Solution Manual

Matrix:

A rectangular array or a formation of a collection of real numbers, say $0,1,2,3,4$ and 7 etc. and then enclosed by brackets [] are known as Matrix. For example $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
In a matrix, the entries presented in horizontal way are called rows \& all the entries presented in vertical way are called columns. For example in above matrix there are two rows one which contain 1, 2 and other 3, 4. There are two columns containing element 1,3 and 2,4.

Order of a Matrix:

The number of rows and columns in a matrix specifies its order. If a matrix M has m rows and n columns, then M is said to be of order m-by-n. For example in above matrix order of matrix is 2-by-2.

Equal Matrices:

Two matrices are said to be equal if and only if

- They have same order
- Their corresponding entries are equal

For example:

$$
A=\left[\begin{array}{ll}
7 & 0 \\
3 & 2
\end{array}\right] \& B=\left[\begin{array}{cc}
4+3 & 0 \\
3 & 2
\end{array}\right] \text { are equal. }
$$

EX\#1.1

Q.1: Find the order of the matrix.

$$
A=\left[\begin{array}{cc}
2 & 3 \\
-5 & 6
\end{array}\right]
$$

Order of $A=2-$ by -2

$$
C=\left[\begin{array}{ll}
2 & 4
\end{array}\right]
$$

Order of C=1-by-2
$\mathrm{E}=\left[\begin{array}{ll}a & d \\ b & e \\ c & f\end{array}\right]$
Order of $\mathrm{E}=3$-by-2

$$
B=\left[\begin{array}{ll}
2 & 0 \\
3 & 5
\end{array}\right]
$$

Order of $B=2-$ by -2

$$
D=\left[\begin{array}{l}
4 \\
0 \\
6
\end{array}\right]
$$

Order of D = 3-by-1

$$
\mathrm{F}=[2]
$$

Order of $F=1$-by-1

Q.2: Which of the following matrices are equal?

$$
\left.\begin{array}{ccc}
\mathrm{A}=[3
\end{array}\right] ; \quad \mathrm{B}=\left[\begin{array}{ll}
3 & 5
\end{array}\right] ; \quad \mathrm{C}=[5-2] ; \quad \mathrm{D}=\left[\begin{array}{ll}
5 & 3
\end{array}\right] ; \quad \mathrm{E}=\left[\begin{array}{ll}
4 & 0 \\
6 & 2
\end{array}\right] ;
$$

Answer:

In above matrices following are equal:

$$
\begin{array}{llll}
A=C, & B=I, & E=H, & F=G \\
H=J, & E=J & &
\end{array}
$$

Q.3: Find the value of a, b, c and d which satisfy the matrix equation.

$$
\left[\begin{array}{ll}
a+c & a+2 b \\
c-1 & 4 d-6
\end{array}\right]=\left[\begin{array}{cc}
0 & -7 \\
3 & 2 d
\end{array}\right]
$$

From the definition of equality of matrices:
$a+c=0 \quad \ldots . ~(1) ~$
$c-1=3$ \qquad
; $\quad \begin{array}{r}a+2 b=-7 \\ \end{array} \quad 4 d-6=2 d$
; $\quad 4 d-6=2 d$

MOIN LATIF

University of Engineering \& Technology, (UET) Lahore.
Email ID: Engr.moin@hotmail.com

Solution Manual

$$
\begin{gathered}
\Rightarrow c=3+1 \\
c=4
\end{gathered}
$$

So,
$a+4=0$
$a=-4$
Put value of ' a ' in (3)

$$
\begin{aligned}
-4+2 b & =-7 \\
2 b & =-7+4 \\
b & =-\frac{3}{2}
\end{aligned}
$$

from (4): $\quad 4 d-2 d=6$
$2 d=6$
$d=6 / 2=3$

Result: The values of a, b, c and d are $-4,-3 / 2,4$ and 3 respectively.
(END OF EX \# 1.1)

Types of matrices:

1. Row Matrix:

A matrix is called a row matrix, if it has only one row. For example: $M=\left[\begin{array}{ll}5 & 3\end{array}\right]$.
2. Column Matrix:

A matrix is called a row matrix, if it has only one column. For example: $M=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
3. Rectangular Matrix:

A matrix is called rectangular, if the number of rows of is not equal to the number of its columns. For example: $M=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right]$
4. Square Matrix:

A matrix is called a square matrix, if its number of rows is equal to its number of columns. For example: $\mathrm{H}=\left[\begin{array}{ll}4 & 0 \\ 6 & 2\end{array}\right]$
5. Null or Zero Matrix:

A matrix is called a null or zero matrix, if each of its entries is 0 . For example: $N=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
6. Negative Matrix:

Let A be a matrix. Then its negative, $-A$ is obtained by changing the signs of all the entries of A For example negative of $Z=\left[\begin{array}{ll}4 & 0 \\ 6 & 2\end{array}\right]$ is $-Z=\left[\begin{array}{cc}-4 & 0 \\ -6 & -2\end{array}\right]$
7. Symmetric Matrix:

A square matrix A is symmetric, if $A^{t}=A$. For example: $Z=\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$
8. Skew-symmetric Matrix:

A square matrix A is said to be skew-symmetric, if $A^{t}=-A$. For example: $A=\left[\begin{array}{cc}0 & -6 \\ 6 & 0\end{array}\right]$
9. Diagonal Matrix:

A square matrix A is called a diagonal matrix if at least any one of the entries of its diagonal is not zero and non-diagonal entries are zero. For example: $M=\left[\begin{array}{ll}5 & 0 \\ 0 & 6\end{array}\right]$
10. Scalar Matrix:

A diagonal matrix is called a scalar matrix, if all the diagonal entries are same. For example: M $=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$

MOIN LATIF

University of Engineering \& Technology, (UET) Lahore.
Email ID: Engr.moin@hotmail.com

Solution Manual

11. Identity Matrix:

A scalar matrix is called identity (unit) matrix, if all diagonal entries are 1. It is denoted by I. For example: $\boldsymbol{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

EX \# 1.2

Q.1: From the following matrices, identify unit matrices, row matrices, column matrices and null matrices.

$$
\left.\begin{array}{ll}
A=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] & \text { Null Matrix } \\
B=\left[\begin{array}{ll}
2 & 3
\end{array} 4\right.
\end{array}\right] \text { Row Matrix } \quad \text { C }=\left[\begin{array}{l}
4 \\
0 \\
6
\end{array}\right] \quad \text { Column Matrix } \quad \begin{array}{ll}
D=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] & \text { Identity Matrix } \\
E=\left[\begin{array}{ll}
0
\end{array}\right] & \text { Null Matrix } \\
F=\left[\begin{array}{l}
5 \\
6 \\
7
\end{array}\right] & \text { Column Matrix }
\end{array}
$$

Q.2: From the following Matrices, identify
a) Square Matrix
b) Rectangular Matrix
c) Row Matrix
d) Column Matrix
e) Identity Matrix
f) Null Matrix
i. $\left[\begin{array}{ccc}-8 & 2 & 7 \\ 12 & 0 & 4\end{array}\right] \quad$ Ans: Rectangular Matrix
ii. $\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$

Ans: Column Matrix (Also comes under the category of Rectangular Matrix)
iii. $\left[\begin{array}{ll}6 & -4 \\ 3 & -2\end{array}\right] \quad$ Ans: Square Matrix
iv. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad$ Ans: Identity Matrix
v. $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \quad$ Ans: Rectangular Matrix
vi. $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \quad$ Ans: Column \& Rectangular Matrix
vii. $\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 2 & 0 \\ 0 & 0 & 1\end{array}\right] \quad$ Ans: Square Matrix
viii. $\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right] \quad$ Ans: Null Matrix
Q.3: From the following matrices, identify diagonal, scalar and unit (identity) matrices.

$$
A=\left[\begin{array}{ll}
0 & 4 \\
4 & 0
\end{array}\right] \quad \text { Ans: Scalar Matrix }
$$

MOIN LATIF
University of Engineering \& Technology, (UET) Lahore.
Email ID: Engr.moin@hotmail.com

Solution Manual

$$
\begin{aligned}
& B=\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right] \quad \text { Ans: Diagonal Matrix } \\
& C=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { Ans: Identity Matrix } \\
& D=\left[\begin{array}{ll}
3 & 0 \\
0 & 0
\end{array}\right] \quad \text { Ans: Diagonal Matrix } \\
& E=\left[\begin{array}{cc}
5-3 & 0 \\
0 & 1+1
\end{array}\right] \quad \text { Ans: Scalar Matrix }
\end{aligned}
$$

EX\#1.3

Q.1: Which of the following matrices are conformable for addition?

$$
\begin{aligned}
& A=\left[\begin{array}{rr}
2 & 1 \\
-1 & 3
\end{array}\right], \quad B=\left[\begin{array}{l}
3 \\
1
\end{array}\right], \quad C=\left[\begin{array}{cc}
1 & 0 \\
2 & -1 \\
1 & -2
\end{array}\right], \quad D=\left[\begin{array}{c}
2+1 \\
3
\end{array}\right] \\
& E=\left[\begin{array}{rr}
-1 & 0 \\
1 & 2
\end{array}\right], \quad F=\left[\begin{array}{cc}
3 & 2 \\
1+1 & -4 \\
3+2 & 2+1
\end{array}\right]
\end{aligned}
$$

Solution:

Since matrices 'A \& E' and matrices 'B \& D' and matrices 'C \& F' have same order. So they are conformable for addition.
Q.2: Find additive inverse of the following matrices:

$$
\begin{gathered}
A=\left[\begin{array}{cc}
2 & 4 \\
-2 & 1
\end{array}\right], \quad B=\left[\begin{array}{rrr}
1 & 0 & -1 \\
2 & -1 & 3 \\
3 & -2 & 1
\end{array}\right], \quad C=\left[\begin{array}{c}
4 \\
-2
\end{array}\right], \\
D=\left[\begin{array}{rr}
1 & 0 \\
-3 & -2 \\
2 & 1
\end{array}\right], \quad E=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad F=\left[\begin{array}{cc}
\sqrt{3} & 1 \\
-1 & \sqrt{2}
\end{array}\right]
\end{gathered}
$$

Solution:
Additive inverse of $\mathrm{A}=-\mathbf{A}=-\left[\begin{array}{cc}2 & 4 \\ -2 & 1\end{array}\right]=\left[\begin{array}{cc}-2 & -4 \\ 2 & -1\end{array}\right]$
Additive inverse of $\mathbf{B}=-\mathbf{B}=-\left[\begin{array}{ccc}1 & 0 & -1 \\ 2 & -1 & 3 \\ 3 & -2 & 1\end{array}\right]=\left[\begin{array}{ccc}-1 & 0 & 1 \\ -2 & 1 & -3 \\ -3 & 2 & -1\end{array}\right]$
Additive inverse of $C=-\mathbf{C}=-\left[\begin{array}{c}4 \\ -2\end{array}\right]=\left[\begin{array}{c}-4 \\ 2\end{array}\right]$

Solution Manual

Additive inverse of $\mathbf{D}=-\mathbf{D}=-\left[\begin{array}{cc}1 & 0 \\ -3 & -2 \\ 2 & 1\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 3 & 2 \\ -2 & -1\end{array}\right]$
Additive inverse of $\mathbf{E}=-\mathbf{E}=-\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
Additive inverse of $\mathbf{F}=-\mathbf{F}=-\left[\begin{array}{cc}\sqrt{3} & 1 \\ -1 & \sqrt{2}\end{array}\right]=\left[\begin{array}{cc}-\sqrt{3} & -1 \\ 1 & -\sqrt{2}\end{array}\right]$
Q.3: If $A=\left[\begin{array}{cc}-1 & 2 \\ 2 & 1\end{array}\right], B=\left[\begin{array}{c}1 \\ -1\end{array}\right], C=\left[\begin{array}{lll}1 & -1 & 2\end{array}\right]$ and $D=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 0 & 2\end{array}\right]$ then find:
(i). $\mathbf{A}+\left[\begin{array}{ll}\mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1}\end{array}\right]=\left[\begin{array}{cc}-1 & 2 \\ 2 & 1\end{array}\right]+\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
-1+1 & 2+1 \\
2+1 & 1+1
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 3 \\
3 & 2
\end{array}\right]
\end{aligned}
$$

