Matrix:

A rectangular array or a formation of a collection of real numbers, say 0, 1, 2, 3, 4 and 7 etc. and then enclosed by brackets [] are known as **Matrix**. For example $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

In a matrix, the entries presented in horizontal way are called **rows** & all the entries presented in vertical way are called **columns**. For example in above matrix there are two rows one which contain 1, 2 and other 3, 4. There are two columns containing element 1,3 and 2,4.

Order of a Matrix:

The number of rows and columns in a matrix specifies its order. If a matrix M has m rows and n columns, then M is said to be of order m-by-n. For example in above matrix order of matrix is 2-by-2. Equal Matrices:

Two matrices are said to be equal if and only if

- They have same order
- Their corresponding entries are equal

For example:

$$A = \begin{bmatrix} 7 & 0 \\ 3 & 2 \end{bmatrix} \& B = \begin{bmatrix} 4+3 & 0 \\ 3 & 2 \end{bmatrix} \text{ are equal.}$$

EX#1.1

Q.1: Find the order of the matrix.

$A = \begin{bmatrix} 2 & 3 \\ -5 & 6 \end{bmatrix}.$	$B = \begin{bmatrix} 2 & 0 \\ 3 & 5 \end{bmatrix}$
Order of A = 2-by-2	Order of B = 2-by-2
C=[2 4]	$D = \begin{bmatrix} 4\\0\\6 \end{bmatrix}$
Order of C = 1-by-2	Order of D = 3-by-1
$E = \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix}$	F = [2]
Order of E = 3-by-2	Order of F = 1-by-1

Q.2: Which of the following matrices are equal?

A = [3]; B = [3 5]; C = [5-2]; D = [5 3]; E =
$$\begin{bmatrix} 4 & 0 \\ 6 & 2 \end{bmatrix}$$
;
F = $\begin{bmatrix} 2 \\ 6 \end{bmatrix}$; G = $\begin{bmatrix} 3 - 1 \\ 3 + 3 \end{bmatrix}$; H = $\begin{bmatrix} 4 & 0 \\ 6 & 2 \end{bmatrix}$; I = [3 3+2];
J = $\begin{bmatrix} 2 + 2 & 2 - 2 \\ 2 + 4 & 2 + 0 \end{bmatrix}$
Answer:

In above matrices following are equal:

A=C, B=I, E=H, F=G H=J, E=J

Q.3: Find the value of a, b, c and d which satisfy the matrix equation.

$$\begin{bmatrix} a + c & a + 2b \\ c - 1 & 4d - 6 \end{bmatrix} = \begin{bmatrix} 0 & -7 \\ 3 & 2d \end{bmatrix}$$

From the definition of equality of matrices:
 $a + c = 0$ (1) ; $a + 2b = -7$ (3)
 $c - 1 = 3$ (2) ; $4d - 6 = 2d$ (4)

$\Rightarrow c = 3 + 1$			
c = 4			
So,			
a + 4 = 0	;	from (4):	4d - 2d = 6
a = -4	;		2d = 6
Put value of 'a' in (3)	;		d = 6/2 = 3
-4 + 2b = -7			
2b = -7 + 4			
$b = -\frac{3}{2}$			
Result: The values of a, b, c and d are -4, -3/2, 4 and 3 respectively.			

(END OF EX # 1.1)

Types of matrices:

1. Row Matrix:

A matrix is called a row matrix, if it has only one row. For example: M = [5 3].

2. Column Matrix:

A matrix is called a row matrix, if it has only one column. For example: $M = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

3. Rectangular Matrix:

A matrix is called rectangular, if the number of rows of is not equal to the number of its columns. For example: $M = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$

4. Square Matrix:

A matrix is called a square matrix, if its number of rows is equal to its number of columns. For example: $H = \begin{bmatrix} 4 & 0 \\ 6 & 2 \end{bmatrix}$

5. Null or Zero Matrix:

A matrix is called a null or zero matrix, if each of its entries is 0. For example: N = $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

6. Negative Matrix:

Let A be a matrix. Then its negative, -A is obtained by changing the signs of all the entries of A For example negative of $Z = \begin{bmatrix} 4 & 0 \\ 6 & 2 \end{bmatrix}$ is $-Z = \begin{bmatrix} -4 & 0 \\ -6 & -2 \end{bmatrix}$

7. Symmetric Matrix:

A square matrix A is symmetric, if $A^{t} = A$. For example: $Z = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$

8. Skew-symmetric Matrix:

A square matrix A is said to be skew-symmetric, if $A^{t} = -A$. For example: $A = \begin{bmatrix} 0 & -6 \\ 6 & 0 \end{bmatrix}$

9. Diagonal Matrix:

A square matrix A is called a diagonal matrix if at least any one of the entries of its diagonal is not zero and non-diagonal entries are zero. For example: $M = \begin{bmatrix} 5 & 0 \\ 0 & 6 \end{bmatrix}$

10. Scalar Matrix:

A diagonal matrix is called a scalar matrix, if all the diagonal entries are same. For example: M $= \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$

11. Identity Matrix:

A scalar matrix is called identity (unit) matrix, if all diagonal entries are 1. It is denoted by I. For example: $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

EX # 1.2

Q.1: From the following matrices, identify unit matrices, row matrices, column matrices and null matrices.

matric	C3.			
	$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	Null Matrix		
	B = [2 3 4]	Row Matrix		
	$C = \begin{bmatrix} 4 \\ 0 \\ 6 \end{bmatrix}$	Column Matrix		
	$D = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	Identity Matrix		
	E = [0]	Null Matrix		
	$F = \begin{bmatrix} 5 \\ 6 \\ 7 \end{bmatrix}$	Column Matrix		
Q.2: From the following Matrices, identify				
	a) Square M	atrix b) Rectangular Matrix c) Row Matrix d) Column Matrix		
	e) Identity Ma	atrix f) Null Matrix		
i.	$\begin{bmatrix} -8 & 2 & 7 \\ 12 & 0 & 4 \end{bmatrix}$	Ans: Rectangular Matrix		
ii.	$\begin{bmatrix} 3\\0\\1 \end{bmatrix}$	Ans: Column Matrix (Also comes under the category of Rectangular Matrix)		
iii.	$\begin{bmatrix} 6 & -4 \\ 3 & -2 \end{bmatrix}$	Ans: Square Matrix		
iv.	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ \begin{bmatrix} 1 & 2 \end{bmatrix}$	Ans: Identity Matrix		
v.	3 4 5 6	Ans: Rectangular Matrix		
vi.		Ans: Column & Rectangular Matrix		
vii.	$\begin{bmatrix} 1 & 2 & 3 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	Ans: Square Matrix		
viii.	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	Ans: Null Matrix		

Q.3: From the following matrices, identify diagonal, scalar and unit (identity) matrices.

 $A = \begin{bmatrix} 0 & 4 \\ 4 & 0 \end{bmatrix}$ Ans: Scalar Matrix

$$B = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$$
 Ans: Diagonal Matrix

$$C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 Ans: Identity Matrix

$$D = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}$$
 Ans: Diagonal Matrix

$$E = \begin{bmatrix} 5 - 3 & 0 \\ 0 & 1 + 1 \end{bmatrix}$$
 Ans: Scalar Matrix

$$EX\#1.3$$

Q.1: Which of the following matrices are conformable for addition?

$$A = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}, B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 1 & -2 \end{bmatrix}, D = \begin{bmatrix} 2+1 \\ 3 \end{bmatrix}, E = \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}, F = \begin{bmatrix} 3 & 2 \\ 1+1 & -4 \\ 3+2 & 2+1 \end{bmatrix}$$

Solution:

Since matrices 'A & E' and matrices 'B & D' and matrices 'C & F' have same order. So they are conformable for addition.

Q.2: Find additive inverse of the following matrices:

$$A = \begin{bmatrix} 2 & 4 \\ -2 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & -1 \\ 2 & -1 & 3 \\ 3 & -2 & 1 \end{bmatrix}, C = \begin{bmatrix} 4 \\ -2 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 \\ -3 & -2 \\ 2 & 1 \end{bmatrix}, E = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, F = \begin{bmatrix} \sqrt{3} & 1 \\ \sqrt{2} \end{bmatrix}$$

Solution:

Additive inverse of A = - A =
$$-\begin{bmatrix} 2 & 4 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -2 & -4 \\ 2 & -1 \end{bmatrix}$$

Additive inverse of B = - B = $-\begin{bmatrix} 1 & 0 & -1 \\ 2 & -1 & 3 \\ 3 & -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 1 & -3 \\ -3 & 2 & -1 \end{bmatrix}$
Additive inverse of C = - C = $-\begin{bmatrix} 4 \\ -2 \end{bmatrix} = \begin{bmatrix} -4 \\ 2 \end{bmatrix}$

Additive inverse of D = - D = $-\begin{bmatrix} 1 & 0 \\ -3 & -2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 3 & 2 \\ 2 & 1 \end{bmatrix}$ Additive inverse of $E = -E = -\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ Additive inverse of F = - F = $-\begin{bmatrix} \sqrt{3} & 1\\ -1 & \sqrt{2} \end{bmatrix} = \begin{bmatrix} -\sqrt{3} & -1\\ 1 & -\sqrt{2} \end{bmatrix}$ Q.3: If A = $\begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix}$, B = $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$, C = $\begin{bmatrix} 1 & -1 & 2 \end{bmatrix}$ and D = $\begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 2 \end{bmatrix}$ then find: (i). $\mathbf{A} + \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $= \begin{bmatrix} -1+1 & 2+1 \\ 2+1 & 1+1 \end{bmatrix}$ $= \begin{bmatrix} 0 & 3 \\ 3 & 2 \end{bmatrix}$ (ii). $\mathbf{B} + \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} -2 \\ 3 \end{bmatrix}$ $= \begin{bmatrix} 1-2 \\ -1+3 \end{bmatrix}$ $= \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ $\begin{bmatrix} -1 & 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1+(-2) & -1+1 & 2+3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 1+0 & 2+1 & 3+2 \\ -1+2 & 0+0 & 2+3 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 0 & 3 \end{bmatrix}$ (iii). (iv). (v). $\mathbf{2A} = \mathbf{2} \begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 4 \\ 4 & 2 \end{bmatrix}$ $(-1)\mathbf{B} = (-1)\begin{bmatrix} 1\\ -1 \end{bmatrix} = \begin{bmatrix} -1\\ 1 \end{bmatrix}$ (vi). (vii). (-2)C = (-2)[1 - 1 2] = [-2 2 - 4]**3D** = **3** $\begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 6 & 9 \\ -3 & 0 & 6 \end{bmatrix}$ (viii). $3C = 3[1 - 1 \ 2] = [3 - 3 \ 6]$ (ix).

