{L}=3^{4}$
$\Rightarrow L=4$
ii. $\quad \log _{a} 6=0.5$

Writing in exponential form:
$a^{0.5}=6$
$a^{1 / 2}=6$
Squaring on both sides:

$$
\Rightarrow a=36
$$

iii. $\quad \log _{5} n=2$

Writing in exponential form:

$$
\begin{aligned}
5^{2} & =n \\
\Rightarrow n & =25
\end{aligned}
$$

iv. $\quad 10^{p}=40$

Writing in logarithmic form:

$$
\begin{aligned}
& \log _{10} 40=p \\
& \Rightarrow p=1.6021
\end{aligned}
$$

Q5. Evaluate

i. $\quad \log _{2} \frac{1}{128}$
let $x=\log _{2} \frac{1}{128}$
Writing in exponential form:

$$
\begin{aligned}
& 2^{x}=\frac{1}{128} \\
& 2^{x}=\frac{1}{2^{7}} \\
& 2^{x}=2^{-7} \\
& \Rightarrow \log _{2} \frac{1}{128}=x=-7
\end{aligned}
$$

ii. $\quad \log 512$ to the base $2 \sqrt{2}$
let $x=\log _{2 \sqrt{2}} 512$
Writing in exponential form:

$$
\begin{aligned}
& (2 \sqrt{2})^{x}=512 \\
& \left(2^{1+1 / 2}\right)^{x}=2^{9} \\
& 2^{\frac{3}{2} x}=2^{9} \\
& \frac{3}{2} x=9 \\
& 3 x=2 \times 9 \\
& x=\frac{2 \times 9}{3} \\
& \Rightarrow \log _{2 \sqrt{2}} 512=x=6
\end{aligned}
$$

Q6. Evaluate the value of ' x ' from the following statements.
i. $\quad \log _{2} x=5$

Writing in exponential form:

$$
\begin{aligned}
2^{5} & =x \\
\Rightarrow x & =32
\end{aligned}
$$

ii. $\quad \log _{81} 9=x$

Writing in exponential form:

$$
\begin{gathered}
81^{x}=9 \\
\left(9^{2}\right)^{x}=9 \\
9^{2 x}=9 \\
2 x=1 \\
\Rightarrow x=1 / 2
\end{gathered}
$$

iii. $\quad \log _{64} 8=\frac{x}{2}$

Writing in exponential form:

$$
\begin{aligned}
& 64^{x / 2}=8 \\
& \left(2^{6}\right)^{x}=2^{3} \\
& 2^{6 x}=2^{3} \\
& 6 x=3 \\
& x=\frac{3}{6} \\
& \Rightarrow x=1 / 2
\end{aligned}
$$

iv. $\quad \log _{x} 64=2$

Writing in exponential form:

$$
x^{2}=64
$$

Taking square root on both sides:

$$
\begin{array}{ll}
\Rightarrow & x=8 \\
\text { v. } \quad & \log _{3} x=4
\end{array}
$$

Writing in exponential form:

$$
\begin{aligned}
3^{4} & =x \\
\Rightarrow x & =81
\end{aligned}
$$

Laws of Logarithm:

In this section we shall prove the laws of logarithm:
i. $\quad \log _{a}(m n)=\log _{a} m+\log _{a} n$
ii. $\quad \log _{a}\left(\frac{m}{n}\right)=\log _{a} m-\log _{a} n$
iii. $\log _{a} m^{n}=n \log _{a} m$
iv. $\log _{a} n=\log _{b} n \times \log _{a} b$
(i) $\log _{a}(m n)=\log _{a} m+\log _{a} n$ Proof:

$$
\text { let } \log _{a} m=x \text { and } \log _{a} n=y
$$

Writing in exponential form:

$$
a^{x}=m \ldots \ldots \text { (1); } \quad a^{y}=n \ldots \ldots \text { (2) }
$$

Multiplying (1) and (2)

$$
\begin{aligned}
& a^{x} \cdot a^{y}=m n \\
& a^{x+y}=m n
\end{aligned}
$$

Writing in logarithmic form:

$$
\log _{a} m n=x+y
$$

Putting the values of x and y :

$$
\log _{a}(m n)=\log _{a} m+\log _{a} n
$$

Note:

(i) $\log _{a}(m n) \neq \log _{a} m \times \log _{a} n$
(ii) $\log _{a} m+\log _{a} n \neq \log _{a}(m+n)$
(iii) $\log _{a}(m n p .)=.\log _{a} m+\log _{a} n+\log _{a} p+.$.