(ii). $\mathbf{B}+\left[\begin{array}{c}-\mathbf{2} \\ \mathbf{3}\end{array}\right]=\left[\begin{array}{c}1 \\ -1\end{array}\right]+\left[\begin{array}{c}-2 \\ 3\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{c}
1-2 \\
-1+3
\end{array}\right] \\
& =\left[\begin{array}{c}
-\mathbf{1} \\
\mathbf{2}
\end{array}\right]
\end{aligned}
$$

(iii). $\quad C+\left[\begin{array}{lll}-2 & 1 & 3\end{array}\right]=\left[\begin{array}{lll}1+(-2) & -1+1 & 2+3\end{array}\right]$

$$
=\left[\begin{array}{lll}
-1 & 0 & 5
\end{array}\right]
$$

(iv).

$$
\begin{aligned}
\mathbf{D}+\left[\begin{array}{lll}
\mathbf{0} & \mathbf{1} & \mathbf{0} \\
\mathbf{2} & \mathbf{0} & \mathbf{1}
\end{array}\right] & =\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 0 & 2
\end{array}\right]+\left[\begin{array}{lll}
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1+0 & 2+1 & 3+0 \\
-1+2 & 0+0 & 2+1
\end{array}\right] \\
& =\left[\begin{array}{lll}
\mathbf{1} & \mathbf{3} & \mathbf{3} \\
\mathbf{1} & \mathbf{0} & \mathbf{3}
\end{array}\right]
\end{aligned}
$$

(v). $\mathbf{2 A}=2\left[\begin{array}{cc}-1 & 2 \\ 2 & 1\end{array}\right]=\left[\begin{array}{cc}-2 & 4 \\ 4 & 2\end{array}\right]$
(vi). $\quad(-1) B=(-1)\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
(vii). $\quad(-2) \mathrm{C}=(-2)\left[\begin{array}{ll}1 & -1\end{array}\right]=\left[\begin{array}{lll}-2 & 2 & -4\end{array}\right]$
(viii).

$$
3 D=3\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 0 & 2
\end{array}\right]=\left[\begin{array}{ccc}
3 & 6 & 9 \\
-3 & 0 & 6
\end{array}\right]
$$

(ix).

$$
3 C=3\left[\begin{array}{ll}
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
3 & -3 \\
6
\end{array}\right]
$$

Q.4: Perform the indicated operations and simplify the following:
(i) $\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{ll}0 & 2 \\ 3 & 0\end{array}\right]\right)+\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
(ii) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left(\left[\begin{array}{ll}0 & 2 \\ 3 & 0\end{array}\right]-\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\right)$

Solution Manual

Solution:
(i): $=\left(\left[\begin{array}{ll}1+0 & 0+2 \\ 0+3 & 1+0\end{array}\right]\right)+\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$

$$
\begin{aligned}
& =\left(\left[\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right]\right)+\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
1+1 & 2+1 \\
3+1 & 1+0
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 3 \\
4 & 1
\end{array}\right]
\end{aligned}
$$

(ii):

$$
\begin{aligned}
& =\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]+\left(\left[\begin{array}{ll}
0-1 & 2-1 \\
3-1 & 0-0
\end{array}\right]\right) \\
& =\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]+\left(\left[\begin{array}{cc}
-1 & 1 \\
2 & 0
\end{array}\right]\right) \\
& =\left[\begin{array}{cc}
1+(-1) & 1+1 \\
1+2 & 0+0
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & 2 \\
3 & 0
\end{array}\right]
\end{aligned}
$$

(iii): $\left.\left[\begin{array}{lll}2 & 3 & 1\end{array}\right]+\left(\begin{array}{lll}1 & 0 & 2\end{array}\right]-\left[\begin{array}{lll}2 & 2 & 2\end{array}\right]\right)$

$$
\left.\begin{array}{l}
\left.=\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right]+\left(\left[\begin{array}{ll}
1-2 & 0-2
\end{array}\right)-2\right]\right) \\
=\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right]+\left[\begin{array}{ll}
-1 & -2
\end{array}\right] \\
=\left[\begin{array}{ll}
2 & +(-1)
\end{array}\right]+(-2) 1+0
\end{array}\right]
$$

(iv): $\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & -1 & -1 \\ 0 & 1 & 2\end{array}\right]+\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3\end{array}\right]$

$$
=\left[\begin{array}{ccc}
1+1 & 2+1 & 3+1 \\
-1+2 & -1+2 & -1+2 \\
0+3 & 1+3 & 2+3
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
2 & 3 & 4 \\
1 & 1 & 1 \\
3 & 4 & 5
\end{array}\right]
$$

(v): $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{array}\right]+\left[\begin{array}{ccc}1 & 0 & -2 \\ -2 & 1 & 0 \\ 0 & 2 & -1\end{array}\right]$

$$
=\left[\begin{array}{ccc}
1+1 & 2+0 & 3+(-2) \\
2+(-2) & 3+1 & 1+0 \\
3+0 & 1+2 & 2+(-1)
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
2 & 2 & 1 \\
0 & 4 & 1 \\
3 & 3 & 1
\end{array}\right]
$$

MOIN LATIF

Email ID: Engr.moin@hotmail.com

Solution Manual

(vi): $\left(\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]+\left[\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right]\right)+\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$

$$
\begin{aligned}
& =\left(\left[\begin{array}{ll}
1+2 & 2+1 \\
0+1 & 1+0
\end{array}\right]\right)+\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \\
= & \left(\left[\begin{array}{ll}
3 & 3 \\
1 & 1
\end{array}\right]\right)+\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \\
= & {\left[\begin{array}{ll}
3+1 & 3+1 \\
1+1 & 1+0
\end{array}\right] } \\
= & {\left[\begin{array}{ll}
4 & 4 \\
2 & 1
\end{array}\right] }
\end{aligned}
$$

Q.5: For the Matrices $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & -1 & 0\end{array}\right], B=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & -2 & 2 \\ 3 & 1 & 3\end{array}\right]$ and $C=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -2 & 3 \\ 1 & 1 & 2\end{array}\right]$ verify the following rules:
(i). $\mathrm{A}+\mathrm{C}=\mathrm{C}+\mathrm{A}$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1 \\
1 & -1 & 0
\end{array}\right]+\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -2 & 3 \\
1 & 1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -2 & 3 \\
1 & 1 & 2
\end{array}\right]+\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1 \\
1 & -1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1+(-1) & 2+0 & 3+0 \\
2+0 & 3+(-2) & 1+3 \\
1+1 & -1+1 & 0+2
\end{array}\right]=\left[\begin{array}{ccc}
-1+1 & 0+2 & 0+3 \\
0+2 & -2+3 & 3+1 \\
1+1 & 1+(-1) & 2+0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
0 & 2 & 3 \\
2 & 1 & 4 \\
2 & 0 & 2
\end{array}\right]=\left[\begin{array}{lll}
0 & 2 & 3 \\
2 & 1 & 4 \\
2 & 0 & 2
\end{array}\right]} \\
& \text { L.H.S }=\text { R.H.S }
\end{aligned}
$$

(ii). $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1 \\
1 & -1 & 0
\end{array}\right]+\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & -2 & 2 \\
3 & 1 & 3
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & -2 & 2 \\
3 & 1 & 3
\end{array}\right]+\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1 \\
1 & -1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1+1 & 2+(-1) & 3+1 \\
2+2 & 3+(-2) & 1+2 \\
1+3 & -1+1 & 0+3
\end{array}\right]=\left[\begin{array}{ccc}
1+1 & -1+2 & 1+3 \\
2+2 & -2+3 & 2+1 \\
3+1 & 1+(-1) & 3+0
\end{array}\right]}
\end{aligned}
$$

$$
\left[\begin{array}{lll}
2 & 1 & 4 \\
4 & 1 & 3 \\
4 & 0 & 3
\end{array}\right]=\left[\begin{array}{lll}
2 & 1 & 4 \\
4 & 1 & 3 \\
4 & 0 & 3
\end{array}\right]
$$

$$
\text { L.H.S }=\text { R.H.S }
$$

(iii). $\quad \mathrm{B}+\mathrm{C}=\mathrm{C}+\mathrm{B} \quad$ (do yourself)
(iv). $A+(B+A)=2 A+B$

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1 \\
1 & -1 & 0
\end{array}\right]+\left(\left[\begin{array}{lcc}
1 & -1 & 1 \\
2 & -2 & 2 \\
3 & 1 & 3
\end{array}\right]+\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1 \\
1 & -1 & 0
\end{array}\right]\right)=2\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1 \\
1 & -1 & 0
\end{array}\right]+\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & -2 & 2 \\
3 & 1 & 3
\end{array}\right]
$$

Solution Manual

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1 \\
1 & -1 & 0
\end{array}\right]+\left(\left[\begin{array}{lll}
1+1 & -1+2 & 1+3 \\
2+2 & -2+3 & 2+1 \\
3+1 & 1+(-1) & 3+0
\end{array}\right]\right)=\left[\begin{array}{ccc}
2 & 4 & 6 \\
4 & 6 & 2 \\
2 & -2 & 0
\end{array}\right]+\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & -2 & 2 \\
3 & 1 & 3
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1 \\
1 & -1 & 0
\end{array}\right]+\left(\left[\begin{array}{lll}
2 & 1 & 4 \\
4 & 1 & 3 \\
4 & 0 & 3
\end{array}\right]\right)=\left[\begin{array}{cc}
2+1 & 4+(-1) \\
4+2 & 6+1 \\
2+3+(-2) & 2+2 \\
1+2 & 2+1 \\
3+4 \\
2+4 & 3+1 \\
1+3 \\
1+4 & -1+0+0 \\
3+1 & 0+3
\end{array}\right]=\left[\begin{array}{ccc}
2+1 & 4+(-1) & 6+1 \\
4+2 & 6+(-2) & 2+2 \\
2+3 & -2+1 & 0+3
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
3 & 3 & 7 \\
6 & 4 & 4 \\
5 & -1 & 3
\end{array}\right]=\left[\begin{array}{ccc}
3 & 3 & 7 \\
6 & 4 & 4 \\
5 & -1 & 3
\end{array}\right]} \\
& \text { L.H.S }=\text { R.H.S }
\end{aligned}
$$

(v). $(\mathrm{C}-\mathrm{B})+\mathrm{A}=\mathrm{C}+(\mathrm{A}-\mathrm{B})$

$$
\text { L.H.S }=\text { R.H.S }
$$

(vi). $2 \mathrm{~A}+\mathrm{B}=\mathrm{A}+(\mathrm{A}+\mathrm{B}) \quad$ (Do yourself)
(vii).(C-B) $A=(C-A)-B \quad$ (Do yourself)
(viii). $\quad(A+B)+C=A+(B+C) \quad$ (Do yourself)
(ix). $A+(B-C)=(A-C)+B \quad$ (Do yourself)
(x). $2 A+2 B=2(A+B)$

$$
2\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1 \\
1 & -1 & 0
\end{array}\right]+2\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & -2 & 2 \\
3 & 1 & 3
\end{array}\right]=2\left(\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1 \\
1 & -1 & 0
\end{array}\right]+\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & -2 & 2 \\
3 & 1 & 3
\end{array}\right]\right)
$$