Q.4: Perform the indicated operations and simplify the following:

 $(\mathbf{i})\left(\begin{bmatrix}1&0\\0&1\end{bmatrix}+\begin{bmatrix}0&2\\3&0\end{bmatrix}\right)+\begin{bmatrix}1&1\\1&0\end{bmatrix}\quad (\mathbf{i})\begin{bmatrix}1&0\\0&1\end{bmatrix}+\left(\begin{bmatrix}0&2\\3&0\end{bmatrix}-\begin{bmatrix}1&1\\1&0\end{bmatrix}\right)$

Solution:

(i):
$$= \left(\begin{bmatrix} 1+0 & 0+2\\ 0+3 & 1+0 \end{bmatrix} \right) + \begin{bmatrix} 1 & 1\\ 1 & 0 \end{bmatrix}$$
$$= \left(\begin{bmatrix} 1 & 2\\ 3 & 1 \end{bmatrix} \right) + \begin{bmatrix} 1 & 1\\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1+1 & 2+1\\ 3+1 & 1+0 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 3\\ 4 & 1 \end{bmatrix}$$

(ii):

$$= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} + \left(\begin{bmatrix} 0 - 1 & 2 - 1 \\ 3 - 1 & 0 - 0 \end{bmatrix} \right)$$
$$= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} + \left(\begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix} \right)$$
$$= \begin{bmatrix} 1 + (-1) & 1 + 1 \\ 1 + 2 & 0 + 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix}$$

(iii): [2 3 1] + ([1 0 2] - [2 2 2])

$$= [2 \ 3 \ 1] + ([1 - 2 \ 0 - 2 \ 2 - 2])$$

$$= [2 \ 3 \ 1] + [-1 - 2 \ 0]$$

$$= [2 + (-1) \ 3 + (-2) \ 1 + 0]$$

$$= [1 \ 1 \ 1]$$
(iv):
$$\begin{bmatrix} 1 & 2 & 3 \\ -1 & -1 & -1 \\ 0 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 + 1 & 2 + 1 & 3 + 1 \\ -1 + 2 & -1 + 2 & -1 + 2 \\ 0 + 3 & 1 + 3 & 2 + 3 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 3 & 4 \\ 1 & 1 & 1 \\ 3 & 4 & 5 \end{bmatrix}$$
(v):
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 0 & -2 \\ -2 & 1 & 0 \\ 0 & 2 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 + 1 & 2 + 0 & 3 + (-2) \\ 2 + (-2) & 3 + 1 & 1 + 0 \\ 3 + 0 & 1 + 2 & 2 + (-1) \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & 1 \\ 0 & 4 & 1 \\ 3 & 3 & 1 \end{bmatrix}$$

$$\begin{aligned} \text{(vi):} \left(\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \\ &= \begin{pmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \\ &= \begin{bmatrix} 3 & 3 \\ 1 & 1 & 1 + 1 \\ 1 + 1 & 1 + 0 \end{bmatrix} \\ &= \begin{bmatrix} 4 & 4 \\ 2 & 1 \end{bmatrix} \end{aligned}$$

$$\begin{aligned} \text{Q.5: For the Matrices A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & -1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ 3 & 1 & 3 \end{bmatrix} \text{ and } C = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 3 \\ 1 & 1 & 2 \end{bmatrix} \text{ verify the following rules:} \end{aligned}$$

$$(1). A + C = C + A \\ \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & -1 & 0 \end{bmatrix} + \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 3 \\ 1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} -1 + 1 & 0 + 2 & 0 + 3 \\ 0 + 2 & 3 + 1 \\ 1 + 1 & -1 + 1 & 0 + 2 \end{bmatrix} = \begin{bmatrix} -1 + 1 & 0 + 2 & 0 + 3 \\ 0 + 2 & 0 + 3 \\ 1 + 1 & 1 + (-1) & 2 + 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 2 & 3 \\ 2 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 3 \\ 2 & 0 & 2 \end{bmatrix}$$

$$L.H.S = R.H.S$$

$$(ii). A + B = B + A \\ \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 4 \\ 2 & 2 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 + 1 & 2 + (-1) & 3 + 1 \\ 2 + 2 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 + 1 & -1 + 2 & 1 + 3 \\ 2 & 3 & 1 & 3 \\ 1 & 3 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 + 1 & -1 + 2 & 1 + 3 \\ 2 & 3 & 1 \\ 1 & 1 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & 4 \\ 4 & 1 & 3 \\ 4 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 4 \\ 4 & 1 & 3 \\ 4 & 0 & 3 \end{bmatrix}$$

$$L.H.S = R.H.S \\ (iii). B + C = C + B (do yourself) \\ (iv). A + (B + A) = 2A + B \\ \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ -1 & 0 \end{bmatrix} + \begin{pmatrix} 2 & 1 & 4 \\ 4 & 1 & 3 \\ 4 & 0 & 3 \end{bmatrix}$$

$$L.H.S = R.H.S \\ (iii). B + C = C + B (do yourself) \\ (iv). A + (B + A) = 2A + B \\ \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ -1 & 0 \end{bmatrix} + \begin{pmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ 3 & 1 & 3 \end{bmatrix} = 2 \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ -1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ 3 & 1 & 3 \end{bmatrix}$$

-1 + 2/[1+1] 3] ן 1 + 3 [1 2 4 6] 1 + (2 + 2)6 2 + 2 -2 2 -2 + 32 + 12 = 43 1 (3 + 1)3 + 0] /1 + (-1)2 -2-1 0 0 3 1 2 3] 1 $4 + (-1) \quad 6 + 1$ [1 [2 4] [2 + 1]1 (4 2 3 3 1 + = 4 + 2 6 + (-2) 2 + 2 4 0 3 1 -1 0 2 + 3-2 + 10 + 3[1+2 $2 + 1 \quad 3 + 4$] $\begin{bmatrix} 2+1 & 4+(-1) & 6+1 \end{bmatrix}$ 3+1 1+3 = 4+2 6+(-2) 2+22 + 41 + 4-1+0 0+3 2 + 3-2 + 10 + 3[3 3 3 7] 7 [3 4 = 66 4 4 4 $\begin{bmatrix} 5 & -1 & 3 \end{bmatrix}$ -1 3 L5 L.H.S = R.H.S(v). (C - B) + A = C + (A - B) $\begin{bmatrix} 0 & 0 \\ -2 & 3 \\ 1 & 2 \end{bmatrix} - \begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ 3 & 1 & 3 \end{bmatrix}$ 2 3 -1 3] 0 + 2 1 1 -10 2 1 2 0 [-1 $= \begin{bmatrix} 0 & -2 & 3 \\ 1 & 1 & 2 \end{bmatrix} + \left(\begin{bmatrix} 2 \\ 1 \end{bmatrix} \right)$ 3 -2 1 2 -1 0 $\begin{bmatrix} -1 - 1 & 0 - (-1) & 0 - 1 \\ 0 - 2 & -2 - (-2) & 3 - 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 2 0 - 2 3 2 - 31 - 31 - 1-1 0] $\begin{array}{c} 2 - (-1) & 3 - 1 \\ 3 - (-2) & 1 - 2 \\ -1 - 1 & 0 - 3 \end{array}$ 0 **[**-1 01 [1 - 1 -2 1 - 2 - 3 3 2 = 0 L 1 $+ \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & -1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 3 \\ 1 & 1 & 2 \end{bmatrix} + \left(\begin{bmatrix} 0 & 3 & 2 \\ 0 & 5 & -1 \\ -2 & -2 & -3 \end{bmatrix} \right)$ $\begin{array}{c|cccc}
-2 & 0 & 1 \\
-2 & 0 & -1
\end{array}$ $2 + 2 \quad 0 + 3 \quad 1 + 1 \\ 2 + 1 \quad 0 + (-1) \quad -1 + 0 \end{bmatrix} = \begin{bmatrix} -1 + 0 & 0 + 3 & 0 + 2 \\ 0 + 0 & -2 + 5 & 3 + (-1) \\ 1 + (-2) & 1 + (-2) & 2 + (-2) \end{bmatrix}$ 3 2] [1 3 2] 2 = 0 3 2 -1 L-1-1 -1 L.H.S = R.H.S(vi). 2A + B = A + (A + B) (Do yourself) (vii).(C-B) A = (C - A) - B (Do yourself) (viii). (A + B) + C = A + (B + C) (Do yourself) (ix). A + (B - C) = (A - C) + B (Do yourself) (x). 2A + 2B = 2(A + B) $2\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & -1 & 0 \end{bmatrix} + 2\begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ 3 & 1 & 3 \end{bmatrix} = 2\left(\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & -1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ 3 & 1 & 3 \end{bmatrix}\right)$