The rule given above is useful in finding the product of two or more numbers using logarithms.
(ii) $\log _{a}\left(\frac{m}{n}\right)=\log _{a} m-\log _{a} n$

$$
\text { let } \log _{a} m=x \text { and } \log _{a} n=y
$$

Writing in exponential form:

$$
a^{x}=m \ldots \ldots(1) ; \quad a^{y}=n \ldots \ldots \text { (2) }
$$

Dividing (1) by (2)

$$
\begin{aligned}
& \frac{a^{x}}{a^{y}}=\frac{m}{n} \\
& a^{x-y}=\frac{m}{n}
\end{aligned}
$$

Writing in logarithmic form:

$$
\log _{a}\left(\frac{m}{n}\right)=x-y
$$

Putting the values of x and y :

$$
\log _{a}\left(\frac{m}{n}\right)=\log _{a} m-\log _{a} n
$$

Note:

(i) $\log _{a}\left(\frac{m}{n}\right) \neq \frac{\log _{a} m}{\log _{a} n}$
(ii) $\log _{a} m-\log _{a} n \neq \log _{a}(m-n)$
(iii)

$$
\begin{array}{r}
\log _{a}\left(\frac{1}{n}\right)=\log _{a} 1-\log _{a} n=-\log _{a} n \ldots \ldots \\
\left(\because \log _{a} 1=0\right)
\end{array}
$$

(iii) $\log _{a} \boldsymbol{m}^{n}=n \log _{a} m$

$$
\text { let } \log _{a} m=x
$$

Writing in exponential form:

$$
a^{x}=m
$$

Taking $\mathrm{n}^{\text {th }}$ power on both sides:
$(a)^{n x}=m^{n}$
Writing in logarithmic form:
$\log _{a} m^{n}=n x$
Putting value of ' x '
$\log _{a} m^{n}=n \log _{a} m$
(iv) Change of Base Formula:

$$
\log _{a} n=\log _{b} n \times \log _{a} b
$$

let $\log _{b} n=x$
Writing in exponential form:

$$
b^{x}=n
$$

Taking log with base ' a ' on both sides:

$$
\log _{a} b^{x}=\log _{a} n
$$

By $3^{\text {rd }}$ law:

$$
\text { x. } \log _{a} b=\log _{a} n
$$

Putting value of ' x '

$$
\log _{a} n=\log _{b} n \times \log _{a} b
$$

Exercise 3.3:

Q1. Write the following into sum or difference.
(i) $\log (A \times B)$

By $1^{\text {st }}$ law of logarithm:

$$
\log (A \times B)=\log A+\log B=
$$

(ii) $\log \frac{15.2}{30.5}$

By $2^{\text {nd }}$ law of logarithm:

$$
\log \frac{15.2}{30.5}=\log 15.2-\log 30.5
$$

(iii) $\log \frac{21 \times 5}{8}$

By $2^{\text {nd }}$ law of logarithm:

$$
\log \frac{21 \times 5}{8}=\log (21 \times 5)-\log 8
$$

By $1^{\text {st }}$ law of logarithm:

$$
\log \frac{21 \times 5}{8}=\log 21+\log 5-\log 8
$$

(iv) $\log \sqrt[3]{\frac{7}{15}}$

$$
=\log \left(\frac{7}{15}\right)^{1 / 3}
$$

By $3^{\text {rd }}$ law of logarithm:
$=\frac{1}{3} \log \frac{7}{15}$
By $2^{\text {nd }}$ law of logarithm:

$$
=\frac{1}{3} \log 7-\frac{1}{3} \log 15
$$

(v) $\log \frac{22^{\frac{1}{3}}}{5^{3}}$

By $2^{\text {nd }}$ law of logarithm:

$$
=\log 22^{\frac{1}{3}}-\log 5^{3}
$$

By $3^{\text {rd }}$ law of logarithm:

$$
=\frac{1}{3} \log 22-3 \log 5
$$

(vi) $\log \frac{25 \times 47}{29}$

By $2^{\text {nd }}$ law of logarithm:

$$
=\log (25 \times 47)-\log 29
$$

By $1^{\text {st }}$ law of logarithm:

$$
=\log 25+\log 47-\log 29
$$

Q2. Express $\log x-2 \log x+3 \log (x+1)-$ $\log \left(x^{2}-1\right)$ as a single logarithm.
By re arranging
$=\log x+3 \log (x+1)-\log \left(x^{2}-1\right)-2 \log x$
$=\log x+3 \log (x+1)-\left\{\log \left(x^{2}-1\right)+2 \log x\right\}$
By $3^{\text {rd }}$ law:
$=\log x+\log (x+1)^{3}-\left\{\log \left(x^{2}-1\right)+\log x^{2}\right\}$
By $1^{\text {st }}$ law:
$=\log x(x+1)^{3}-\left\{\log x^{2}\left(x^{2}-1\right)\right\}$
By $2^{\text {nd }}$ law:
$=\log \frac{x(x+1)^{3}}{x^{2}\left(x^{2}-1\right)}$
Simplifying
$=\log \frac{(x+1)^{3}}{x(x-1)(x+1)}$
$=\log \frac{(x+1)^{2}}{x(x-1)}$
Q3. Write the following in the form of a single logarithm.
(i) $\log 21+\log 5$
$=\log (21 \times 5)$
$=\log 105$
(ii) $\log 25+2 \log 3$

$$
\begin{aligned}
& =\log 25+\log 3^{2} \\
& =\log 25+\log 9 \\
& =\log (25 \times 9) \\
& =\log 225
\end{aligned}
$$

(iii) $2 \log x-3 \log y$

$$
=\log x^{2}-\log y^{3}
$$

$$
=\log \frac{x^{2}}{y^{3}}
$$

(iv) $\log 5+\log 6-\log 2$

$$
\begin{aligned}
& =\log \frac{5 \times 6}{2} \\
& =\log 15
\end{aligned}
$$

Q4. Calculate the following:
(i) $\log _{3} 2 \times \log _{2} 81$
by 4th law:

$$
=\frac{\log 2}{\log 3} \times \frac{\log 81}{\log 2}
$$

simplifing
$=\frac{\log 3^{4}}{\log 3}$
by 1st law:
$=\frac{4 \log 3}{\log 3}$
$=4$
(ii) $\log _{5} 3 \times \log _{3} 25$
by 4th law:

$$
=\frac{\log 3}{\log 5} \times \frac{\log 25}{\log 3}
$$

simplifing
$=\frac{\log 5^{2}}{\log 5}$
by 1st law:
$=\frac{2 \log 5}{\log 5}$
$=2$
Q5. If $\log 2=0.3010, \log 3=0.4771$,
$\log 5=0.6990$, then find the values of the following.
(i) $\log 32$

$$
=\log 2^{5}
$$

$$
=5 \log 2
$$

$$
=5(0.3010)
$$

$$
=1.5050
$$

(ii) $\log 24$

$$
\begin{aligned}
& =\log \left(2^{3} \times 5\right) \\
& =\log 2^{3}+\log 5 \\
& =3 \log 2+\log 5 \\
& =3(0.3010)+(0.6990) \\
& =1.6020
\end{aligned}
$$

(iii) $\log \sqrt[3]{3 \frac{1}{3}}$

$$
=\log \left(\frac{10}{3}\right)^{\frac{1}{3}}
$$

$$
=\frac{1}{3} \log \left(\frac{10}{3}\right)
$$

$$
=\frac{1}{3} \log \left(\frac{2 \times 5}{3}\right)
$$

$$
=\frac{1}{3}(\log 2+\log 5-\log 3)
$$

$$
=\frac{1}{3}(0.3010+0.6990-0.4771)
$$

$$
=\frac{1}{3}(0.5229)
$$

$=0.1743$
(iv) $\log _{\frac{8}{3}}$
$=\log 8-\log 3$
$=\log 2^{3}-\log 3$
$=3 \log 2-\log 3$
$=3(0.3010)-0.4771$
$=0.1249$
(v) $\log 30$

$$
\begin{aligned}
& =\log (2 \times 3 \times 5) \\
& =\log 2+\log 3+\log 5 \\
& =0.3010+0.4771+0.6990 \\
& =1.4771
\end{aligned}
$$