MOIN LATIF

Email ID: Engr.moin@hotmail.com

$$
\begin{aligned}
& \left(\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -2 & 3 \\
1 & 1 & 2
\end{array}\right]-\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & -2 & 2 \\
3 & 1 & 3
\end{array}\right]\right)+\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1 \\
1 & -1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -2 & 3 \\
1 & 1 & 2
\end{array}\right]+\left(\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1 \\
1 & -1 & 0
\end{array}\right]-\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & -2 & 2 \\
3 & 1 & 3
\end{array}\right]\right) \\
& \left(\left[\begin{array}{ccc}
-1-1 & 0-(-1) & 0-1 \\
0-2 & -2-(-2) & 3-2 \\
1-3 & 1-1 & 2-3
\end{array}\right]\right)+\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1 \\
1 & -1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -2 & 3 \\
1 & 1 & 2
\end{array}\right]+\left(\left[\begin{array}{ccc}
1-1 & 2-(-1) & 3-1 \\
2-2 & 3-(-2) & 1-2 \\
1-3 & -1-1 & 0-3
\end{array}\right]\right) \\
& \left(\left[\begin{array}{ccc}
-2 & 1 & -1 \\
-2 & 0 & 1 \\
-2 & 0 & -1
\end{array}\right]\right)+\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1 \\
1 & -1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -2 & 3 \\
1 & 1 & 2
\end{array}\right]+\left(\left[\begin{array}{ccc}
0 & 3 & 2 \\
0 & 5 & -1 \\
-2 & -2 & -3
\end{array}\right]\right) \\
& \left(\left[\begin{array}{ccc}
-2+1 & 1+2 & -1+3 \\
-2+2 & 0+3 & 1+1 \\
-2+1 & 0+(-1) & -1+0
\end{array}\right]\right)=\left[\begin{array}{ccc}
-1+0 & 0+3 & 0+2 \\
0+0 & -2+5 & 3+(-1) \\
1+(-2) & 1+(-2) & 2+(-3)
\end{array}\right] \\
& {\left[\begin{array}{ccc}
1 & 3 & 2 \\
0 & 3 & 2 \\
-1 & -1 & -1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 3 & 2 \\
0 & 3 & 2 \\
-1 & -1 & -1
\end{array}\right]}
\end{aligned}
$$

Solution Manual

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & 4 & 6 \\
4 & 6 & 2 \\
2 & -2 & 0
\end{array}\right]+\left[\begin{array}{ccc}
2 & -2 & 2 \\
4 & -4 & 4 \\
6 & 2 & 6
\end{array}\right]=2\left(\left[\begin{array}{ccc}
1+1 & 2+(-1) & 3+1 \\
2+2 & 3+(-2) & 1+2 \\
1+3 & -1+1 & 0+3
\end{array}\right]\right)} \\
& {\left[\begin{array}{lll}
2+2 & 4+(-2) & 6+2 \\
4+4 & 6+(-4) & 2+4 \\
2+6 & -2+2 & 0+6
\end{array}\right]=2\left(\left[\begin{array}{lll}
2 & 1 & 4 \\
4 & 1 & 3 \\
4 & 0 & 3
\end{array}\right]\right)} \\
& {\left[\begin{array}{lll}
4 & 2 & 8 \\
8 & 2 & 6 \\
8 & 0 & 6
\end{array}\right]=\left[\begin{array}{lll}
4 & 2 & 8 \\
8 & 2 & 6 \\
8 & 0 & 6
\end{array}\right]} \\
& \text { L.H.S }=\text { R.H.S }
\end{aligned}
$$

Q.6: If $A=\left[\begin{array}{cc}1 & -2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & 7 \\ -3 & 8\end{array}\right]$ find:
(i). $3 \mathrm{~A}-2 \mathrm{~B}$

$$
\begin{aligned}
& =3\left[\begin{array}{cc}
1 & -2 \\
3 & 4
\end{array}\right]-2\left[\begin{array}{cc}
0 & 7 \\
-3 & 8
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 & -6 \\
9 & 12
\end{array}\right]-\left[\begin{array}{cc}
0 & 14 \\
-6 & 16
\end{array}\right] \\
& =\left[\begin{array}{cc}
3-0 & -6-14 \\
9-(-6) & 12-16
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 & -20 \\
15 & -4
\end{array}\right]
\end{aligned}
$$

(ii). $2 A^{t}-3 B^{t}$

$$
\begin{aligned}
& \mathbf{A}^{\mathbf{t}}=\left[\begin{array}{cc}
1 & 3 \\
-2 & 4
\end{array}\right] \\
& \mathbf{B}^{\mathbf{t}}=\left[\begin{array}{cc}
0 & -3 \\
7 & 8
\end{array}\right] \\
& =2\left[\begin{array}{cc}
1 & 3 \\
-2 & 4
\end{array}\right]-3\left[\begin{array}{cc}
0 & -3 \\
7 & 8
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 & 6 \\
-4 & 8
\end{array}\right]-\left[\begin{array}{cc}
0 & -9 \\
21 & 24
\end{array}\right] \\
& =\left[\begin{array}{cc}
2-0 & 6-(-9) \\
-4-21 & 8-24
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 & 15 \\
-25 & -16
\end{array}\right]
\end{aligned}
$$

Q.7: If $2\left[\begin{array}{cc}2 & 4 \\ -3 & a\end{array}\right]-3\left[\begin{array}{cc}1 & b \\ 8 & -4\end{array}\right]=\left[\begin{array}{cc}7 & 10 \\ 18 & 1\end{array}\right]$ then find the value of $a \& b$.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
4 & 8 \\
-6 & 2 a
\end{array}\right]-\left[\begin{array}{cc}
3 & 3 b \\
24 & -12
\end{array}\right]=\left[\begin{array}{cc}
7 & 10 \\
18 & 1
\end{array}\right]} \\
& {\left[\begin{array}{cc}
4-3 & 8-3 b \\
-6-24 & 2 a-(-12)
\end{array}\right]=\left[\begin{array}{cc}
7 & 10 \\
18 & 1
\end{array}\right]}
\end{aligned}
$$

From equality of matrices:

$$
\begin{array}{rlrl}
8-3 b & =10 & ; & 2 a+12=1 \\
-3 b & =10-8 & ; & 2 a=1-12 \\
-3 b & =2 & ; & 2 a=-11 \\
\mathbf{b}=\mathbf{2} /-\mathbf{3}=-\mathbf{2} / \mathbf{3} & ; & \mathbf{a}=\mathbf{- 1 1 / 2}
\end{array}
$$

MOIN LATIF
Email ID: Engr.moin@hotmail.com

Solution Manual

Q.8: If $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right]$ then verify that:
(i). $(\mathrm{A}+\mathrm{B})^{\mathrm{t}}=\mathrm{A}^{\mathrm{t}}+\mathrm{B}^{\mathrm{t}}$
L.H.S:

$$
\begin{aligned}
A+B & =\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]+\left[\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
1+1 & 2+1 \\
0+2 & 1+0
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right] \\
(A+B)^{\mathrm{t}} & =\left[\begin{array}{ll}
2 & 2 \\
3 & 1
\end{array}\right]
\end{aligned}
$$

R.H.S:

$$
\begin{aligned}
& \mathrm{A}^{\mathrm{t}}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] \\
& \mathrm{B}^{\mathrm{t}}=\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right] \\
& \mathrm{A}^{\mathrm{t}}+\mathrm{B}^{\mathrm{t}}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]+\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
1+1 & 0+2 \\
2+1 & 1+0
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 2 \\
3 & 1
\end{array}\right]
\end{aligned}
$$

Hence Proved: L.H.S = R.H.S
(ii). $(\mathrm{A}-\mathrm{B})^{t}=\mathrm{A}^{\mathrm{t}}-\mathrm{B}^{\mathrm{t}}$
L.H.S:

$$
\begin{aligned}
A+B & =\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
1-1 & 2-1 \\
0-2 & 1-0
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & 1 \\
-2 & 1
\end{array}\right]
\end{aligned}
$$

$$
(A+B)^{t}=\left[\begin{array}{cc}
0 & -2 \\
1 & 1
\end{array}\right]
$$

R.H.S:

$$
\begin{aligned}
\mathrm{A}^{\mathrm{t}} & =\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] \\
\mathrm{B}^{\mathrm{t}} & =\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

MOIN LATIF

Solution Manual

$$
\begin{aligned}
& A^{t}+B^{t}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]-\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right] \\
& \quad=\left[\begin{array}{ll}
1-1 & 0-2 \\
2-1 & 1-0
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & -2 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

Hence Proved: L.H.S = R.H.S
(iii). $\quad A+A^{t}$ is symmetric.

$$
\begin{aligned}
& A^{t}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] \\
& A+A^{t}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
1+1 & 2+0 \\
0+2 & 1+1
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right]
\end{aligned}
$$

Now,

$$
\left(A+A^{t}\right)^{t}=\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right]=\left(A+A^{t}\right)
$$

Hence proved that $A+A^{t}$ is symmetric.
(iv). $\quad A-A^{t}$ is skew-symmetric.

$$
\begin{aligned}
& A^{t}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] \\
& A+A^{t}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
1-1 & 2-0 \\
0-2 & 1-1
\end{array}\right] \\
& \\
& \quad=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right]
\end{aligned}
$$

Now,

$$
\left(A+A^{t}\right)^{t}=\left[\begin{array}{cc}
0 & -2 \\
2 & 0
\end{array}\right]=-\left(A+A^{t}\right)
$$

Hence proved that $A+A^{t}$ is skew- symmetric.
(v). $B+B^{t}$ is symmetric.

$$
\begin{aligned}
\mathrm{B}^{\mathrm{t}}= & {\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right] } \\
\mathrm{B}+\mathrm{B}^{\mathrm{t}} & =\left[\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right]+\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1+1 & 1+2 \\
2+1 & 0+0
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 3 \\
3 & 0
\end{array}\right]
\end{aligned}
$$

Now,

$$
\left(B+B^{t}\right)^{t}=\left[\begin{array}{ll}
2 & 3 \\
3 & 0
\end{array}\right]=\left(B+B^{t}\right)^{t}
$$

Hence proved that $B+B^{t}$ is symmetric.
(vi). $\quad B-B^{t}$ is skew-symmetric.
$B^{t}=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$
B- $\mathrm{B}^{\mathrm{t}}=\left[\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right]-\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}1-1 & 1-2 \\ 2-1 & 0-0\end{array}\right]$

$$
=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Now,

$$
\left(B+B^{t}\right)^{t}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]=-\left(B+B^{t}\right)^{t}
$$

Hence proved that $B+B^{t}$ is skew-symmetric.

Solution Manual

Multiplication of Matrices: Two matrices $A \& B$ can be multiplied if number of column of A are equal to number of rows of B.