$$\begin{bmatrix} 2 & 4 & 6 & 2 \\ 4 & 6 & 2 \\ 2 & -2 & 0 \end{bmatrix} \begin{bmatrix} 2 & -2 & 2 \\ 6 & 2 & -6 \\ 2 & -2 & 2 \end{bmatrix} = 2 \begin{pmatrix} 1 + 1 & 2 + (-1) & 3 + 1 \\ 1 + 3 & -1 + 1 & 0 + 3 \end{pmatrix}$$

$$\begin{bmatrix} 2 + 2 & 4 + (-2) & 6 + 2 \\ 4 + 4 & 6 + (-2) & 2 + 4 \\ 2 + 4 & 6 + (-2) & 2 + 4 \\ 2 + 6 & -2 + 2 & 0 + 6 \\ 2 + 4 & 6 + 2 & 8 \\ 4 & 2 & 8 \end{bmatrix} \begin{bmatrix} 2 + 2 & 6 \\ 4 & 1 & 3 \\ 4 & 0 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 4 + 2 & 8 \\ 8 & 2 & 6 \\ 8 & 0 & 6 \end{bmatrix} = \begin{bmatrix} 8 & 2 & 6 \\ 8 & 0 & 6 \\ L, U, S = R, U, S \end{bmatrix}$$
Q.6: If A = $\begin{bmatrix} 1 & -2 \\ 3 & -4 \\ -4 & 2 \end{bmatrix}$ and B = $\begin{bmatrix} 0 & 7 \\ -3 & 8 \\ 0 & 6 \end{bmatrix}$ find:
(i). 3A - 2B

$$\begin{bmatrix} 3 & -6 \\ 12 & -4 \\ 1 & -6 & 16 \\ 0 & -6 & 12 & -16 \\ 0 & -6 & 12 & -16 \\ 0 & -6 & 12 & -16 \\ 0 & -6 & 12 & -16 \\ 0 & -6 & 12 & -16 \\ 0 & -6 & 12 & -16 \\ 0 & -6 & 12 & -16 \\ 0 & -6 & -14 \\ 0 & -6 & -24 \\ 0 & -6 & -14 \\ 0 & -6 & -24 \\ 0 & -6 & -14 \\ 0 & -6 & -24 \\ 0 & -6 & -24 \\ 0 & -6 & -24 \\ 0 & -6 & -24 \\ 0 & -6 & -24 \\ 0 & -6 & -24 \\ 0 & -6 & -12 \\ 0 & -6 & -24 \\ 0 & -6 & -12 \\ 0 & -6 & -24 \\ 0 & -6 & -12 \\ 0 & -6 & -24 \\ 0 & -6 & -12 \\ 0 & -6 & -12 \\ 0 & -6 & -24 \\ 0 & -6 & -12 \\ 0 & -6 & -24 \\ 0 & -6 & -12 \\ 0 & -6 & -24 \\ 0 & -6 & -12 \\ 0 & -6 & -24 \\ 0 & -6 & -12 \\ 0 & -6 & -24 \\ 0 & -6 & -12 \\ 0 & -6 & -24 \\ 0 & -6 & -12 \\ 0 & -6 & -24 \\ 0 & -6 & -12 \\ 0 & -6 & -24 \\ 0 & -6 & -12 \\ 0 & -6 & -24 \\ 0 & -6 & -12 \\ 0 & -6 & -24 \\ 0 & -6 & -12 \\ 0 & -6 & -24 \\ 0 & -6 & -12 \\ 0 & -6 & -24 \\ 0 & -6 & -12 \\ 0 & -6 & -24 \\ 0 & -6 & -24 \\ 0 & -6 & -12 \\ 0 & -6 & -24 \\ 0 & -6 & -12 \\ 0 & -6 & -24 \\ 0 & -6 & -12 \\ 0 & -6 & -24 \\ 0 & -6 & -24 \\ 0 & -6 & -24 \\ 0 & -6 & -24 \\ 0 & -6 & -24 \\ 0 & -6 & -24 \\ 0 & -6 & -24 \\ 0 & -6 & -24 \\ 0 & -6 & -24 \\ 0 & -6 & -24 \\ 0 & -6 & -24 \\ 0 & -6 & -24 \\ 0 & -6 & -24 \\ 0 & -6 & -24 \\ 0 & -6 & -24 \\ 0 & -6 & -24 \\ 0 & -6 & -24 \\ 0 & -6$$

Q.8: If $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$ then verify that: (i). $(A + B)^{t} = A^{t} + B^{t}$ L.H.S: $A + B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$ $= \begin{bmatrix} 1+1 & 2+1 \\ 0+2 & 1+0 \end{bmatrix}$ $=\begin{bmatrix} 2 & 3\\ 2 & 1 \end{bmatrix}$ $(\mathbf{A} + \mathbf{B})^{\mathrm{t}} = \begin{bmatrix} 2 & 2 \\ 3 & 1 \end{bmatrix}$ R.H.S: $\mathbf{A}^{\mathrm{t}} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ $\mathbf{B}^{\mathrm{t}} = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$ $\mathbf{A}^{\mathrm{t}} + \mathbf{B}^{\mathrm{t}} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$ $= \begin{bmatrix} 1+1 & 0+2 \\ 2+1 & 1+0 \end{bmatrix}$ $= \begin{bmatrix} 2 & 2 \\ 3 & 1 \end{bmatrix}$ Hence Proved: L.H.S = R.H.S (ii). $(A - B)^{t} = A^{t} - B^{t}$ L.H.S: $\mathbf{A} + \mathbf{B} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$ $= \begin{bmatrix} 1 - 1 & 2 - 1 \\ 0 - 2 & 1 - 0 \end{bmatrix}$ $\begin{bmatrix} 0 & -2 \\ 1 & 1 \end{bmatrix}$ $+ B)^{t} =$ R.H.S: $\mathbf{A}^{\mathrm{t}} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ $\mathbf{B}^{\mathrm{t}} = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$

$$A^{t} + B^{t} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 - 1 & 0 - 2 \\ 2 - 1 & 1 - 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & -2 \\ 1 & 1 \end{bmatrix}$$

Hence Proved: **L.H.S** = **R.H.S**

(iii). A+ A^t is symmetric.

$$A^{t} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$A+ A^{t} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1+1 & 2+0 \\ 0+2 & 1+1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$
Now,

$$(A + A^{t})^{t} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = (A + A^{t})$$

Hence proved that A+ A^t is symmetric.

(iv). A- A^t is skew-symmetric.

$$A^{t} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$A + A^{t} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 - 1 & 2 - 0 \\ 0 - 2 & 1 - 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$$
Now.

$$(A + A^{t})^{t} = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix} = -(A + A^{t})$$

Hence proved that A+ A^t is skew- symmetric. (v). B+ B^t is symmetric.

$$B^{t} = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$$

$$B + B^{t} = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1+1 & 1+2 \\ 2+1 & 0+0 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 3 \\ 3 & 0 \end{bmatrix}$$

Now,

$$(\mathbf{B}+\mathbf{B}^{\mathsf{t}})^{\mathsf{t}} = \begin{bmatrix} 2 & 3\\ 3 & 0 \end{bmatrix} = (\mathbf{B}+\mathbf{B}^{\mathsf{t}})^{\mathsf{t}}$$

Hence proved that $B + B^t$ is symmetric. (vi). $B - B^t$ is skew-symmetric.

$$B^{t} = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$$

$$B^{-} B^{t} = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 - 1 & 1 - 2 \\ 2 - 1 & 0 - 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Now,

$$(B + B^{t})^{t} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = -(B + B^{t})^{t}$$

Hence proved that B+ B^t is skew-symmetric.

Multiplication of Matrices: Two matrices A & B can be multiplied if number of column of A are equal to number of rows of B.

Ex# 1.4

Q.1: Which of the following product of matrices is conformable for multiplication?

(i). $\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix}$

Ans: Yes. Since number of columns of first is two that is equal to numbers of rows of second. Therefore they can be multiplied.

(ii). $\begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$

Ans: yes.

(iii).
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}$$

Ans: No
(iv). $\begin{bmatrix} 1 & 2 \\ 0 & -1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix}$
Ans: yes
(v). $\begin{bmatrix} 3 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 2 \\ -2 & 2 \end{bmatrix}$

Q.2: If $A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 6 \\ 5 \end{bmatrix}$, find (i) AB and (ii) BA (if possible).

(i).
$$AB = \begin{bmatrix} 3 & 0 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ 5 \end{bmatrix}$$

 $AB = \begin{bmatrix} (3 \times 6) + (0 \times 5) \\ (-1 \times 6) \pm (2 \times 5) \end{bmatrix}$
 $AB = \begin{bmatrix} 18 + 0 \\ -6 + 10 \end{bmatrix}$
 $AB = \begin{bmatrix} 18 \\ 4 \end{bmatrix}$

(ii). BA is not possible.