Exercise 3.4

Q1. Use log tables to find the values of
i. $\quad 0.8176 \times 13.64$

Let $x=0.8176 \times 13.64$
Taking log on both sides:

$$
\log x=\log (0.8176 \times 13.64)
$$

$\log x=\log (0.8176)+\log (13.64)$

$$
\log x=\overline{1} .9125+1.1348
$$

$\log x=-1+0.9125+1+0.1348$

$$
\log x=1.0473
$$

To find ' x ' take antilog on both sides:

$$
\begin{gathered}
\operatorname{Antilog}(\log x)=\operatorname{Antilog}(1.0473) \\
\mathbf{0 . 8 1 7 6} \times \mathbf{1 3 . 6 4}=x=11.15
\end{gathered}
$$

ii. $\quad(789.5)^{\frac{1}{8}}$

$$
\text { Let } x=(789.5)^{\frac{1}{8}}
$$

Taking log on both sides:

$$
\begin{gathered}
\log x=\log (789.5)^{\frac{1}{8}} \\
\log x=\frac{1}{8} \log (789.5) \\
\log x=\frac{1}{8}(2.8974) \\
\log x=0.3622
\end{gathered}
$$

To find ' x ' take antilog on both sides:

$$
\operatorname{Antilog}(\log x)=\operatorname{Antilog}(0.3622)
$$

$$
(789.5)^{\frac{1}{8}}=x=2.3025
$$

iii. $\frac{0.678 \times 9.01}{0.0234}$

$$
\text { Let; } x=\frac{0.678 \times 9.01}{0.0234}
$$

Taking log on both sides:

$$
\log x=\log \left(\frac{0.678 \times 9.01}{0.0234}\right)
$$

$$
\begin{gathered}
\log x=\log (0.678)+\log (9.01)-\log 0.0234 \\
\log x=\overline{1} .8312+0.9547-\overline{2} .3692 \\
\log x=-1+0.8312+0.9547-(-2+0.3692)
\end{gathered}
$$

$$
\begin{gathered}
\log x=-1+0.8312+0.9547+2-0.3692 \\
\log x=1+1.4167 \\
\log x=2.4167
\end{gathered}
$$

To find ' x ' take antilog on both sides:
Antilog $(\log x)=\operatorname{Antilog}(2.4167)$

$$
\frac{0.678 \times 9.01}{0.0234}=x=261.03
$$

iv. $\sqrt[5]{2.709} \times \sqrt[7]{1.239}$

$$
\text { Let } x=\sqrt[5]{2.709} \times \sqrt[7]{1.239}
$$

Taking log on both sides:

$$
\begin{gathered}
\log x=\log (\sqrt[5]{2.709} \times \sqrt[7]{1.239}) \\
\log x=\log \sqrt[5]{2.709}+\log \sqrt[7]{1.239} \\
\log x=\frac{1}{5} \log 2.709+\frac{1}{7} \log 1.239 \\
\log x=\frac{1}{5}(0.4328)+\frac{1}{7}(0.0931) \\
\log x=0.0866+0.0133 \\
\log x=0.0999
\end{gathered}
$$