Ex\# 1.4

Q.1: Which of the following product of matrices is conformable for multiplication?
(i). $\left[\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right]\left[\begin{array}{c}-2 \\ 3\end{array}\right]$

Ans: Yes. Since number of columns of first is two that is equal to numbers of rows of second.
Therefore they can be multiplied.
(ii). $\left[\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right]$

Ans: yes.
(iii). $\left[\begin{array}{c}1 \\ -1\end{array}\right]\left[\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right]$

Ans: No
(iv). $\left[\begin{array}{cc}1 & 2 \\ 0 & -1 \\ -1 & -2\end{array}\right]\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 2\end{array}\right]$

Ans: yes
(v). $\left[\begin{array}{ccc}3 & 2 & 1 \\ 0 & 1 & -1\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 0 & 2 \\ -2 & 3\end{array}\right]$

Ans: Yes
Q.2: If $A=\left[\begin{array}{cc}3 & 0 \\ -1 & 2\end{array}\right], B=\left[\begin{array}{l}6 \\ 5\end{array}\right]$, find (i) $A B$ and (ii) $B A$ (if possible).
(i). $A B=\left[\begin{array}{cc}3 & 0 \\ -1 & 2\end{array}\right]\left[\begin{array}{l}6 \\ 5\end{array}\right]$

$$
\begin{aligned}
& A B=\left[\begin{array}{c}
(3 \times 6)+(0 \times 5) \\
(-1 \times 6)+(2 \times 5)
\end{array}\right] \\
& A B=\left[\begin{array}{c}
18+0 \\
-6+10
\end{array}\right] \\
& A B=\left[\begin{array}{c}
18 \\
4
\end{array}\right]
\end{aligned}
$$

(ii). $B A$ is not possible.
Q.3: Find the product of following matrices:
(i). $\left[\begin{array}{ll}1 & 2\end{array}\right]\left[\begin{array}{l}4 \\ 0\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
(1 \times 4) & (2 \times 0)
\end{array}\right] \\
& =\left[\begin{array}{ll}
4 & 0
\end{array}\right]
\end{aligned}
$$

(ii). $\left[\begin{array}{ll}1 & 2]\end{array}\left[\begin{array}{c}5 \\ -4\end{array}\right]\right.$
$=\left[\begin{array}{ll}(1 \times 5) & (2 \times-4)\end{array}\right]$

MOIN LATIF
University of Engineering \& Technology, (UET) Lahore.
Email ID: Engr.moin@hotmail.com

Solution Manual

$$
=\left[\begin{array}{ll}
5 & -8]
\end{array}\right.
$$

(iii). $\left[\begin{array}{ll}3 & 0\end{array}\right]\left[\begin{array}{l}4 \\ 0\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
(3 \times 4) & (0 \times 0)] \\
=[12 & 0]
\end{array}\right.
\end{aligned}
$$

(iv). $\left[\begin{array}{ll}6 & -0]\end{array}\left[\begin{array}{l}4 \\ 0\end{array}\right]\right.$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
(6 \times 4) & (-0 \times 0)
\end{array}\right] \\
& =\left[\begin{array}{ll}
24 & 0
\end{array}\right]
\end{aligned}
$$

(v). $\left[\begin{array}{cc}1 & 2 \\ -3 & 0 \\ 6 & -1\end{array}\right]\left[\begin{array}{cc}4 & 5 \\ 0 & -4\end{array}\right]$

$$
=\left[\begin{array}{cc}
(1 \times 4)+(2 \times 0) & (1 \times 5)+(2 \times-4) \\
(-3 \times 4)+(0 \times 0) & (-3 \times 5)+(0 \times-4) \\
(6 \times 4)+(-1 \times 0) & (6 \times 5)+(-1 \times-4)
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
4+0 & 5-8 \\
-12+0 & -15+0 \\
24+0 & 30+4
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
4 & -3 \\
-12 & -15 \\
24 & 34
\end{array}\right]
$$

Q.4: Multiply the following matrices.
a) $\left[\begin{array}{cc}2 & 3 \\ 1 & 1 \\ 0 & -2\end{array}\right]\left[\begin{array}{cc}2 & -1 \\ 3 & 0\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
(2 \times 2)+(3 \times 3) & (2 \times-1)+(3 \times 0) \\
(1 \times 2)+(1 \times 3) & (1 \times-1)+(1 \times 0) \\
(0 \times 2)+(-2 \times 3) & (0 \times-1)+(-2 \times 0)
\end{array}\right] \\
& =\left[\begin{array}{cc}
4+9 & -2+0 \\
2+3 & -1+0 \\
0-6 & 0+0
\end{array}\right] \\
& =\left[\begin{array}{cc}
13 & -2 \\
5 & -1 \\
-6 & 0
\end{array}\right]
\end{aligned}
$$

b)
$\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ 3 & 4 \\ -1 & 1\end{array}\right]$

$$
=\left[\begin{array}{ll}
(1 \times 1)+(2 \times 3)+(3 \times-1) & (1 \times 2)+(2 \times 4)+(3 \times 1) \\
(4 \times 1)+(5 \times 3)+(6 \times-1) & (4 \times 2)+(5 \times 4)+(6 \times 1)
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
1+6-3 & 2+8+3 \\
4+15-6 & 8+20+6
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
4 & 13 \\
13 & 34
\end{array}\right]
$$

c)

$$
\left[\begin{array}{cc}
1 & 2 \\
3 & 4 \\
-1 & -1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
(1 \times 1)+(2 \times 4) & (1 \times 2)+(2 \times 5) & (1 \times 3)+(2 \times 6) \\
(3 \times 1)+(4 \times 4) & (3 \times 2)+(4 \times 5) & (3 \times 3)+(4 \times 6) \\
(-1 \times 1)+(-1 \times 4) & (-1 \times 2)+(-1 \times 5) & (-1 \times 3)+(-1 \times 6)
\end{array}\right]
$$

MOIN LATIF

Solution Manual

$==\left[\begin{array}{ccc}1+8 & 2+10 & 3+12 \\ 3+16 & 6+20 & 9+24 \\ -1-4 & -2-5 & -3-6\end{array}\right]$
$=\left[\begin{array}{ccc}9 & 12 & 15 \\ 19 & 26 & 33 \\ -5 & -7 & -9\end{array}\right]$
d) $\left[\begin{array}{ll}8 & 5 \\ 6 & 4\end{array}\right]\left[\begin{array}{cc}2 & -\frac{5}{2} \\ -4 & 4\end{array}\right]$
$=\left[\begin{array}{ll}(8 \times 2)+(5 \times-4) & \left(8 \times-\frac{5}{2}\right)+(5 \times 4) \\ (6 \times 2)+(4 \times-4) & \left(6 \times-\frac{5}{2}\right)+(4 \times 4)\end{array}\right]$
$=\left[\begin{array}{ll}16-20 & -40+20 \\ 12-16 & -15+16\end{array}\right]$
$=\left[\begin{array}{cc}-4 & 20 \\ -4 & 1\end{array}\right]$
e) $\left[\begin{array}{cc}-1 & 2 \\ 1 & 3\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$=\left[\begin{array}{cc}(-1 \times 0)+(2 \times 0) & (-1 \times 0)+(2 \times 0) \\ (1 \times 0)+(3 \times 0) & (1 \times 0)+(3 \times 0)\end{array}\right]$
$=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
Q.5: Let $A=\left[\begin{array}{cc}-1 & 3 \\ 2 & 0\end{array}\right], B=\left[\begin{array}{cc}1 & 2 \\ -3 & -5\end{array}\right]$ and $C=\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]$, verif y whether:
(i). $A B=B A$
L.H.S
$A B=\left[\begin{array}{cc}-1 & 3 \\ 2 & 0\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ -3 & -5\end{array}\right]$
$=\left[\begin{array}{cc}(-1 \times 1)+(3 \times-3) & (-1 \times 2)+(3 \times-5) \\ (2 \times 1)+(0 \times-3) & (2 \times 2)+(0 \times-5)\end{array}\right]$
$=\left[\begin{array}{cc}-1-9 & -2-15 \\ 2+0 & 4+0\end{array}\right]$
$=\left[\begin{array}{cc}-10 & -17 \\ 2 & 4\end{array}\right]$
R.H.S
$\mathrm{BA}=\left[\begin{array}{cc}1 & 2 \\ -3 & -5\end{array}\right]\left[\begin{array}{cc}-1 & 3 \\ 2 & 0\end{array}\right]$
$=\left[\begin{array}{cc}(1 \times-1)+(2 \times 2) & (1 \times 3)+(2 \times 0) \\ (-3 \times-1)+(-5 \times 2) & (-3 \times 3)+(-5 \times 0)\end{array}\right]$
$=\left[\begin{array}{cc}-1+4 & 3+0 \\ 3-10 & -9+0\end{array}\right]$
$=\left[\begin{array}{cc}3 & 3 \\ -7 & -9\end{array}\right]$
SO, $A B \neq B A$
(ii). $A(B C)=(A B) C$
L.H.S

$$
\mathrm{BC}=\left[\begin{array}{cc}
1 & 2 \\
-3 & -5
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]
$$

MOIN LATIF

Solution Manual

$$
\begin{aligned}
& =\left[\begin{array}{cc}
(1 \times 2)+(2 \times 1) & (1 \times 1)+(2 \times 3) \\
(-3 \times 2)+(-5 \times 1) & (-3 \times 1)+(-5 \times 3)
\end{array}\right] \\
& =\left[\begin{array}{cc}
2+2 & 1+6 \\
-6-5 & -3-15
\end{array}\right]
\end{aligned}
$$

$$
\mathrm{BC}=\left[\begin{array}{cc}
4 & 7 \\
-11 & -18
\end{array}\right]
$$

Now,

$$
\begin{aligned}
A(B C) & =\left[\begin{array}{cc}
-1 & 3 \\
2 & 0
\end{array}\right]\left[\begin{array}{cc}
4 & 7 \\
-11 & -18
\end{array}\right] \\
& =\left[\begin{array}{cc}
(-1 \times 4)+(3 \times-11) & (-1 \times 7)+(3 \times-18) \\
(2 \times 4)+(0 \times-11) & (2 \times 7)+(0 \times-18)
\end{array}\right] \\
& =\left[\begin{array}{cc}
-4-33 & -7-54 \\
8+0 & 14+0
\end{array}\right] \\
& =\left[\begin{array}{cc}
-37 & -61 \\
8 & 14
\end{array}\right]
\end{aligned}
$$

R.H.S

$$
\begin{aligned}
\mathrm{AB} & =\left[\begin{array}{cc}
-1 & 3 \\
2 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
-3 & -5
\end{array}\right] \\
& =\left[\begin{array}{cc}
(-1 \times 1)+(3 \times-3) & (-1 \times 2)+(3 \times-5) \\
(2 \times 1)+(0 \times-3) & (2 \times 2)+(0 \times-5)
\end{array}\right] \\
& =\left[\begin{array}{cc}
-1-9 & -2-15 \\
2+0 & 4+0
\end{array}\right] \\
& =\left[\begin{array}{cc}
-10 & -17 \\
2 & 4
\end{array}\right]
\end{aligned}
$$

$$
(\mathrm{AB}) \mathrm{C}=\left[\begin{array}{cc}
-10 & -17 \\
2 & 4
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
(-10 \times 2)+(-17 \times 1) & (-10 \times 1)+(-17 \times 3) \\
(2 \times 2)+(4 \times 1) & (2 \times 1)+(4 \times 3)
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
-20-17 & -10-51 \\
4+4 & 2+12
\end{array}\right]
$$

$$
(A B) C=\left[\begin{array}{cc}
-37 & -61 \\
8, & 14
\end{array}\right]
$$

Hence, $A(B C)=(A B) C$
(iii). $A(B+C)=A B+A C$
L.H.S
$B+C=\left[\begin{array}{cc}1 & 2 \\ -3 & -5\end{array}\right]+\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]$

$$
=\left[\begin{array}{cc}
3 & 3 \\
-2 & -2
\end{array}\right]
$$

$A(B+C)=\left[\begin{array}{cc}-1 & 3 \\ 2 & 0\end{array}\right]\left[\begin{array}{cc}3 & 3 \\ -2 & -2\end{array}\right]$

MOIN LATIF

Solution Manual

$$
\begin{aligned}
& =\left[\begin{array}{cc}
(-1 \times 3)+(3 \times-2) & (-1 \times 3)+(3 \times-2) \\
(2 \times 3)+(0 \times-2) & (2 \times 3)+(0 \times-2)
\end{array}\right] \\
& =\left[\begin{array}{cc}
-3-6 & -3-6 \\
6+0 & 6+0
\end{array}\right] \\
A(B+C) & =\left[\begin{array}{cc}
-9 & -9 \\
6 & 6
\end{array}\right]
\end{aligned}
$$

R.H.S

$$
\begin{aligned}
A B & =\left[\begin{array}{cc}
-1 & 3 \\
2 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
-3 & -5
\end{array}\right] \\
& =\left[\begin{array}{cc}
(-1 \times 1)+(3 \times-3) & (-1 \times 2)+(3 \times-5) \\
(2 \times 1)+(0 \times-3) & (2 \times 2)+(0 \times-5)
\end{array}\right] \\
& =\left[\begin{array}{cc}
-1-9 & -2-15 \\
2+0 & 4+0
\end{array}\right] \\
& =\left[\begin{array}{cc}
-10 & -17 \\
2 & 4
\end{array}\right]
\end{aligned}
$$

$$
\mathrm{AC}=\left[\begin{array}{cc}
-1 & 3 \\
2 & 0
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
(-1 \times 2)+(3 \times 1) & (-1 \times 1)+(3 \times 3) \\
(2 \times 2)+(0 \times 1) & (2 \times 1)+(0 \times 3)
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
-2+3 & -1+9 \\
4+0 & 2+0
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
1 & 8 \\
4 & 2
\end{array}\right]
$$