Q.3: Find the product of following matrices:

(i).
$$[1 \ 2] \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

= $[(1 \times 4) \quad (2 \times 0)]$
= $[4 \quad 0]$
(ii). $[1 \ 2] \begin{bmatrix} 5 \\ -4 \end{bmatrix}$
= $[(1 \times 5) \quad (2 \times -4)]$

$$= \begin{bmatrix} 5 & -8 \end{bmatrix}$$

(iii).[3 0] $\begin{bmatrix} 4 \\ 0 \end{bmatrix}$

$$= \begin{bmatrix} (3 \times 4) & (0 \times 0) \end{bmatrix}$$

$$= \begin{bmatrix} 12 & 0 \end{bmatrix}$$

(iv).[6 -0] $\begin{bmatrix} 4 \\ 0 \end{bmatrix}$

$$= \begin{bmatrix} (6 \times 4) & (-0 \times 0) \end{bmatrix}$$

$$= \begin{bmatrix} 24 & 0 \end{bmatrix}$$

(v). $\begin{bmatrix} 1 & 2 \\ -3 & 0 \\ 6 & -1 \end{bmatrix} \begin{bmatrix} 4 & 5 \\ 0 & -4 \end{bmatrix}$

$$= \begin{bmatrix} (1 \times 4) + (2 \times 0) & (1 \times 5) + (2 \times -4) \\ (-3 \times 4) + (0 \times 0) & (-3 \times 5) + (0 \times -4) \\ (6 \times 4) + (-1 \times 0) & (6 \times 5) + (-1 \times -4) \end{bmatrix}$$

$$= \begin{bmatrix} 4 + 0 & 5 - 8 \\ -12 + 0 & -15 + 0 \\ 24 + 0 & 30 + 4 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & -3 \\ -12 & -15 \\ 24 & 34 \end{bmatrix}$$

Q.4: Multiply the following matrices.

a)
$$\begin{bmatrix} 2 & 3 \\ 1 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} (2 \times 2) + (3 \times 3) & (2 \times -1) + (3 \times 0) \\ (1 \times 2) + (1 \times 3) & (1 \times -1) + (1 \times 0) \\ (0 \times 2) + (-2 \times 3) & (0 \times -1) + (-2 \times 0) \end{bmatrix}$$
$$= \begin{bmatrix} 4 + 9 & -2 + 0 \\ 2 + 3 & -1 + 0 \\ 0 - 6 & 0 + 0 \end{bmatrix}$$
$$= \begin{bmatrix} 13 & -2 \\ 5 & -1 \\ -6 & 0 \end{bmatrix}$$
b)
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} (1 \times 1) + (2 \times 3) + (3 \times -1) & (1 \times 2) + (2 \times 4) + (3 \times 1) \\ (4 \times 1) + (5 \times 3) + (6 \times -1) & (4 \times 2) + (5 \times 4) + (6 \times 1) \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 13 \\ 13 & 34 \end{bmatrix}$$
c)
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
$$= \begin{bmatrix} (1 \times 1) + (2 \times 4) & (1 \times 2) + (2 \times 5) & (1 \times 3) + (2 \times 6) \\ (3 \times 1) + (4 \times 4) & (3 \times 2) + (4 \times 5) & (3 \times 3) + (4 \times 6) \\ (-1 \times 1) + (-1 \times 4) & (-1 \times 2) + (-1 \times 5) & (-1 \times 3) + (-1 \times 6) \end{bmatrix}$$

$$= \begin{bmatrix} 1+8 & 2+10 & 3+12 \\ 3+16 & 6+20 & 9+24 \\ -1-4 & -2-5 & -3-6 \end{bmatrix}$$

$$= \begin{bmatrix} 9 & 12 & 15 \\ 19 & 26 & 33 \\ -5 & -7 & -9 \end{bmatrix}$$

$$d) \begin{bmatrix} 8 & 5 \\ 8 & 5 \\ -4 & 4 \end{bmatrix} \begin{bmatrix} 2 & -\frac{5}{2} \\ -4 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} (8 \times 2) + (5 \times -4) & (8 \times -\frac{5}{2}) + (5 \times 4) \\ (6 \times 2) + (4 \times -4) & (6 \times -\frac{5}{2}) + (4 \times 4) \end{bmatrix}$$

$$= \begin{bmatrix} 16 - 20 & -40 + 20 \\ 1 & 3 \\ 10 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} (-1 \times 0) + (2 \times 0) & (-1 \times 0) + (2 \times 0) \\ (-1 \times 0) + (3 \times 0) & (1 \times 0) + (3 \times 0) \end{bmatrix}$$

$$= \begin{bmatrix} (-1 \times 0) + (2 \times 0) & (-1 \times 0) + (2 \times 0) \\ (1 \times 0) + (3 \times 0) & (1 \times 0) + (3 \times 0) \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
Q.5: Let $A = \begin{bmatrix} -1 & 3 \\ 2 & 0 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & -5 \\ (2 \times 1) + (0 \times -3) & (2 \times 2) + (3 \times -5) \\ (2 \times 2) + (0 \times -3) & (2 \times 2) + (0 \times -5) \end{bmatrix}$

$$= \begin{bmatrix} (-1 - 9 & -2 - 15 \\ 2 + 0 & 4 + 0 \\ 1 - 1 & 2 & -4 \end{bmatrix}$$
R.H.S
BA = $\begin{bmatrix} 1 & -3 \\ -3 & -5 \\ 2 & -1 & -17 \\ -2 & -47 \end{bmatrix}$
R.H.S
BA = $\begin{bmatrix} 1 & -25 \\ -3 & -25 \\ -3 & -1 & -9 + 0 \end{bmatrix}$

$$= \begin{bmatrix} (-3 \times -1) + (-5 \times 2) & (-3 \times 3) + (-5 \times 0) \\ -3 & -3 & -9 + 0 \\ = \begin{bmatrix} -3 & -5 \\ -7 & -9 \end{bmatrix}$$
SO, AB \times BA
(ii), A(BC) = (AB)C
L.H.S
BC = $\begin{bmatrix} 1 & 2 \\ -3 & -5 \\ -3 & -5 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 3 \end{bmatrix}$

$$= \begin{bmatrix} (1 \times 2) + (2 \times 1) & (1 \times 1) + (2 \times 3) \\ (-3 \times 2) + (-5 \times 1) & (-3 \times 1) + (-5 \times 3) \end{bmatrix}$$

$$= \begin{bmatrix} 2 + 2 & 1 + 6 \\ -6 - 5 & -3 - 15 \end{bmatrix}$$

$$BC = \begin{bmatrix} 4 & 7 \\ -11 & -18 \end{bmatrix}$$
Now,
$$A(BC) = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 4 & 7 \\ -11 & -18 \end{bmatrix}$$

$$= \begin{bmatrix} (-1 \times 4) + (3 \times -11) & (-1 \times 7) + (3 \times -18) \\ (2 \times 4) + (0 \times -11) & (2 \times 7) + (0 \times -18) \end{bmatrix}$$

$$= \begin{bmatrix} -4 - 33 & -7 - 54 \\ 8 + 0 & 14 + 0 \end{bmatrix}$$

$$= \begin{bmatrix} -37 & -61 \\ 8 & 14 \end{bmatrix}$$

$$I.5$$

$$AB = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}$$

$$= \begin{bmatrix} (-1 \times 1) + (3 \times -3) & (-1 \times 2) + (3 \times -5) \\ (2 \times 1) + (0 \times -3) & (2 \times 2) + (0 \times -5) \end{bmatrix}$$

$$= \begin{bmatrix} -1 - 9 & -2 - 15 \\ 2 + 0 & 4 + 0 \end{bmatrix}$$

R.H.S

$$AB = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}$$

$$= \begin{bmatrix} (-1 \times 1) + (3 \times -3) & (-1 \times 2) + (3 \times -5) \\ (2 \times 1) + (0 \times -3) & (2 \times 2) + (0 \times -5) \end{bmatrix}$$

$$= \begin{bmatrix} -1 - 9 & -2 - 15 \\ 2 + 0 & 4 + 0 \end{bmatrix}$$

$$= \begin{bmatrix} -10 & -17 \\ 2 & 4 \end{bmatrix}$$

$$(AB)C = \begin{bmatrix} -10 & -17 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} (-10 \times 2) + (-17 \times 1) & (-10 \times 1) + (-17 \times 3) \\ (2 \times 2) + (4 \times 1) & (2 \times 1) + (4 \times 3) \end{bmatrix}$$

$$= \begin{bmatrix} -20 - 17 & -10 - 51 \\ 4 + 4 & 2 + 12 \end{bmatrix}$$

$$(AB)C = \begin{bmatrix} -37 & -61 \\ 8 & 14 \end{bmatrix}$$
Hence, A(BC) = (AB)C
$$(iii). A(B + C) = AB + AC$$

$$L.H.S$$

$$B + C = \begin{bmatrix} 1 & 2 \\ -3 & -5 \\ -2 & -2 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 3 \\ -2 & -2 \end{bmatrix}$$

$$A(B + C) = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 3 & 3 \\ -2 & -2 \end{bmatrix}$$

N

$$= \begin{bmatrix} (-1 \times 3) + (3 \times -2) & (-1 \times 3) + (3 \times -2) \\ (2 \times 3) + (0 \times -2) & (2 \times 3) + (0 \times -2) \end{bmatrix}$$
$$= \begin{bmatrix} -3 - 6 & -3 - 6 \\ 6 + 0 & 6 + 0 \end{bmatrix}$$
$$A(B + C) = \begin{bmatrix} -9 & -9 \\ 6 & 6 \end{bmatrix}$$