To find ' x ' take antilog on both sides:

$$
\operatorname{Antilog}(\log x)=\operatorname{Antilog}(0.0999)
$$

$\sqrt[5]{2.709} \times \sqrt[7]{1.239}=(789.5)^{\frac{1}{8}}=x=1.2586$
v. $\frac{(1.23)(0.6975)}{(0.0075)(1278)}$

$$
\text { Let; } x=\frac{(1.23)(0.6975)}{(0.0075)(1278)}
$$

Taking log on both sides:

$$
\log x=\log \frac{(1.23)(0.6975)}{(0.0075)(1278)}
$$

$$
\log x=\log (1.23)+\log (0.6975)
$$

$$
-\log (0.0075)-\log (1278)
$$

$\log x=0.0899+\overline{1} .8435-\overline{3} .8751-3.1065$
$\log x=0.0899-1+0.8435-(-3)-0.8751$

$$
-3-0.1065
$$

$\log x=0.0899-1+0.8435+3-0.8751-3$

$$
-0.1065
$$

$$
\begin{gathered}
\log x=-1-0.0482 \\
\log x=-1.0482
\end{gathered}
$$

To find ' x ' take antilog on both sides:

$$
\operatorname{Antilog}(\log x)=\operatorname{Antilog}(-1.0482)
$$

$$
\frac{(1.23)(0.6975)}{(0.0075)(1278)}=x=0.08949
$$

vi. $\sqrt[3]{\frac{0.7214 \times 20.37}{60.8}}$

$$
\text { Let } x=\sqrt[3]{\frac{0.7214 \times 20.37}{60.8}}
$$

Taking log on both sides:

$$
\begin{array}{r}
\log x=\log \sqrt[3]{\frac{0.7214 \times 20.37}{60.8}} \\
\log x=\frac{1}{3} \log \left(\frac{0.7214 \times 20.37}{60.8}\right) \\
\log x=\frac{1}{3}(\log 0.7214+\log 20.37-\log 60.8)
\end{array}
$$

$$
\log x=\frac{1}{3}(\overline{1} .8582+1.3090-1.7839)
$$

$$
\log x=\frac{1}{3}(\overline{1}+0.8582+1+0.3090-1
$$

$$
-0.7839)
$$

$$
\log x=\frac{1}{3}(-1+0.3833)
$$

$\log x=\frac{1}{3}(-0.6167)$

$$
\log x=-0.2056
$$

To find ' x ' take antilog on both sides:

$$
\operatorname{Antilog}(\log x)=\operatorname{Antilog}(-0.2056)
$$

$$
\sqrt[3]{\frac{0.7214 \times 20.37}{60.8}}=x=0.6229
$$

vii. $\frac{83 \times \sqrt[3]{92}}{127 \times \sqrt[5]{246}}$

$$
\text { Let; } x=\frac{83 \times \sqrt[3]{92}}{127 \times \sqrt[5]{246}}
$$

Taking log on both sides:

$$
\log x=\log \left(\frac{83 \times \sqrt[3]{92}}{127 \times \sqrt[5]{246}}\right)
$$

$$
\begin{aligned}
\log x=\log 83+ & \log \sqrt[3]{92} \\
& -\log 127-\log \sqrt[5]{246}
\end{aligned}
$$

$\log x=\log 83+\frac{1}{3} \log 92-\log 127-\frac{1}{5} \log 246$

$$
\begin{aligned}
\log x=1.9191+ & \frac{1}{3}(1.9638)-2.1038 \\
& -\frac{1}{5}(2.3909)
\end{aligned}
$$

$\log x=1.9191+0.6546-2.1038-0.4782$

$$
\log x=-0.0083
$$

To find ' x ' take antilog on both sides:

$$
\operatorname{Antilog}(\log x)=\operatorname{Antilog}(-0.0083)
$$

$$
\frac{83 \times \sqrt[3]{92}}{127 \times \sqrt[5]{246}}=x=0.9811
$$

viii. $\frac{(438)^{3} \times \sqrt{0.056}}{388^{4}}$

Let; $x=\frac{(438)^{3} \times \sqrt{0.056}}{(388)^{4}}$

Taking log on both sides:

$$
\begin{gathered}
\log x=\log \left(\frac{(438)^{3} \times \sqrt{0.056}}{(388)^{4}}\right) \\
\log x=\log (438)^{3}+\log \sqrt{0.056}-\log (388)^{4} \\
\log x=3 \log 438+\frac{1}{2} \log 0.056-4 \log 388 \\
\log x=3(2.6415)+\frac{1}{2}(\overline{2} .7482)-4(2.5888) \\
\log x=7.9245+\frac{1}{2}(-1.2518)-10.3552 \\
\log x=7.9245-0.6259-10.3552 \\
\log x=-3.0566
\end{gathered}
$$