$A B+A C=\left[\begin{array}{cc}-10 & -17 \\ 2 & 4\end{array}\right]+\left[\begin{array}{ll}1 & 8 \\ 4 & 2\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
-10+1 & -17+8 \\
2+4 & 4+2
\end{array}\right] \\
& =\left[\begin{array}{cc}
-9 & -9 \\
6 & 6
\end{array}\right]
\end{aligned}
$$

Hence, $\quad A(B+C)=A B+A C$
(iv). $A(B-C)=A B-A C$

$$
\begin{aligned}
\mathrm{B}-\mathrm{C} & =\left[\begin{array}{cc}
1 & 2 \\
-3 & -5
\end{array}\right]-\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right] \\
& =\left[\begin{array}{cc}
-1 & 1 \\
-4 & -8
\end{array}\right]
\end{aligned}
$$

$$
A(B-C)=\left[\begin{array}{cc}
-1 & 3 \\
2 & 0
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
-4 & -8
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
(-1 \times-1)+(3 \times-4) & (-1 \times 1)+(3 \times-8) \\
(2 \times-1)+(0 \times-4) & (2 \times 1)+(0 \times-8)
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
1-12 & -1-24 \\
-2+0 & 2+0
\end{array}\right]
$$

MOIN LATIF
Email ID: Engr.moin@hotmail.com

Solution Manual

$A(B-C)=\left[\begin{array}{cc}-11 & -25 \\ -2 & 2\end{array}\right]$
R.H.S

$$
\begin{aligned}
& \mathrm{AB}=\left[\begin{array}{cc}
-1 & 3 \\
2 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
-3 & -5
\end{array}\right] \\
&=\left[\begin{array}{cc}
(-1 \times 1)+(3 \times-3) & (-1 \times 2)+(3 \times-5) \\
(2 \times 1)+(0 \times-3) & (2 \times 2)+(0 \times-5)
\end{array}\right] \\
&=\left[\begin{array}{cc}
-1-9 & -2-15 \\
2+0 & 4+0
\end{array}\right] \\
&=\left[\begin{array}{cc}
-10 & -17 \\
2 & 4
\end{array}\right] \\
& A C=\left[\begin{array}{ll}
-1 & 3 \\
2 & 0
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right] \\
&=\left[\begin{array}{cc}
-1 \times 2)+(3 \times 1) & (-1 \times 1)+(3 \times 3) \\
(2 \times 2)+(0 \times 1) & (2 \times 1)+(0 \times 3)
\end{array}\right] \\
&=\left[\begin{array}{cc}
-2+3 & -1+9 \\
4+0 & 2+0
\end{array}\right] \\
&=\left[\begin{array}{cc}
1 & 8 \\
4 & 2
\end{array}\right] \\
& A B-A C=\left[\begin{array}{cc}
-10 & -17 \\
2 & 4
\end{array}\right]-\left[\begin{array}{cc}
1 & 8 \\
4 & 2
\end{array}\right] \\
&=\left[\begin{array}{cc}
-10-1 & -17-8 \\
2-4 & 4-2
\end{array}\right] \\
&=\left[\begin{array}{cc}
-11 & -25 \\
-2 & 2
\end{array}\right]
\end{aligned}
$$

Hence, $\quad A(B-C)=A B-A C$
Q.6: For the matrices

$$
A=\left[\begin{array}{cc}
-1 & 3 \\
2 & 0
\end{array}\right], B=\left[\begin{array}{cc}
1 & 2 \\
-3 & -5
\end{array}\right] \text { and } C=\left[\begin{array}{cc}
-2 & 6 \\
3 & -9
\end{array}\right]
$$

Verify that:
(i). $(A B)^{t}=B^{t} A^{t}$
L.H.S
$A B=\left[\begin{array}{cc}-1 & 3 \\ 2 & 0\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ -3 & -5\end{array}\right]$
$=\left[\begin{array}{cc}(-1 \times 1)+(3 \times-3) & (-1 \times 2)+(3 \times-5) \\ (2 \times 1)+(0 \times-3) & (2 \times 2)+(0 \times-5)\end{array}\right]$
$=\left[\begin{array}{cc}-1-9 & -2-15 \\ 2+0 & 4+0\end{array}\right]$
$=\left[\begin{array}{cc}-10 & -17 \\ 2 & 4\end{array}\right]$

$$
(\mathrm{AB})^{\mathrm{t}}=\left[\begin{array}{ll}
-10 & 2 \\
-17 & 4
\end{array}\right]
$$

MOIN LATIF
University of Engineering \& Technology, (UET) Lahore.
Email ID: Engr.moin@hotmail.com

Solution Manual

$$
\begin{aligned}
& \text { R.H.S } \\
& \mathrm{B}^{\mathrm{t}}=\left[\begin{array}{ll}
1 & -3 \\
2 & -5
\end{array}\right] \\
& \mathrm{A}^{\mathrm{t}}=\left[\begin{array}{cc}
-1 & 2 \\
3 & 0
\end{array}\right] \\
& \mathrm{B}^{\mathrm{t}} \mathrm{~A}^{\mathrm{t}}=\left[\begin{array}{ll}
1 & -3 \\
2 & -5
\end{array}\right]\left[\begin{array}{cc}
-1 & 2 \\
3 & 0
\end{array}\right] \\
&=\left[\begin{array}{ll}
(1 \times-1)+(-3 \times 3) & (1 \times 2)+(-3 \times 0) \\
(2 \times-1)+(-5 \times 3) & (2 \times 2)+(-5 \times 0)
\end{array}\right] \\
&=\left[\begin{array}{cc}
-1-9 & 2+0 \\
-2-15 & 4+0
\end{array}\right] \\
&=\left[\begin{array}{ll}
-10 & 2 \\
-17 & 4
\end{array}\right] \\
& \text { Hence, }(\mathrm{AB})^{\mathrm{t}}=\mathrm{B}^{\mathrm{t}} \mathrm{~A}^{\mathrm{t}}
\end{aligned}
$$

Solution Manuall

Singular Matrices: A square matrix A is called singular, if the determinant of A is equal to zero. i.e., $|A|=0$.

Non-Singular Matrices: A square matrix A is called singular, if the determinant of A is not equal to zero. i.e., $|A| \neq 0$.

Ex\# 1.5

Q.1: Find the determinant of following matrices:
(i). $A=\left[\begin{array}{cc}-1 & 1 \\ 2 & 0\end{array}\right]$

$$
|A|=\left|\begin{array}{cc}
-1 & 1 \\
2 & 0
\end{array}\right|=(-1 \times 0)-(2 \times 1)=0-2=-2
$$

(ii). $B=\left[\begin{array}{cc}1 & 3 \\ 2 & -2\end{array}\right]$

$$
|B|=\left|\begin{array}{cc}
1 & 3 \\
2 & -2
\end{array}\right|=(1 \times-2)-(2 \times 3)=-2-6=-8
$$

(iii). $C=\left[\begin{array}{ll}3 & 2 \\ 3 & 2\end{array}\right]$
$|C|=\left|\begin{array}{ll}3 & 2 \\ 3 & 2\end{array}\right|=(3 \times 2)-(3 \times 2)=6-6=0$
(iv). $D=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$
$|D|=\left|\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right|=(3 \times 4)-(1 \times 2)=12-2=10$
Q.2: Find which of the following matrices are singular or non-singular?
(i). $A=\left[\begin{array}{ll}3 & 6 \\ 2 & 4\end{array}\right]$
$|A|=\left|\begin{array}{ll}3 & 6 \\ 2 & 4\end{array}\right|=(3 \times 4)-(2 \times 6)=12-12=0$
So, A is a singular matrix.
(ii). $B=\left[\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right]$
$|B|=\left|\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right|=(4 \times 2)-(3 \times 1)=8-3=5$
So, B is a non-singular matrix.
(iii). $C=\left[\begin{array}{cc}7 & -9 \\ 3 & 5\end{array}\right]$
$|C|=\left|\begin{array}{cc}7 & -9 \\ 3 & 5\end{array}\right|=(7 \times 5)-(3 \times-9)=35+27=62$
So, C is a non-singular matrix.
(iv). $D=\left[\begin{array}{cc}5 & -10 \\ -2 & 4\end{array}\right]$
$|D|=\left|\begin{array}{cc}5 & -10 \\ -2 & 4\end{array}\right|=(5 \times 4)-(-2 \times-10)=20-20=0$
So, D is a singular matrix.

MOIN LATIF

Solutuion Manual

Q.3: Find the multiplicative inverse of following matrices (if exist):
(i). $A=\left[\begin{array}{cc}-1 & 3 \\ 2 & 0\end{array}\right]$

$$
|A|=(-1 \times 0)-(3 \times 2)
$$

$$
=-6
$$

$\operatorname{Adj}(A)=\left[\begin{array}{cc}0 & -3 \\ -2 & 1\end{array}\right]$
$A^{-1}=\frac{1}{|A|} \times \operatorname{Adj}(A)$
$A^{-1}=\frac{1}{-6} \times\left[\begin{array}{cc}0 & -3 \\ -2 & 1\end{array}\right]$
$A^{-1}=\left[\begin{array}{cc}0 \times \frac{1}{-6} & -3 \times \frac{1}{-6} \\ -2 \times \frac{1}{-6} & 1 \times \frac{1}{-6}\end{array}\right]$
$A^{-1}=\left[\begin{array}{ll}0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{6}\end{array}\right]$
(ii). $B=\left[\begin{array}{cc}1 & 2 \\ -3 & -5\end{array}\right]$

$$
\begin{aligned}
|B| & =(1 \times(-5))-(-3 \times 2) \\
& =1
\end{aligned}
$$

$\operatorname{Adj}(B)=\left[\begin{array}{cc}-5 & -2 \\ 3 & 1\end{array}\right]$
$B^{-1}=\frac{1}{|B|} \times \operatorname{Adj}(B)$
$B^{-1}=\frac{1}{1} \times\left[\begin{array}{cc}-5 & -2 \\ 3 & 1\end{array}\right]$
$B^{-1}=\left[\begin{array}{cc}-5 & -2 \\ 3 & 1\end{array}\right]$
(iii). Same as above. Do yourself.
(iv). $\quad D=\left[\begin{array}{cc}5 & -10 \\ -2 & 4\end{array}\right]$
$|\underline{\mid}|=(5 \times 4)-(-10 \times-2)$
$=0$
Since $|A|=0$, so its multiplicative Inverse does not exists.
Q.4: If $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 6\end{array}\right] \& B=\left[\begin{array}{ll}3 & -1 \\ 2 & -2\end{array}\right]$ Then,
(i). $A(\operatorname{Adj} A)=(\operatorname{Adj} A) A=(\operatorname{det} A) I$
$A=\left[\begin{array}{ll}1 & 2 \\ 4 & 6\end{array}\right]$
L.H.S=

MOIN LATIF
Email ID: Engr.moin@hotmail.com

Solution Manual

$\operatorname{Adj}(A)=\left[\begin{array}{cc}6 & -2 \\ -4 & 1\end{array}\right]$
$A(\operatorname{Adj} A)=\left[\begin{array}{ll}1 & 2 \\ 4 & 6\end{array}\right]\left[\begin{array}{cc}6 & -2 \\ -4 & 1\end{array}\right]$
$A(\operatorname{Adj} A)=\left[\begin{array}{cc}6-8 & -2+2 \\ 24-24 & -8+6\end{array}\right]$
$A(\operatorname{Adj} A)=\left[\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right]$