R.H.S

$$AB = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}$$

$$= \begin{bmatrix} (-1 \times 1) + (3 \times -3) & (-1 \times 2) + (3 \times -5) \\ (2 \times 1) + (0 \times -3) & (2 \times 2) + (0 \times -5) \end{bmatrix}$$

$$= \begin{bmatrix} -1 - 9 & -2 - 15 \\ 2 + 0 & 4 + 0 \end{bmatrix}$$

$$= \begin{bmatrix} -10 & -17 \\ 2 & 4 \end{bmatrix}$$

$$AC = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} (-1 \times 2) + (3 \times 1) & (-1 \times 1) + (3 \times 3) \\ (2 \times 2) + (0 \times 1) & (2 \times 1) + (0 \times 3) \end{bmatrix}$$

$$= \begin{bmatrix} -2 + 3 & -1 + 9 \\ 4 + 0 & 2 + 0 \end{bmatrix}$$

$$= \begin{bmatrix} -2 + 3 & -1 + 9 \\ 4 + 0 & 2 + 0 \end{bmatrix}$$

$$= \begin{bmatrix} -10 + 1 & -17 + 8 \\ 2 + 4 & 4 + 2 \end{bmatrix}$$

$$= \begin{bmatrix} -9 & -9 \\ 6 & 6 \end{bmatrix}$$
Hence, $A(B + C) = AB + AC$
(iv). $A(B - C) = AB - AC$

$$B - C = \begin{bmatrix} 1 & 2 \\ -3 & -5 \\ 2 & -5 \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$

$$A(B - C) = \begin{bmatrix} -1 & 3 \\ -1 & -4 \\ -8 \end{bmatrix}$$

$$A(B - C) = \begin{bmatrix} -1 & 3 \\ -1 & -4 \\ -8 \end{bmatrix}$$

$$= \begin{bmatrix} (-1 \times -1) + (3 \times -4) & (-1 \times 1) + (3 \times -8) \\ (2 \times -1) + (0 \times -4) & (2 \times 1) + (0 \times -8) \end{bmatrix}$$

$$= \begin{bmatrix} 1 - 1 & 2 \\ -2 + 0 & 2 + 0 \end{bmatrix}$$

A(B - C) =
$$\begin{bmatrix} -11 & -25 \\ -2 & 2 \end{bmatrix}$$

R.H.S
AB = $\begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ -3 & -5 \end{bmatrix}$
= $\begin{bmatrix} (-1 \times 1) + (3 \times -3) & (-1 \times 2) + (3 \times -5) \\ (2 \times 1) + (0 \times -3) & (2 \times 2) + (0 \times -5) \end{bmatrix}$
= $\begin{bmatrix} -1 & -9 & -2 - 15 \\ 2 + 0 & 4 + 0 \end{bmatrix}$
= $\begin{bmatrix} -1 & 2 & -17 \\ 2 + 0 & 4 + 0 \end{bmatrix}$
AC = $\begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 \\ 3 \end{bmatrix}$
= $\begin{bmatrix} (-1 \times 2) + (3 \times 1) & (-1 \times 1) + (3 \times 3) \\ (2 \times 2) + (0 \times 1) & (2 \times 1) + (0 \times 3) \end{bmatrix}$
= $\begin{bmatrix} -2 + 3 & -1 + 9 \\ 4 + 0 & 2 + 0 \end{bmatrix}$
= $\begin{bmatrix} -10 - 1 & -17 - 8 \\ 2 - 4 & 4 - 2 \end{bmatrix}$
= $\begin{bmatrix} -10 - 1 & -17 - 8 \\ 2 - 4 & 4 - 2 \end{bmatrix}$
= $\begin{bmatrix} -11 & -25 \\ -2 & 2 \end{bmatrix}$
Hence, A(B - C) = AB - AC
Q.6: For the matrices
 $A = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}$ and $C = \begin{bmatrix} -2 & 6 \\ 3 & -9 \end{bmatrix}$
Verify that:
(i). (AB)' = B'A'
LHS
 $AB = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}$
= $\begin{bmatrix} (-1 \times 1) + (3 \times -3) & (-1 \times 2) + (3 \times -5) \\ 2 & (2 \times 1) + (0 \times -3) & (2 \times 2) + (0 \times -5) \end{bmatrix}$
= $\begin{bmatrix} -1 - 9 & -2 - 15 \\ 2 & 0 & 4 + 0 \end{bmatrix}$
= $\begin{bmatrix} -1 - 9 & -2 - 15 \\ 2 & 0 & 4 + 0 \end{bmatrix}$
= $\begin{bmatrix} -10 & -17 \\ 2 & 0 & 4 + 0 \end{bmatrix}$
= $\begin{bmatrix} -10 & -17 \\ 2 & 0 & 4 \end{bmatrix}$

R.H.S $\mathsf{B}^{\mathsf{t}} = \begin{bmatrix} 1 & -3 \\ 2 & -5 \end{bmatrix}$ $A^{t} = \begin{bmatrix} -1 & 2 \\ 3 & 0 \end{bmatrix}$ $B^{t} A^{t} = \begin{bmatrix} 1 & -3 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 3 & 0 \end{bmatrix}$ $= \begin{bmatrix} (1 \times -1) + (-3 \times 3) & (1 \times 2) + (-3 \times 0) \\ (2 \times -1) + (-5 \times 3) & (2 \times 2) + (-5 \times 0) \end{bmatrix}$ $= \begin{bmatrix} -1 - 9 & 2 + 0 \\ -2 - 15 & 4 + 0 \end{bmatrix}$ $= \begin{bmatrix} -10 & 2 \\ -17 & 4 \end{bmatrix}$ Hence, $(AB)^{t} = B^{t}A^{t}$ (ii). Do yourself oared

Singular Matrices: A square matrix A is called singular, if the determinant of A is equal to zero. i.e., |A| = 0.

Non-Singular Matrices: A square matrix A is called singular, if the determinant of A is not equal to zero. i.e., $|A| \neq 0$.

Ex# 1.5

Q.1: Find the determinant of following matrices:

(i).
$$A = \begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix}$$

 $|A| = \begin{vmatrix} -1 & 1 \\ 2 & 0 \end{vmatrix} = (-1 \times 0) - (2 \times 1) = 0 - 2 = -2$

(ii).
$$B = \begin{bmatrix} 1 & 3 \\ 2 & -2 \end{bmatrix}$$

 $|B| = \begin{vmatrix} 1 & 3 \\ 2 & -2 \end{vmatrix} = (1 \times -2) - (2 \times 3) = -2 - 6 = -2$
(iii). $C = \begin{bmatrix} 3 & 2 \\ 3 & 2 \end{bmatrix}$
 $|C| = \begin{vmatrix} 3 & 2 \\ 3 & 2 \end{vmatrix} = (3 \times 2) - (3 \times 2) = 6 - 6 = 0$
(iv). $D = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$
 $|D| = \begin{vmatrix} 3 & 2 \\ 1 & 4 \end{vmatrix} = (3 \times 4) - (1 \times 2) = 12 - 2 = 10$

Q.2: Find which of the following matrices are singular or non-singular?

(i).
$$A = \begin{bmatrix} 3 & 6 \\ 2 & 4 \end{bmatrix}$$

 $|A| = \begin{vmatrix} 3 & 6 \\ 2 & 4 \end{vmatrix} = (3 \times 4) - (2 \times 6) = 12 - 12 = 0$
So, A is a singular matrix.
(ii). $B = \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$
 $|B| = \begin{vmatrix} 4 & 1 \\ 3 & 2 \end{vmatrix} = (4 \times 2) - (3 \times 1) = 8 - 3 = 5$
So, B is a non-singular matrix.
(iii). $C = \begin{bmatrix} 7 & -9 \\ 3 & 5 \end{bmatrix}$
 $|C| = \begin{vmatrix} 7 & -9 \\ 3 & 5 \end{vmatrix} = (7 \times 5) - (3 \times -9) = 35 + 27 = 62$
So, C is a non-singular matrix.
(iv). $D = \begin{bmatrix} 5 & -10 \\ -2 & 4 \end{bmatrix}$
 $|D| = \begin{vmatrix} 5 & -10 \\ -2 & 4 \end{vmatrix} = (5 \times 4) - (-2 \times -10) = 20 - 20 = 0$

So, D is a singular matrix.

Q.3: Find the multiplicative inverse of following matrices (if exist):

(i)
$$A = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$$

 $|A| = (-1 \times 0) - (3 \times 2)$
 $= -6$
 $Adj(A) = \begin{bmatrix} 0 & -3 \\ -2 & -1 \end{bmatrix}$
 $A^{-1} = \frac{1}{|A|} \times Adj(A)$
 $A^{-1} = \frac{1}{-6} \times \begin{bmatrix} 0 & -3 \\ -2 \times \frac{1}{-6} & 1 \times \frac{1}{-6} \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 0 \times \frac{1}{-6} & -3 \times \frac{1}{-6} \\ -2 \times \frac{1}{-6} & 1 \times \frac{1}{-6} \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{6} \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{6} \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{6} \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{6} \end{bmatrix}$
 $B^{-1} = \frac{1}{|B|} \times Adj(B)$
 $B^{-1} = \frac{1}{|B|} \times Adj(B)$
 $B^{-1} = \begin{bmatrix} -5 & -2 \\ 1 & -2 \end{bmatrix}$
 $B^{-1} = \begin{bmatrix} -5 & -2 \\ -3 & -1 \end{bmatrix}$
 $B^{-1} = \begin{bmatrix} -5 & -2 \\ -3 & -1 \end{bmatrix}$
 $B^{-1} = \begin{bmatrix} -5 & -2 \\ -3 & -1 \end{bmatrix}$
 (H) . Same as above. Do yourself.
 (P) . $D = \begin{bmatrix} 5 & -10 \\ -2 & -10 \end{bmatrix}$
 $|A| = (5 \times 4) - (-10 \times -2) = 0$
Since $|A| = 0$, so its multiplicative Inverse does not exists.
 $Q.4$: If $A = \begin{bmatrix} 1 & 2 \\ 4 & 6 \end{bmatrix} \& B = \begin{bmatrix} 3 & -1 \\ 2 & -2 \end{bmatrix}$ Then,
(i). $A(Adj A) = (Adj A)A = (det A)I$
 $A = \begin{bmatrix} 1 & 2 \\ 4 & -6 \end{bmatrix}$