To find ' x ' take antilog on both sides:

$$
\operatorname{Antilog}(\log x)=\operatorname{Antilog}(-3.0566)
$$

$$
\frac{(438)^{3} \times \sqrt{0.056}}{(388)^{4}}=x=0.0008778
$$

Q2. A gas is expanding according to the law

$$
P V^{n}=C . \text { Find } C \text { when } P=80, V=3.1 \text { and } n=\frac{5}{4}
$$

$$
P V^{n}=C
$$

Taking log on both sides:

$$
\log P V^{n}=\log C
$$

$$
\begin{gathered}
\log P+\log V^{n}=\log C \\
\Rightarrow \log C=\log P+\log V^{n} \\
\log C=\log P+\operatorname{nlog} V \\
\log C=\log 80+\frac{5}{4} \log 3.1 \\
\log C=1.9031+1.25(0.4914) \\
\log C=1.9031+1.25(0.4914) \\
\log C=2.5173
\end{gathered}
$$

Taking antilog on both sides:

$$
\begin{gathered}
\text { Antilog }(\log C)=\text { Antilog }(2.5173) \\
C=329.07
\end{gathered}
$$

Q3.The formula $p=90(5)^{-\frac{q}{10}}$ applies to the demand of a product, where ' q ' is the number of units and p is the price of one unit. How many units will be demanded if the price is Rs. 18.00 ?
$\mathrm{P}=18 ; p=90(5)^{-\frac{q}{10}}$
Taking log on both sides:

$$
\begin{gathered}
\log p=\log 90(5)^{-\frac{q}{10}} \\
\log p=\log 90+\log (5)^{-\frac{q}{10}} \\
\log 18=\log 90+\left(-\frac{q}{10} \log 5\right) \\
1.2553=1.9542-\frac{q}{10}(0.6990) \\
\frac{q}{10}(0.6990)=1.9542-1.2553 \\
\frac{q}{10}(0.6990)=0.6989 \\
q=\frac{10 \times 0.6989}{0.6990} \\
q=10 \text { units }
\end{gathered}
$$

Q4 If $A=\pi r^{2}$ find A, when $\pi=\frac{22}{7}$ and $r=15$.

$$
A=\pi r^{2}
$$

Taking log on both sides:

$$
\begin{gathered}
\log A=\log \pi r^{2} \\
\log A=\log \pi+\log r^{2} \\
\log A=\log \pi+2 \log r \\
\log A=\log \frac{22}{7}+2 \log 15 \\
\log A=\log 22-\log 7+2 \log 15 \\
\log A=1.3424-0.8450+2(1.1761) \\
\log A=2.85
\end{gathered}
$$

Taking antilog on both sides:

$$
\begin{gathered}
\operatorname{Antilog}(\log A)=\operatorname{Antilog}(2.85)=707.9 \\
A=707.9
\end{gathered}
$$

Q5. If $v=\frac{1}{3} \pi r^{2} h$, find v when $\pi=\frac{22}{7}, r=2.5$
and $h=4.2$.

$$
V=\frac{1}{3} \pi r^{2} h
$$

Taking log on both sides:

$$
\log V=\log \frac{\pi r^{2} h}{3}
$$

$$
\begin{gathered}
\log V=\log \pi+\log r^{2}+\log h-\log 3 \\
\log V=\log \frac{22}{7}+2 \log 2.5+\log 4.2-\log 3
\end{gathered}
$$

$\log V=\log 22-\log 7+2 \log 2.5+\log 4.2-\log 3$

$$
\begin{gathered}
\log V=1.3424-0.8450+2(0.3979)+0.6232 \\
- \\
-0.4771
\end{gathered}
$$

$$
\begin{gathered}
\log V=2.7614-1.3221 \\
\log V=1.4393
\end{gathered}
$$

Taking antilog on both sides:
Antilog $(\log V)=$ Antilog (1.4393)

$$
V=27.50
$$