Middle Side=M.S.
$(\operatorname{Adj} A) A=\left[\begin{array}{cc}6 & -2 \\ -4 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 4 & 6\end{array}\right]$
$(\operatorname{Adj} A) A=\left[\begin{array}{cc}6-8 & 12-12 \\ -4+4 & -8+6\end{array}\right]$
$(\operatorname{Adj} A) A=\left[\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right]$
R.H.S $=$
$(\operatorname{det} A)=|A|\left|\begin{array}{ll}1 & 2 \\ 4 & 6\end{array}\right|=6-8=-2$
$I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$(\operatorname{det} A) I=-2 \times\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right]$
Hence prove that

$$
A(\operatorname{Adj} A)=(\operatorname{Adj} \bar{A}) \bar{A}=(\operatorname{det} A) I
$$

(ii). $B B^{-1}=I=B^{-1} B$

$$
\begin{aligned}
& B=\left[\begin{array}{ll}
3 & -1 \\
2 & -2
\end{array}\right] \\
& |B|=(3 \times(-2))-(2 \times(-1)) \\
& =-4 \\
& \operatorname{Adj}(B)=\left[\begin{array}{ll}
-2 & 1 \\
-2 & 3
\end{array}\right] \text {, } \\
& B^{-1}=\frac{1}{|B|} \times \operatorname{Adj}(B) \\
& B^{-1}=\frac{1}{-4} \times\left[\begin{array}{ll}
-2 & 1 \\
-2 & 3
\end{array}\right] \\
& B^{-1}=-\frac{1}{4} \times\left[\begin{array}{ll}
-2 & 1 \\
-2 & 3
\end{array}\right]
\end{aligned}
$$

L.H.S=

$$
\begin{aligned}
& \boldsymbol{B} \boldsymbol{B}^{\boldsymbol{- 1}}=\left[\begin{array}{ll}
3 & -1 \\
2 & -2
\end{array}\right] \times\left(-\frac{1}{4}\right) \times\left[\begin{array}{ll}
-2 & 1 \\
-2 & 3
\end{array}\right] \\
& B B^{-1}=\left(-\frac{1}{4}\right)\left[\begin{array}{ll}
3 & -1 \\
2 & -2
\end{array}\right]\left[\begin{array}{ll}
-2 & 1 \\
-2 & 3
\end{array}\right]
\end{aligned}
$$

Solution Manuall

$B B^{-1}=\left(-\frac{1}{4}\right)\left[\begin{array}{ll}-6+2 & 3-3 \\ -4+4 & 2-6\end{array}\right]$
$B B^{-1}=\left(-\frac{1}{4}\right)\left[\begin{array}{cc}-4 & 0 \\ 0 & -4\end{array}\right]=\left[\begin{array}{cc}-4 \times-\frac{1}{4} & 0 \times-\frac{1}{4} \\ 0 \times-\frac{1}{4} & -4 \times-\frac{1}{4}\end{array}\right]$
$B B^{-1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$
R.H.S $=$
$B^{-1} B=\left(-\frac{1}{4}\right) \times\left[\begin{array}{ll}-2 & 1 \\ -2 & 3\end{array}\right]\left[\begin{array}{ll}3 & -1 \\ 2 & -2\end{array}\right]$
$B^{-1} B=\left(-\frac{1}{4}\right)\left[\begin{array}{ll}-6+2 & 2-2 \\ -6+6 & 2-6\end{array}\right]$
$B^{-1} B=\left(-\frac{1}{4}\right)\left[\begin{array}{cc}-4 & 0 \\ 0 & -4\end{array}\right]=\left[\begin{array}{cc}-4 \times-\frac{1}{4} & 0 \times-\frac{1}{4} \\ 0 \times-\frac{1}{4} & -4 \times-\frac{1}{4}\end{array}\right]$
$B^{-1} B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$
From (i) \& (ii) it is proved that:

$$
B B^{-1}=I=B^{-1} B
$$

Q.5: Determine whether the given matrices are multiplicative inverses of each other
(i). $\left[\begin{array}{ll}3 & 5 \\ 4 & 7\end{array}\right]$ and $\left[\begin{array}{cc}7 & -5 \\ -4 & 3\end{array}\right]$
let $A=\left[\begin{array}{ll}3 & 5 \\ 4 & 7\end{array}\right]$
Than
$A^{-1}=\left[\begin{array}{cc}7 & -5 \\ -4 & 3\end{array}\right]$
As we know that

$$
A A^{-1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

$$
A A^{-1}=\left[\begin{array}{ll}
3 & 5 \\
4 & 7
\end{array}\right]\left[\begin{array}{cc}
7 & -5 \\
-4 & 3
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
21-20 & -15+15 \\
28-28 & -20+21
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

Hence verified that $\left[\begin{array}{ll}3 & 5 \\ 4 & 7\end{array}\right]$ and $\left[\begin{array}{cc}7 & -5 \\ -4 & 3\end{array}\right]$ are multiplicative inverses of each other.

Solutuion Manual

(ii). $\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ and $\left[\begin{array}{cc}-3 & 2 \\ 2 & -1\end{array}\right]$
let $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$
Than
$A^{-1}=\left[\begin{array}{cc}-3 & 2 \\ 2 & -1\end{array}\right]$
As we know that

$$
\begin{aligned}
& \boldsymbol{A} \boldsymbol{A}^{-\mathbf{1}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I \\
& A A^{-1}=\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right]\left[\begin{array}{cc}
-3 & 2 \\
2 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-3+4 & 2-2 \\
-6+6 & 4-3
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
\end{aligned}
$$

(iii).Hence verified that $\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ and $\left[\begin{array}{cc}-\mathbf{3} & \mathbf{2} \\ \mathbf{2} & \mathbf{- 1}\end{array}\right]$ are multiplicative inverses of each other.
Q.6: If

$$
A=\left[\begin{array}{cc}
4 & 0 \\
-1 & 2
\end{array}\right], B=\left[\begin{array}{cc}
-4 & -2 \\
1 & -1
\end{array}\right] \text { and } D=\left[\begin{array}{cc}
3 & 2 \\
-2 & 1
\end{array}\right]
$$

Verify that:

(i). $(A B)^{-1}=B^{-1} A^{-1}$
L.H.S

$$
\mathrm{AB}=\left[\begin{array}{cc}
4 & 0 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
-4 & -2 \\
1 & -1
\end{array}\right]
$$

$$
\mathrm{AB}=\left[\begin{array}{cc}
-16+0 & -8+0 \\
4+2 & 2-2
\end{array}\right]
$$

$$
A B=\left[\begin{array}{cc}
-16 & -8 \\
6 & 0
\end{array}\right]
$$

$$
|A B|=0+48
$$

$$
=48
$$

$$
\operatorname{Adj}(A B)=\left[\begin{array}{cc}
0 & 8 \\
-6 & -16
\end{array}\right]
$$

$$
(A B)^{-1}=\frac{1}{|A B|} \times \operatorname{Adj}(A B)
$$

$$
(A B)^{-1}=\frac{1}{48} \times\left[\begin{array}{cc}
0 & 8 \\
-6 & -16
\end{array}\right]
$$

$$
(A B)^{-1}=\left[\begin{array}{cc}
0 \times \frac{1}{48} & 8 \times \frac{1}{48} \\
-6 \times \frac{1}{48} & -16 \times \frac{1}{48}
\end{array}\right]
$$

Solution Manmall

$$
(A B)^{-1}=\left[\begin{array}{cc}
0 & \frac{1}{6} \\
-\frac{1}{8} & -\frac{1}{3}
\end{array}\right]
$$

R.H.S

$$
\begin{aligned}
& \begin{array}{l}
\boldsymbol{A}=\left[\begin{array}{cc}
\mathbf{4} & \mathbf{0} \\
-\mathbf{1} & 2
\end{array}\right] \\
|A|=8+0 \\
=8
\end{array} \\
& \begin{aligned}
\operatorname{Adj}(A)=\left[\begin{array}{ll}
2 & 0 \\
1 & 4
\end{array}\right] \\
A^{-1}=\frac{1}{|A|} \times \operatorname{Adj}(A)
\end{aligned} \\
& \begin{aligned}
& A^{-1}=\frac{1}{8} \times\left[\begin{array}{ll}
2 & 0 \\
1 & 4
\end{array}\right] \\
& \boldsymbol{B}=\left[\begin{array}{cc}
-\mathbf{4} & -2 \\
\mathbf{1} & -\mathbf{1}
\end{array}\right] \\
&|B|=4+2 \\
& \quad=6
\end{aligned}
\end{aligned}
$$

$$
\operatorname{Adj}(B)=\left[\begin{array}{cc}
-1 & 2 \\
-1 & -4
\end{array}\right]
$$

$$
B^{-1}=\frac{1}{|B|} \times \operatorname{Adj}(B)
$$

$$
B^{-1}=\frac{1}{6} \times\left[\begin{array}{cc}
-1 & 2 \\
-1 & -4
\end{array}\right]
$$

$$
\boldsymbol{B}^{-1} \boldsymbol{A}^{-1}=\frac{1}{6} \times\left[\begin{array}{cc}
-1 & 2 \\
-1 & -4
\end{array}\right] \times \frac{1}{\underline{8}} \times\left[\begin{array}{ll}
2 & 0 \\
1 & 4
\end{array}\right]
$$

$$
\boldsymbol{B}^{-\mathbf{1}} \boldsymbol{A}^{-\mathbf{1}}=\frac{1}{48} \times\left[\begin{array}{cc}
-1 & 2 \\
-1 & -4
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
1 & 4
\end{array}\right]
$$

$$
\boldsymbol{B}^{-\mathbf{1}} \boldsymbol{A}^{-\mathbf{1}}=\frac{1}{48} \times\left[\begin{array}{lc}
-2+2 & 0+8 \\
-2-4 & 0-16
\end{array}\right]
$$

$$
\boldsymbol{B}^{-\mathbf{1}} \boldsymbol{A}^{-\mathbf{1}}=\left[\begin{array}{cc}
0 \times \frac{1}{48} & 8 \times \frac{1}{48} \\
-6 \times \frac{1}{48} & -16 \times \frac{1}{48}
\end{array}\right]
$$

$\boldsymbol{B}^{\mathbf{- 1}} \boldsymbol{A}^{-\mathbf{1}}=\left[\begin{array}{cc}0 & \frac{1}{6} \\ -\frac{1}{8} & -\frac{1}{3}\end{array}\right]$
hence prove that
L.H.S = R.H.S
(ii). Do yourself

Solution Manual

Ex\# 1.6

Q.1: Use matrices, if possible, to solve the following systems of linear equations by:
i. Matrix inversion method
ii. Cramer's rule
(i).

$$
\begin{aligned}
& 2 x-2 y=4 \\
& 3 x+2 y=6
\end{aligned}
$$

Writing in matrices form:

$$
\left[\begin{array}{cc}
2 & -2 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
4 \\
6
\end{array}\right]
$$

Matrix inversion method
If we let:

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
2 & -2 \\
3 & 2
\end{array}\right] \\
& X=\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& B=\left[\begin{array}{l}
4 \\
6
\end{array}\right]
\end{aligned}
$$

Than we can write above equation as:

$$
\begin{gather*}
A X=B \\
X=A^{-1} B \tag{1}
\end{gather*}
$$

So,

$$
\begin{aligned}
& |A|=\left|\begin{array}{cc}
2 & -2 \\
3 & 2
\end{array}\right|=(2 \times 2)-(3 \times(-2))=4-(-6)=10 \\
& \operatorname{Adj}(A)=\left[\begin{array}{cc}
2 & 2 \\
-3 & 2
\end{array}\right] \\
& A^{-1}=\frac{1}{|A|} \times \operatorname{Adj}(A) \\
& A^{-1}=\frac{1}{10} \times\left[\begin{array}{cc}
2 & 2 \\
-3 & 2
\end{array}\right] \\
& \text { Putting values in equation (1): } \\
& X=\frac{1}{10} \times\left[\begin{array}{cc}
2 & 2 \\
-3 & 2
\end{array}\right]\left[\begin{array}{l}
4 \\
6
\end{array}\right] \\
& X=\frac{1}{10} \times\left[\begin{array}{c}
8+12 \\
-12+12
\end{array}\right]
\end{aligned}
$$