Email ID: Engr.moin@hotmail.com

L.H.S=

$$Adj (A) = \begin{bmatrix} 6 & -2 \\ -4 & 1 \\ 4 & 6 \end{bmatrix} \begin{bmatrix} 6 & -2 \\ -4 & -2 \\ 6 & -2 \end{bmatrix}$$

$$A(Adj A) = \begin{bmatrix} 6 & -3 & -2 + 2 \\ 24 & -24 & -8 + 6 \end{bmatrix}$$

$$A(Adj A) = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}$$
Middle Side=M.S.

$$(Adj A) A = \begin{bmatrix} 6 & -3 & 12 - 12 \\ -4 + 4 & -8 + 6 \end{bmatrix}$$

$$(Adj A) A = \begin{bmatrix} 6 -8 & 12 - 12 \\ 0 & -2 \end{bmatrix}$$
R.H.S=

$$(det A) = |A| \begin{bmatrix} 1 & 2 \\ 4 & 6 \end{bmatrix} = 6 - 8 = -2$$

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$(det A)I = -2 \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}$$
Hence prove that

$$A(Adj A) = (Adj A)A = (det A)I$$
(ii).
$$BB^{-1} = I = B^{-1}B$$

$$B = \begin{bmatrix} 3 & -1 \\ 2 & -2 \end{bmatrix}$$

$$B^{-1} = \frac{1}{|B|} \times Adj (B)$$

$$B^{-1} = \frac{1}{|B|} \times Adj (B)$$

$$B^{-1} = \frac{1}{|B|} \times Adj (B)$$

$$B^{-1} = -\frac{1}{4} \times \begin{bmatrix} -2 & 1 \\ -2 & 3 \end{bmatrix}$$

$$B^{-1} = -\frac{1}{4} \times \begin{bmatrix} -2 & 1 \\ -2 & 3 \end{bmatrix}$$

$$BB^{-1} = (-\frac{1}{4}) \begin{bmatrix} 3 & -1 \\ 2 & -2 \end{bmatrix} \times (-\frac{1}{4}) \times \begin{bmatrix} -2 & 1 \\ 2 & 3 \end{bmatrix}$$

$$BB^{-1} = \left(-\frac{1}{4}\right) \begin{bmatrix} -6+2 & 3-3\\ -4+4 & 2-6 \end{bmatrix}$$
$$BB^{-1} = \left(-\frac{1}{4}\right) \begin{bmatrix} -4 & 0\\ 0 & -4 \end{bmatrix} = \begin{bmatrix} -4 \times -\frac{1}{4} & 0 \times -\frac{1}{4}\\ 0 \times -\frac{1}{4} & -4 \times -\frac{1}{4} \end{bmatrix}$$

R.H.S=

 $BB^{-1} = I = B^{-1}B$

Q.5: Determine whether the given matrices are multiplicative inverses of each other

J

(i).
$$\begin{bmatrix} 3 & 5 \\ 4 & 7 \end{bmatrix}$$
 and $\begin{bmatrix} 7 & -5 \\ -4 & 3 \end{bmatrix}$
then
 $A^{-1} = \begin{bmatrix} 7 & -5 \\ -4 & 3 \end{bmatrix}$
As we know that
 $AA^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$
 $AA^{-1} = \begin{bmatrix} 3 & 5 \\ 4 & 7 \end{bmatrix} \begin{bmatrix} 7 & -5 \\ -4 & 3 \end{bmatrix}$
 $= \begin{bmatrix} 21 - 20 & -15 + 15 \\ 28 - 28 & -20 + 21 \end{bmatrix}$
 $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$
Hence verified that $\begin{bmatrix} 3 & 5 \\ 4 & 7 \end{bmatrix}$ and $\begin{bmatrix} 7 & -5 \\ -4 & 3 \end{bmatrix}$ are multiplicative inverses of each other.

(ii).
$$\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$
 and $\begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$
let $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$
Than
 $A^{-1} = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$

As we know that

$$AA^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$
$$AA^{-1} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} -3+4 & 2-2 \\ -6+6 & 4-3 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

(iii). Hence verified that $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ and $\begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$ are multiplicative inverses of each other.

Q.6: If

$$A = \begin{bmatrix} 4 & 0 \\ -1 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} -4 & -2 \\ 1 & -1 \end{bmatrix}$ and $D = \begin{bmatrix} 3 & 2 \\ -2 & 1 \end{bmatrix}$

Verify that:

(i). $(AB)^{-1} = B^{-1}A^{-1}$

L.H.S

$$AB = \begin{bmatrix} 4 & 0 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} -4 & -2 \\ 1 & -1 \end{bmatrix}$$

$$AB = \begin{bmatrix} -16 + 0 & -8 + 0 \\ 4 + 2 & 2 - 2 \end{bmatrix}$$

$$AB = \begin{bmatrix} -16 & -8 \\ 6 & 0 \end{bmatrix}$$

$$|AB| = 0 + 48$$

$$= 48$$

$$Adj (AB) = \begin{bmatrix} 0 & 8 \\ -6 & -16 \end{bmatrix}$$

$$(AB)^{-1} = \frac{1}{|AB|} \times Adj (AB)$$

$$(AB)^{-1} = \frac{1}{48} \times \begin{bmatrix} 0 & 8 \\ -6 & -16 \end{bmatrix}$$

$$(AB)^{-1} = \begin{bmatrix} 0 \times \frac{1}{48} & 8 \times \frac{1}{48} \\ -6 \times \frac{1}{48} & -16 \times \frac{1}{48} \end{bmatrix}$$

$$(AB)^{-1} = \begin{bmatrix} 0 & \frac{1}{6} \\ -\frac{1}{8} & -\frac{1}{3} \end{bmatrix}$$

R.H.S

$$A = \begin{bmatrix} 4 & 0 \\ -1 & 2 \end{bmatrix}$$

$$|A| = 8 + 0$$

$$= 8$$

$$Adj (A) = \begin{bmatrix} 2 & 0 \\ 1 & 4 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} \times Adj (A)$$

$$A^{-1} = \frac{1}{|B|} \times Adj (A)$$

$$A^{-1} = \frac{1}{|B|} \times Adj (A)$$

$$B = \begin{bmatrix} -4 & -2 \\ 1 & -1 \end{bmatrix}$$

$$|B| = 4 + 2$$

$$= 6$$

$$Adj (B) = \begin{bmatrix} -1 & 2 \\ -1 & -4 \end{bmatrix}$$

$$B^{-1} = \frac{1}{|B|} \times Adj (B)$$

$$B^{-1} = \frac{1}{|B|} \times Adj (B)$$

$$B^{-1} A^{-1} = \frac{1}{|A|} \times \begin{bmatrix} -1 & 2 \\ -1 & -4 \end{bmatrix} \times \frac{1}{|B|} \times \begin{bmatrix} 2 & 0 \\ 1 & 4 \end{bmatrix}$$

$$B^{-1} A^{-1} = \frac{1}{|A|} \times \begin{bmatrix} -2 & 2 \\ -1 & -4 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 4 \end{bmatrix}$$

$$B^{-1} A^{-1} = \frac{1}{|A|} \times \begin{bmatrix} -2 + 2 & 0 + 8 \\ -2 - 4 & 0 - 16 \end{bmatrix}$$

$$B^{-1} A^{-1} = \begin{bmatrix} 0 & \frac{1}{|A|} \\ -6 \times \frac{1}{|A|} & -16 \times \frac{1}{|A|} \end{bmatrix}$$

$$B^{-1} A^{-1} = \begin{bmatrix} 0 & \frac{1}{|B|} \\ -6 \times \frac{1}{|A|} & -16 \times \frac{1}{|A|} \end{bmatrix}$$

$$B^{-1} A^{-1} = \begin{bmatrix} 0 & \frac{1}{|B|} \\ -\frac{1}{|B|} & -\frac{1}{|B|} \end{bmatrix}$$

hence prove that

$$LHS = B.HS$$

(ii). Do yourself

Ex# 1.6

Q.1: Use matrices, if possible, to solve the following systems of linear equations by:

- i. Matrix inversion method
- ii. Cramer's rule

(i).

$$2x - 2y = 4$$
$$3x + 2y = 6$$

Writing in matrices form:

$$\begin{bmatrix} 2 & -2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$$

Matrix inversion method

If we let:

$$A = \begin{bmatrix} 2 & -2 \\ 3 & 2 \end{bmatrix}$$
$$X = \begin{bmatrix} x \\ y \end{bmatrix}$$
$$B = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$$

Than we can write above equation as:

$$AX = B$$
$$X = A^{-1}B$$
(1)

(

So,

$$|A| = \begin{vmatrix} 2 & -2 \\ 2 & 2 \end{vmatrix} = (2 \times 2) - (3 \times (-2)) = 4 - (-6) = 10$$

$$Adj (A) = \begin{bmatrix} 2 & 2 \\ -3 & 2 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} \times Adj (A)$$

$$A^{-1} = \frac{1}{10} \times \begin{bmatrix} 2 & 2 \\ -3 & 2 \end{bmatrix}$$

Putting values in equation (1):

$$X = \frac{1}{10} \times \begin{bmatrix} 2 & 2 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 6 \end{bmatrix}$$

$$X = \frac{1}{10} \times \begin{bmatrix} 8 + 12 \\ -12 + 12 \end{bmatrix}$$

$$y = \frac{|A_y|}{|A|} = \frac{0}{10} = 0$$

So, x= 2 ; y=0 Solution set: (2,0)

(ii).

2x + y = 36x + 5y = 1

Writing in matrices form:

$$\begin{bmatrix} 2 & 1 \\ 6 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Matrix inversion method

If we let:

$$A = \begin{bmatrix} 2 & 1 \\ 6 & 5 \end{bmatrix}$$
$$X = \begin{bmatrix} x \\ y \end{bmatrix}$$
$$B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Than we can write above equation as:

AX = B

$$X = A^{-1}B$$
(1)

So,

$$|A| = \begin{vmatrix} 2 & 1 \\ 6 & 5 \end{vmatrix} = (2 \times 5) - (6 \times 1) = 10 - 6 = 4$$

$$Adj (A) = \begin{bmatrix} 5 & -1 \\ -6 & 2 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} \times Adj (A)$$

$$A^{-1} = \frac{1}{4} \times \begin{bmatrix} 5 & -1 \\ -6 & 2 \end{bmatrix}$$

Putting values in equation (1):

$$X = \frac{1}{4} \times \begin{bmatrix} 5 & -1 \\ -6 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$X = \frac{1}{4} \times \begin{bmatrix} 15 - 1 \\ -18 + 2 \end{bmatrix}$$

$$X = \frac{1}{10} \times \begin{bmatrix} 14 \\ -16 \end{bmatrix}$$

$$X = \begin{bmatrix} 14 \times \frac{1}{4} \\ -16 \times \frac{1}{4} \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 7/2 \\ -4 \end{bmatrix}$$

So,
$$x = \frac{7}{2}$$
; $y = -4$
Solution set: $(\frac{7}{2}, -4)$

Cramer rule

2x + y = 36x + 5y = 1Writing in matrices form: If we let: $A = \begin{bmatrix} 2 & 1 \\ 6 & 5 \end{bmatrix}$ $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ According to cramer rule: $\frac{|A_x|}{|A|}$(1) $\frac{|A_y|}{|A|}$ **y** =(2) Here $A = \begin{bmatrix} 2 & 1 \\ 6 & 5 \end{bmatrix}$ $A_x = \begin{bmatrix} b_1 & 1 \\ b_2 & 5 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 5 \end{bmatrix}$ $A_y = \begin{bmatrix} 2 & b_1 \\ 6 & b_2 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 6 & 1 \end{bmatrix}$ $\frac{1}{5} = (2 \times 5) - (6 \times 1) = 10 - 6 = 4$ |A| $|A_x| = \begin{vmatrix} 3 & 1 \\ 1 & 5 \end{vmatrix} = (5 \times 3) - (1 \times 1) = 15 - 1 = 14$ $|A_y| = \begin{vmatrix} \hat{2} & \hat{3} \\ 6 & 1 \end{vmatrix} = (2 \times 1) - (3 \times 6) = 2 - 18 = -16$ So , from (1) and (2) $x = \frac{|A_x|}{|A|} = \frac{14}{4} = \frac{7}{2}$

$$y = \frac{|A_y|}{|A|} = \frac{-16}{4} = -4$$

So, $x = \frac{7}{2}$; y = 4Solution set: $(\frac{7}{2}, -4)$

(iii). Do by yourself (iv).

3x - 2y = 4-6x + 4y = 7

Writing in matrices form:

$$\begin{bmatrix} 3 & -2 \\ -6 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$$

If we let:

$$A = \begin{bmatrix} 3 & -2 \\ -6 & 4 \end{bmatrix}$$
$$X = \begin{bmatrix} x \\ y \end{bmatrix}$$
$$B = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$$

Than we can write above equation as:

$$AX = B$$

$$X = A^{-1}B$$
(1)

So,

$$A| = \begin{vmatrix} 3 & -2 \\ -6 & 4 \end{vmatrix} = (3 \times 4) - (-6 \times (-2)) = 12 - 12 = 0$$

Since |4| = 0 therefore the solution for these equations do

Since |A| = 0, therefore the solution for these equations does not exist.

(v). Same as part (i) do yourself.
(vi). Same as part (i) do yourself.
(vii). Same as part (i) do yourself.

Solve the following word problems by using

- 1. Matrix Inversion Method
- 2. Cramer's Rule

Q.2: The length of a rectangle is 4 times its width. The perimeter of the rectangle is 150 cm. Find the dimensions of the rectangle.

x - 4y = 0

2x + 2y = 150

Solution:

Let

Length of rectangle = x

Width of rectangle = y

By condition of question:

x = 4y

2(x+y) = 150

 \therefore perimeter of rectangle = 2 (length + width)

Simplifying above equations:

1. Matrix Inversion method

Writing in matrices form:

$$\begin{bmatrix} 1 & -4 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 150 \end{bmatrix}$$

If we let:

$$A = \begin{bmatrix} 1 & -4 \\ 2 & 2 \end{bmatrix}$$
$$X = \begin{bmatrix} x \\ y \end{bmatrix}$$
$$B = \begin{bmatrix} 0 \\ 150 \end{bmatrix}$$

I

Than we can write above equation as:

$$AX = B$$

$$X = A^{-1}B$$
.....(1)
So,

$$|A| = \begin{vmatrix} 1 & -4 \\ 2 & 2 \end{vmatrix} = (2 \times 1) - (-4 \times 2) = 2 - (-8) = 10$$

$$Adj (A) = \begin{bmatrix} 2 & 4 \\ -2 & 1 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} \times Adj (A)$$

$$A^{-1} = \frac{1}{4} \times \begin{bmatrix} 2 & 4 \\ -2 & 1 \end{bmatrix}$$

Putting values in equation (1):

$$X = \frac{1}{10} \times \begin{bmatrix} 2 & 4 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 150 \end{bmatrix}$$
$$X = \frac{1}{10} \times \begin{bmatrix} 0 + 600 \\ 0 + 150 \end{bmatrix}$$
$$X = \frac{1}{10} \times \begin{bmatrix} 600 \\ 150 \end{bmatrix}$$
$$X = \begin{bmatrix} 600 \times \frac{1}{10} \\ 150 \times \frac{1}{10} \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 60 \\ 15 \end{bmatrix}$$

Length of rectangle = 60 cm

Width of rectangle= 15 cm

Cramer rule

 $|A_x| = \begin{vmatrix} 0 & -4 \\ 150 & 2 \end{vmatrix} = (0 \times 2) - (-4 \times 150) = 0 - (-600) = 600$ $|A_y| = \begin{vmatrix} 1 & 0 \\ 2 & 150 \end{vmatrix} = (1 \times 150) - (2 \times 0) = 150 - 0 = 150$ So , from (1) and (2)

$$x = \frac{|A_x|}{|A|} = \frac{600}{10} = 60$$
$$y = \frac{|A_y|}{|A|} = \frac{150}{10} = 15$$

So, x = 60; y = 15

Solution set: (60, 15)

Length of rectangle = 60 cm

Width of rectangle= 15 cm

Q.3: Two sides of a rectangle differ by 3.5cm. Find the dimensions of the rectangle if its perimeter is 67cm.

Solution:

Let

Length of rectangle = x

Width of rectangle = y

By condition of question:

x - y = 3.5

$$2(x + y) = 67$$

 \therefore perimeter of rectangle = 2 (length + width)

Simplifying above equations:

x - y = 3.52x + 2y = 67

1. Matrix Inversion method

Writing in matrices form:

$$\begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3.5 \\ 67 \end{bmatrix}$$

If we let:

$$A = \begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix}$$
$$X = \begin{bmatrix} x \\ y \end{bmatrix}$$
$$B = \begin{bmatrix} 3.5 \\ 67 \end{bmatrix}$$

Than we can write above equation as:

$$AX = B$$
$$X = A^{-1}B$$
....(1)

So,

$$|A| = \begin{vmatrix} 1 & -1 \\ 2 & 2 & 1 \\ -2 & 1 \end{vmatrix}$$

$$A^{-1} = \frac{1}{|A|} \times Adj (A)$$

$$A^{-1} = \frac{1}{|A|} \times Adj (A)$$

$$A^{-1} = \frac{1}{4} \times \begin{bmatrix} 2 & 4 \\ -2 & 1 \end{bmatrix}$$
Putting values in equation (1):

$$x = \frac{1}{4} \times \begin{bmatrix} 2 & 1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 3.5 \\ 6.7 \end{bmatrix}$$

$$x = \frac{1}{4} \times \begin{bmatrix} 74 \times \frac{1}{4} \\ 60 \times \frac{1}{4} \end{bmatrix}$$

$$\begin{bmatrix} x \\ 60 \times \frac{1}{4} \end{bmatrix}$$
So, x = 18.5; y = 15
Solution set: (18.5, 15)
Length of rectangle = 18.5 cm
Width of rectangle = 18.5 cm
Width of rectangle = 15 cm
Cramer rule

$$x - y = 3.5$$

$$2x + 2y = 67$$
Writing in matrices form:

$$\begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ 6 \\ 67 \end{bmatrix}$$
If we let:

$$A = \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix}$$

$$\begin{bmatrix} b_1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3.5 \\ 67 \end{bmatrix}$$

According to Cramer rule:

$$x = \frac{|A_x|}{|A|}$$
....(1)
$$y = \frac{|A_y|}{|A|}$$
....(2)