Solution Manual

$X=\frac{1}{10} \times\left[\begin{array}{c}20 \\ 0\end{array}\right]$
$X=\left[\begin{array}{l}20 \times \frac{1}{10} \\ 0 \times \frac{1}{10}\end{array}\right]$
$\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}2 \\ 0\end{array}\right]$
So, $x=2$; $y=0$
Solution set: $(2,0)$
(i).

$$
\begin{aligned}
& 2 x-2 y=4 \\
& 3 x+2 y=6
\end{aligned}
$$

Cramer's rule

Writing in matrices form:

$$
\left[\begin{array}{cc}
2 & -2 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
4 \\
6
\end{array}\right]
$$

If we let:

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
2 & -2 \\
3 & 2
\end{array}\right] \\
& {\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
6
\end{array}\right]}
\end{aligned}
$$

According to cramer rule:

$$
\begin{align*}
& x=\frac{\left|A_{x}\right|}{|A| .} . \tag{1}\\
& y=\frac{\left|A_{y}\right|}{|A| .} . \tag{2}
\end{align*}
$$

Here

$$
\begin{gathered}
A=\left[\begin{array}{cc}
2 & -2 \\
3 & 2
\end{array}\right] \\
A_{x}=\left[\begin{array}{ll}
b_{1} & -2 \\
b_{2} & 2
\end{array}\right]=\left[\begin{array}{cc}
4 & -2 \\
6 & 2
\end{array}\right] \\
A_{y}=\left[\begin{array}{ll}
2 & b_{1} \\
3 & b_{2}
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
3 & 6
\end{array}\right]
\end{gathered}
$$

$$
|A|=\left|\begin{array}{cc}
2 & -2 \\
3 & 2
\end{array}\right|=(2 \times 2)-(3 \times(-2))=4-(-6)=10
$$

$$
\left|A_{x}\right|=\left|\begin{array}{cc}
4 & -2 \\
6 & 2
\end{array}\right|=(4 \times 2)-(6 \times(-2))=8-(-12)=20
$$

$$
\left|A_{y}\right|=\left|\begin{array}{ll}
2 & 4 \\
3 & 6
\end{array}\right|=(2 \times 6)-(3 \times 4)=12-12=0
$$

So , from (1) and (2)

$$
x=\frac{\left|A_{x}\right|}{|A|}=\frac{20}{10}=2
$$

MOIN LATIF

Solution Manuall

$$
y=\frac{\left|A_{y}\right|}{|A|}=\frac{0}{10}=0
$$

So, $x=2$; $y=0$
Solution set: $(2,0)$
(ii).

$$
\begin{gathered}
2 x+y=3 \\
6 x+5 y=1
\end{gathered}
$$

Writing in matrices form:

$$
\left[\begin{array}{ll}
2 & 1 \\
6 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Matrix inversion method

If we let:

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
2 & 1 \\
6 & 5
\end{array}\right] \\
& X=\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& B=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
\end{aligned}
$$

Than we can write above equation as:

$$
\begin{gather*}
A X=B \\
X=A^{-1} B
\end{gather*}
$$

So,

$$
\begin{aligned}
& |A|=\left|\begin{array}{ll}
2 & 1 \\
6 & 5
\end{array}\right|=(2 \times 5)-(6 \times 1)=10-6=4 \\
& \operatorname{Adj}(A)=\left[\begin{array}{cc}
5 & -1 \\
-6 & 2
\end{array}\right] \\
& A^{-1}=\frac{1}{|A|} \times \operatorname{Adj}(A) \\
& A^{-1}=\frac{1}{4} \times\left[\begin{array}{cc}
5 & -1 \\
-6 & 2
\end{array}\right] \\
& \text { Putting values in equation (1): } \\
& X=\frac{1}{4} \times\left[\begin{array}{cc}
5 & -1 \\
-6 & 2
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right] \\
& X=\frac{1}{4} \times\left[\begin{array}{cc}
15 & 1 \\
-18+2
\end{array}\right] \\
& X=\frac{1}{10} \times\left[\begin{array}{c}
14 \\
-16
\end{array}\right]
\end{aligned}
$$

Solution Manual

$X=\left[\begin{array}{c}14 \times \frac{1}{4} \\ -16 \times \frac{1}{4}\end{array}\right]$
$\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}7 / 2 \\ -4\end{array}\right]$
So, $x=7 / 2 ; y=-4$
Solution set: $(7 / 2,-4)$

Cramer rule

$$
\begin{gathered}
2 x+y=3 \\
6 x+5 y=1
\end{gathered}
$$

Writing in matrices form:

If we let:

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
2 & 1 \\
6 & 5
\end{array}\right] \\
& {\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right]}
\end{aligned}
$$

According to cramer rule:

$$
\begin{align*}
& x=\frac{\left|A_{x}\right|}{|A|} \ldots \tag{1}\\
& y=\frac{\left|A_{y}\right|}{|A|} \ldots \tag{2}
\end{align*}
$$

Here

$$
\begin{gathered}
A=\left[\begin{array}{ll}
2 & 1 \\
6 & 5
\end{array}\right] \\
A_{x}=\left[\begin{array}{ll}
b_{1} & 1 \\
b_{2} & 5
\end{array}\right]=\left[\begin{array}{ll}
3 & 1 \\
1 & 5
\end{array}\right] \\
A_{y}=\left[\begin{array}{ll}
2 & b_{1} \\
6 & b_{2}
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
6 & 1
\end{array}\right]
\end{gathered}
$$

$|A|=\left|\begin{array}{ll}2 & 1 \\ 6 & 5\end{array}\right|=(2 \times 5)-(6 \times 1)=10-6=4$
$\left|A_{x}\right|=\left|\begin{array}{ll}3 & 1 \\ 1 & 5\end{array}\right|=(5 \times 3)-(1 \times 1)=15-1=14$
$\left|A_{y}\right|=\left|\begin{array}{ll}2 & 3 \\ 6 & 1\end{array}\right|=(2 \times 1)-(3 \times 6)=2-18=-16$
So , from (1) and (2)

$$
x=\frac{\left|A_{x}\right|}{|A|}=\frac{14}{4}=\frac{7}{2}
$$

MOIN LATIF

Solution Manual

$$
y=\frac{\left|A_{y}\right|}{|A|}=\frac{-16}{4}=-4
$$

So, $x=7 / 2 ; y=4$
Solution set: $(7 / 2,-4)$
(iii). Do by yourself
(iv).

$$
\begin{gathered}
3 x-2 y=4 \\
-6 x+4 y=7
\end{gathered}
$$

Writing in matrices form:

$$
\left[\begin{array}{cc}
3 & -2 \\
-6 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
4 \\
7
\end{array}\right]
$$

If we let:

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
3 & -2 \\
-6 & 4
\end{array}\right] \\
X & =\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
B & =\left[\begin{array}{l}
4 \\
7
\end{array}\right]
\end{aligned}
$$

Than we can write above equation as:

$$
\begin{gather*}
A X=B \tag{1}\\
X=A^{-1} B
\end{gather*}
$$

So,

$$
|A|=\left|\begin{array}{cc}
3 & -2 \\
-6 & 4
\end{array}\right|=(3 \times 4)-(-6 \times(-2))=12-12=0
$$

Since $|A|=0$, therefore the solution for these equations does not exist.
(v). Same as part (i) do yourself.
(vi). Same as part (i) do yourself.
(vii). Same as part (i) do yourself.

Solve the following word problems by using

1. Matrix Inversion Method
2. Cramer's Rule

MOIN LATIF

Solutuion Manuall

Q.2: The length of a rectangle is 4 times its width. The perimeter of the rectangle is 150 cm . Find the dimensions of the rectangle.

Solution:

Let

Length of rectangle $=x$
Width of rectangle $=y$
By condition of question:

$$
\begin{gathered}
x=4 y \\
2(x+y)=150
\end{gathered}
$$

$$
\therefore \text { perimeter of rectangle }=2(\text { length }+ \text { width })
$$

Simplifying above equations:

$$
\begin{gathered}
x-4 y=0 \\
2 x+2 y=150
\end{gathered}
$$

1. Matrix Inversion method

Writing in matrices form:

$$
\left[\begin{array}{cc}
1 & -4 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
0 \\
150
\end{array}\right]
$$

If we let:

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
1 & -4 \\
2 & 2
\end{array}\right] \\
X & =\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
B & =\left[\begin{array}{c}
0 \\
150
\end{array}\right]
\end{aligned}
$$

Than we can write above equation as:

$$
\begin{gather*}
A X=B \\
X=A^{-1} B \tag{1}
\end{gather*}
$$

So,

$$
\begin{aligned}
& |A|=\left|\begin{array}{cc}
1 & -4 \\
2 & 2
\end{array}\right|=(2 \times 1)-(-4 \times 2)=2-(-8)=10 \\
& \operatorname{Adj}(A)=\left[\begin{array}{cc}
2 & 4 \\
-2 & 1
\end{array}\right] \\
& A^{-1}=\frac{1}{|A|} \times \operatorname{Adj}(A) \\
& A^{-1}=\frac{1}{4} \times\left[\begin{array}{cc}
2 & 4 \\
-2 & 1
\end{array}\right]
\end{aligned}
$$

MOIN LATIF

Solutuion Manual

Putting values in equation (1):
$X=\frac{1}{10} \times\left[\begin{array}{cc}2 & 4 \\ -2 & 1\end{array}\right]\left[\begin{array}{c}0 \\ 150\end{array}\right]$
$X=\frac{1}{10} \times\left[\begin{array}{l}0+600 \\ 0+150\end{array}\right]$
$X=\frac{1}{10} \times\left[\begin{array}{l}600 \\ 150\end{array}\right]$
$X=\left[\begin{array}{l}600 \times \frac{1}{10} \\ 150 \times \frac{1}{10}\end{array}\right]$
$\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}60 \\ 15\end{array}\right]$
So, $x=60 ; y=15$
Solution set: $(60,15)$
Length of rectangle $=60 \mathrm{~cm}$
Width of rectangle $=15 \mathrm{~cm}$

Cramer rule

$$
\begin{aligned}
x-4 y & =0 \\
2 x+2 y & =150
\end{aligned}
$$

Writing in matrices form:

$$
\left[\begin{array}{cc}
1 & -4 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
0 \\
150
\end{array}\right]
$$

If we let:

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
1 & -4 \\
2 & 2
\end{array}\right] \\
& {\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
150
\end{array}\right]}
\end{aligned}
$$

According to Cramer rule:

$$
\begin{align*}
& x=\frac{\left|A_{x}\right|}{|A|} \ldots \tag{1}\\
& y=\frac{\left|A_{y}\right|}{|A|} \ldots \tag{2}
\end{align*}
$$

Here

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & -4 \\
2 & 2
\end{array}\right] \\
A_{x}=\left[\begin{array}{ll}
b_{1} & -4 \\
b_{2} & 2
\end{array}\right]=\left[\begin{array}{cc}
0 & -4 \\
150 & 2
\end{array}\right] \\
A_{y}=\left[\begin{array}{ll}
1 & b_{1} \\
2 & b_{2}
\end{array}\right]
\end{gathered}=\left[\begin{array}{cc}
1 & 0 \\
2 & 150
\end{array}\right] .
$$

$$
|A|=\left|\begin{array}{cc}
1 & -4 \\
2 & 2
\end{array}\right|=(2 \times 1)-(-4 \times 2)=2-(-8)=10
$$

MOIN LATIF
Email ID: Engr.moin@hotmail.com

Solution Manuall

$$
\begin{aligned}
& \left|A_{x}\right|=\left|\begin{array}{cc}
0 & -4 \\
150 & 2
\end{array}\right|=(0 \times 2)-(-4 \times 150)=0-(-600)=600 \\
& \left|A_{y}\right|=\left|\begin{array}{cc}
1 & 0 \\
2 & 150
\end{array}\right|=(1 \times 150)-(2 \times 0)=150-0=150
\end{aligned}
$$

So , from (1) and (2)

$$
\begin{aligned}
& x=\frac{\left|A_{x}\right|}{|A|}=\frac{600}{10}=60 \\
& y=\frac{\left|A_{y}\right|}{|A|}=\frac{150}{10}=15
\end{aligned}
$$

So, $x=60 ; y=15$
Solution set: $(60,15)$
Length of rectangle $=60 \mathrm{~cm}$
Width of rectangle $=15 \mathrm{~cm}$
Q.3: Two sides of a rectangle differ by $\mathbf{3 . 5} \mathbf{c m}$. Find the dimensions of the rectangle if its perimeter is 67 cm .