Here

$$A = \begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix}$$
$$A_x = \begin{bmatrix} b_1 & -4 \\ b_2 & 2 \end{bmatrix} = \begin{bmatrix} 3.5 & -1 \\ 67 & 2 \end{bmatrix}$$
$$A_y = \begin{bmatrix} 1 & b_1 \\ 2 & b_2 \end{bmatrix} = \begin{bmatrix} 1 & 3.5 \\ 2 & 67 \end{bmatrix}$$
$$|A| = \begin{vmatrix} 1 & -1 \\ 2 & 2 \end{vmatrix} = (2 \times 1) - (-1 \times 2) = 2 - (-2) = 4$$
$$|A_x| = \begin{vmatrix} 3.5 & -1 \\ 67 & 2 \end{vmatrix} = (3.5 \times 2) - (-1 \times 67) = 7 - (-67) = 74$$
$$|A_y| = \begin{vmatrix} 1 & 3.5 \\ 2 & 67 \end{vmatrix} = (1 \times 67) - (2 \times 3.5) = 67 - 7 = 60$$
So , from (1) and (2)
$$x = \begin{vmatrix} A_x \\ -74 \end{vmatrix} = \begin{bmatrix} 74 \\ -185 \end{vmatrix}$$

$$x = \frac{|A_x|}{|A|} = \frac{74}{4} = 18.5$$
$$y = \frac{|A_y|}{|A|} = \frac{60}{4} = 15$$

So, x = 18.5; y = 15

Solution set: (18.5 , 15) Length of rectangle = 18.5 cm Width of rectangle= 15 cm

Q.4: The third angle of an isosceles triangle is 16° less than the sum of the two equal angles. Find three angles of the triangle.

Solution:

Let

One of the equal angle = x

Third angle=y

By condition of question:

x + x - 16 = y

2x - y = 16

As we know that

Sum of three angles of triangles = 180 degrees

x + x + y = 180

Simplifying above equations:

2x - y = 162x + y = 180

1. Matrix Inversion method

Writing in matrices form:

$$\begin{bmatrix} 2 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 16 \\ 180 \end{bmatrix}$$

If we let:

$$A = \begin{bmatrix} 2 & -1 \\ 2 & 1 \end{bmatrix}$$
$$X = \begin{bmatrix} x \\ y \end{bmatrix}$$
$$B = \begin{bmatrix} 16 \\ 180 \end{bmatrix}$$

Than we can write above equation as:

$$AX = B$$
$$X = A^{-1}B$$
....(1)

So,

$$|A| = \begin{vmatrix} 2 & -1 \\ 2 & 1 \end{vmatrix} = (2 \times 1) - (-1 \times 2) = 2 - (-2) = 4$$

$$Adj (A) = \begin{bmatrix} 1 & 1 \\ -2 & 2 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} \times Adj (A)$$

$$A^{-1} = \frac{1}{4} \times \begin{bmatrix} 1 & 1 \\ -2 & 2 \end{bmatrix}$$

Putting values in equation (1):

$$X = \frac{1}{4} \times \begin{bmatrix} 1 & 1 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 16 \\ 180 \end{bmatrix}$$

$$X = \frac{1}{4} \times \begin{bmatrix} 16 + 180 \\ -32 + 360 \end{bmatrix}$$

$$X = \frac{1}{4} \times \begin{bmatrix} 196 \\ 328 \end{bmatrix}$$

$$X = \begin{bmatrix} 196 \times \frac{1}{4} \\ 328 \times \frac{1}{4} \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 49 \\ 82 \end{bmatrix}$$

So, x = 49; y = 82

Solution set: (49, 82)First of two equal angle = 49° Second of two equal angle = 49° Third angle = 82°

Cramer rule

$$2x - y = 16$$
$$2x + y = 180$$

Writing in matrices form:

$$\begin{bmatrix} 2 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 16 \\ 180 \end{bmatrix}$$

If we let:

$$A = \begin{bmatrix} 2 & -1 \\ 2 & 1 \end{bmatrix}$$
$$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 16 \\ 180 \end{bmatrix}$$

According to Cramer rule:

$$x = \frac{|A_x|}{|A|}$$
.....(1)
$$y = \frac{|A_y|}{|A|}$$
.....(2)

Here

$$A = \begin{bmatrix} 2 & -1 \\ 2 & 1 \end{bmatrix}$$
$$A_x = \begin{bmatrix} b_1 & -1 \\ b_2 & 1 \end{bmatrix} = \begin{bmatrix} 16 & -1 \\ 180 & 1 \end{bmatrix}$$
$$A_y = \begin{bmatrix} 1 & b_1 \\ 2 & b_2 \end{bmatrix} = \begin{bmatrix} 2 & 16 \\ 2 & 180 \end{bmatrix}$$
$$|A| = \begin{vmatrix} 2 & -1 \\ 2 & 1 \end{vmatrix} = (2 \times 1) - (-1 \times 2) = 2 - (-2) = 4$$
$$|A_x| = \begin{vmatrix} 16 & -1 \\ 180 & 1 \end{vmatrix} = (16 \times 1) - (-1 \times 180) = 16 - (-180) = 196$$
$$|A_y| = \begin{vmatrix} 2 & 16 \\ 180 & 1 \end{vmatrix} = (2 \times 180) - (2 \times 16) = 360 - 32 = 328$$
So, from (1) and (2)
$$x = \frac{|A_x|}{|A|} = \frac{196}{4} = 49$$

$$x = \frac{|A|}{|A|} = \frac{|A|}{4} = 49$$
$$y = \frac{|A_y|}{|A|} = \frac{328}{4} = 82$$

So, x = 49; y = 82Solution set: (49, 82) First of two equal angle = 49° Second of two equal angle = 49°

Third angle = 82⁰

Q.5: One acute angle of a right triangle is 12°more than twice the other acute angle. Find the acute angles of the right triangle.

Let

One acute angle = x

Second cute angle = y

As we know that

Third angle = 90°

By condition:

x - 12 = 2y

x - 2y = 12.....(1)

As we know that

Sum of three angles of triangles = 180 degrees

$$x + y + 90 = 180$$

 $x + y = 90$ (2)

Now do yourself.

Q.6: Two cars that are 600 km apart are moving towards each other. Their speeds differ by 6 km per hour and the cars are 123 km apart after $4\frac{1}{2}$ hours. Find the speed of each car.

Solution:

Let

Speed of one car = x

Speed of other car :

By condition of question:

$$x - y = 6$$
....(1)

After $4\frac{1}{2}$ hours:

$$4.5x + 4.5y = 477$$
$$4.5(x + y) = 477$$
$$(x + y) = 477/4.5$$

$$x + y = 106 \dots \dots \dots (2)$$

Simplifying above equations:

$$x - y = 6$$
$$x + y = 106$$

1. Matrix Inversion method

Writing in matrices form:

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 6 \\ 106 \end{bmatrix}$$

If we let:

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
$$X = \begin{bmatrix} x \\ y \end{bmatrix}$$
$$B = \begin{bmatrix} 6 \\ 106 \end{bmatrix}$$

2

Than we can write above equation as:

$$AX = B$$
$$X = A^{-1}B$$
....

So,

$$|A| = \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = (1 \times 1) - (-1 \times 1) = 1 - (-1) = 2$$

$$Adj (A) = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} \times Adj (A)$$

$$A^{-1} = \frac{1}{2} \times \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

Putting values in equation (1):

$$X = \frac{1}{2} \times \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 106 \end{bmatrix}$$

$$X = \frac{1}{2} \times \begin{bmatrix} 6 + 106 \\ -6 + 106 \end{bmatrix}$$

$$X = \frac{1}{2} \times \begin{bmatrix} 112 \\ 100 \end{bmatrix}$$

$$X = \begin{bmatrix} 112 \times \frac{1}{2} \\ 100 \times \frac{1}{2} \end{bmatrix}$$

 $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 56 \\ 50 \end{bmatrix}$

So, x = 56; y = 50Solution set: (56,50) Speed of a car = $56 \ kmh^{-1}$ Speed of other car = $50 \ kmh^{-1}$

Cramer rule

$$x - y = 6$$

$$x + y = 106$$

Writing in matrices form:

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 6 \\ 106 \end{bmatrix}$$

If we let:

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

l

 $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 106 \end{bmatrix}$

According to Cramer rule:

$$x = \frac{|A_x|}{|A|}$$
.....(1)
$$y = \frac{|A_y|}{|A|}$$
....(2)

Here

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
$$A_x = \begin{bmatrix} b_1 & -1 \\ b_2 & 1 \end{bmatrix} = \begin{bmatrix} 6 & -1 \\ 106 & 1 \end{bmatrix}$$
$$A_y = \begin{bmatrix} 1 & b_1 \\ 2 & b_2 \end{bmatrix} = \begin{bmatrix} 1 & 6 \\ 1 & 106 \end{bmatrix}$$
$$|A| = \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = (1 \times 1) - (-1 \times 1) = 1 - (-1) = 2$$
$$|A_x| = \begin{vmatrix} 6 & -1 \\ 106 & 1 \end{vmatrix} = (6 \times 1) - (-1 \times 106) = 6 - (-106) = 112$$
$$|A_y| = \begin{vmatrix} 1 & 6 \\ 1 & 106 \end{vmatrix} = (1 \times 106) - (1 \times 6) = 106 - 6 = 100$$
So , from (1) and (2)
$$x = \frac{|A_x|}{2} = \frac{112}{2} = 56$$

$$x = \frac{|A_x|}{|A|} = \frac{112}{2} = 56$$
$$y = \frac{|A_y|}{|A|} = \frac{100}{2} = 50$$

So, x = 56; y = 50Solution set: (56,50) Speed of a car = $56 \ kmh^{-1}$ Speed of other car = $50 \ kmh^{-1}$