Solution:
Let
Length of rectangle $=x$
Width of rectangle $=y$
By condition of question:

$$
\begin{gathered}
x-y=3.5 \\
2(x+y)=67
\end{gathered}
$$

$$
\therefore \text { perimeter of rectangle }=2(\text { length }+ \text { width })
$$

Simplifying above equations:

$$
\begin{gathered}
x-y=3.5 \\
2 x+2 y=67
\end{gathered}
$$

1. Matrix Inversion method

Writing in matrices form:

$$
\left[\begin{array}{cc}
1 & -1 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
3.5 \\
67
\end{array}\right]
$$

If we let:

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & -1 \\
2 & 2
\end{array}\right] \\
& X=\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& B=\left[\begin{array}{l}
3.5 \\
67
\end{array}\right]
\end{aligned}
$$

MOIN LATIF

Solution Manwall

Than we can write above equation as:

$$
\begin{gather*}
A X=B \\
X=A^{-1} B \tag{1}
\end{gather*}
$$

So,

$$
\begin{aligned}
& |A|=\left|\begin{array}{cc}
1 & -1 \\
2 & 2
\end{array}\right|=(2 \times 1)-(-1 \times 2)=2-(-2)=4 \\
& \operatorname{Adj}(A)=\left[\begin{array}{cc}
2 & 1 \\
-2 & 1
\end{array}\right] \\
& A^{-1}=\frac{1}{|A|} \times \operatorname{Adj}(A) \\
& A^{-1}=\frac{1}{4} \times\left[\begin{array}{cc}
2 & 4 \\
-2 & 1
\end{array}\right]
\end{aligned}
$$

Putting values in equation (1):
$X=\frac{1}{4} \times\left[\begin{array}{cc}2 & 1 \\ -2 & 1\end{array}\right]\left[\begin{array}{c}3.5 \\ 67\end{array}\right]$
$X=\frac{1}{4} \times\left[\begin{array}{c}7+67 \\ -7+67\end{array}\right]$
$X=\frac{1}{4} \times\left[\begin{array}{l}74 \\ 60\end{array}\right]$
$X=\left[\begin{array}{l}74 \times \frac{1}{4} \\ 60 \times \frac{1}{4}\end{array}\right]$
$\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}18.5 \\ 15\end{array}\right]$
So, $x=18.5 ; y=15$
Solution set: $(18.5,15)$
Length of rectangle $=18.5 \mathrm{~cm}$
Width of rectangle $=15 \mathrm{~cm}$

Cramer rule

$$
\begin{gathered}
x-y=3.5 \\
2 x+2 y=67
\end{gathered}
$$

Writing in matrices form:

$$
\left[\begin{array}{cc}
1 & -1 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
3.5 \\
67
\end{array}\right]
$$

If we let:

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
1 & -1 \\
2 & 2
\end{array}\right] \\
& {\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{l}
3.5 \\
67
\end{array}\right]}
\end{aligned}
$$

MOIN LATIF

Solutuion Manual

According to Cramer rule:

$$
\begin{align*}
& x=\frac{\left|A_{x}\right|}{|A|} \ldots \tag{1}\\
& y=\frac{\left|A_{y}\right|}{|A|} \ldots \tag{2}
\end{align*}
$$

Here

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & -1 \\
2 & 2
\end{array}\right] \\
A_{x}=\left[\begin{array}{cc}
b_{1} & -4 \\
b_{2} & 2
\end{array}\right]=\left[\begin{array}{cc}
3.5 & -1 \\
67 & 2
\end{array}\right] \\
A_{y}=\left[\begin{array}{ll}
1 & b_{1} \\
2 & b_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 3.5 \\
2 & 67
\end{array}\right] \\
|A|=\left|\begin{array}{cc}
1 & -1 \\
2 & 2
\end{array}\right|=(2 \times 1)-(-1 \times 2)=2-(-2)=4 \\
\left|A_{x}\right|=\left|\begin{array}{cc}
3.5 & -1 \\
67 & 2
\end{array}\right|=(3.5 \times 2)-(-1 \times 67)=7-(-67)=74 \\
\left|A_{y}\right|=\left|\begin{array}{cc}
1 & 3.5 \\
2 & 67
\end{array}\right|=(1 \times 67)-(2 \times 3.5)=67-7=60
\end{gathered}
$$

So , from (1) and (2)

$$
\begin{aligned}
& x=\frac{\left|A_{x}\right|}{|A|}=\frac{74}{4}=18.5 \\
& y=\frac{\left|A_{y}\right|}{|A|}=\frac{60}{4}=15
\end{aligned}
$$

So, $\mathrm{x}=18.5 ; \mathrm{y}=15$
Solution set: $(18.5,15)$
Length of rectangle $=18.5 \mathrm{~cm}$
Width of rectangle $=15 \mathrm{~cm}$
Q.4: The third angle of an isosceles triangle is 16° less than the sum of the two equal angles. Find three angles of the triangle.

Solution:
Let
One of the equal angle $=x$
Third angle=y
By condition of question:

$$
\begin{aligned}
& x+x-16=y \\
& 2 x-y=16
\end{aligned}
$$

As we know that
Sum of three angles of triangles $=180$ degrees

$$
x+x+y=180
$$

MOIN LATIF

Email ID: Engr.moin@hotmail.com

Solutuion Manuall

Simplifying above equations:

$$
\begin{gathered}
2 x-y=16 \\
2 x+y=180
\end{gathered}
$$

1. Matrix Inversion method

Writing in matrices form:

$$
\left[\begin{array}{cc}
2 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
16 \\
180
\end{array}\right]
$$

If we let:

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
2 & -1 \\
2 & 1
\end{array}\right] \\
& X=\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& B=\left[\begin{array}{c}
16 \\
180
\end{array}\right]
\end{aligned}
$$

Than we can write above equation as:

$$
\begin{gather*}
A X=B \\
X=A^{-1} B \tag{1}
\end{gather*}
$$

\qquad
So,
$|A|=\left|\begin{array}{cc}2 & -1 \\ 2 & 1\end{array}\right|=(2 \times 1)-(-1 \times 2)=2-(-2)=4$
$\operatorname{Adj}(A)=\left[\begin{array}{cc}1 & 1 \\ -2 & 2\end{array}\right]$
$A^{-1}=\frac{1}{|A|} \times \operatorname{Adj}(A)$
$A^{-1}=\frac{1}{4} \times\left[\begin{array}{cc}1 & 1 \\ -2 & 2\end{array}\right]$
Putting values in equation (1):
$X=\frac{1}{4} \times\left[\begin{array}{cc}1 & 1 \\ -2 & 2\end{array}\right]\left[\begin{array}{c}16 \\ 180\end{array}\right]$
$X=\frac{1}{4} \times\left[\begin{array}{c}16+180 \\ -32+360\end{array}\right]$
$X=\frac{1}{4} \times\left[\begin{array}{l}196 \\ 328\end{array}\right]$
$X=\left[\begin{array}{l}196 \times \frac{1}{4} \\ 328 \times \frac{1}{4}\end{array}\right]$
$\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}49 \\ 82\end{array}\right]$
So, $x=49 ; y=82$

MOIN LATIF
Email ID: Engr.moin@hotmail.com

Solutuion Manual

Solution set: $(49,82)$
First of two equal angle $=49^{\circ}$
Second of two equal angle $=49^{\circ}$
Third angle $=82^{\circ}$

Cramer rule

$$
\begin{gathered}
2 x-y=16 \\
2 x+y=180
\end{gathered}
$$

Writing in matrices form:

$$
\left[\begin{array}{cc}
2 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
16 \\
180
\end{array}\right]
$$

If we let:

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
2 & -1 \\
2 & 1
\end{array}\right] \\
& {\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{c}
16 \\
180
\end{array}\right]}
\end{aligned}
$$

According to Cramer rule:

$$
\begin{align*}
& x=\frac{\left|A_{x}\right|}{|A|} \ldots \ldots(1) \\
& y=\frac{\left|A_{y}\right|}{|A| \ldots . ~} \tag{2}
\end{align*}
$$

Here

$$
\begin{gathered}
A=\left[\begin{array}{cc}
2 & -1 \\
2 & 1
\end{array}\right] \\
A_{x}=\left[\begin{array}{cc}
b_{1} & -1 \\
b_{2} & 1
\end{array}\right]=\left[\begin{array}{cc}
16 & -1 \\
180 & 1
\end{array}\right] \\
A_{y}=\left[\begin{array}{ll}
1 & b_{1} \\
2 & b_{2}
\end{array}\right]=\left[\begin{array}{cc}
2 & 16 \\
2 & 180
\end{array}\right]
\end{gathered}
$$

$$
|A|=\left|\begin{array}{cc}
2 & -1 \\
2 & 1
\end{array}\right|=(2 \times 1)-(-1 \times 2)=2-(-2)=4
$$

$$
\left|A_{x}\right|=\left|\begin{array}{cc}
16 & -1 \\
180 & 1
\end{array}\right|=(16 \times 1)-(-1 \times 180)=16-(-180)=196
$$

$$
\left|A_{y}\right|=\left|\begin{array}{cc}
2 & 16 \\
2 & 180
\end{array}\right|=(2 \times 180)-(2 \times 16)=360-32=328
$$

So, from (1) and (2)

$$
\begin{aligned}
& x=\frac{\left|A_{x}\right|}{|A|}=\frac{196}{4}=49 \\
& y=\frac{\left|A_{y}\right|}{|A|}=\frac{328}{4}=82
\end{aligned}
$$

So, $x=49 ; y=82$
Solution set: $(49,82)$
First of two equal angle $=49^{\circ}$
Second of two equal angle $=49^{\circ}$

$$
\text { Third angle }=82^{\circ}
$$

MOIN LATIF

Solution Manual

Q.5: One acute angle of a right triangle is 12° more than twice the other acute angle. Find the acute angles of the right triangle.

Let
One acute angle $=x$
Second cute angle $=y$
As we know that
Third angle $=90^{\circ}$
By condition:

$$
\begin{array}{r}
x-12=2 y \\
x-2 y=12 \ldots \ldots \ldots \tag{1}
\end{array}
$$

As we know that
Sum of three angles of triangles $=180$ degrees

$$
\begin{gathered}
x+y+90=180 \\
x+y=90 \ldots \ldots \ldots . .(2)
\end{gathered}
$$

Now do yourself.
Q.6: Two cars that are 600 km apart are moving towards each other. Their speeds differ by 6 km per hour and the cars are 123 km apart after $4 \frac{1}{2}$ hours. Find the speed of each car.

Solution:
Let
Speed of one car $=x$
Speed of other car $=y$
By condition of question:
$x-y=6$.
After $4 \frac{1}{2}$ hours:

$$
\begin{aligned}
& 4.5 x+4.5 y=477 \\
& 4.5(x+y)=477 \\
& (x+y)=477 / 4.5
\end{aligned}
$$

MOIN LATIF

University of Engineering \& Technology, (UET) Lahore.
Email ID: Engr.moin@hotmail.com

Solution Manwall

$$
\begin{equation*}
x+y=106 \tag{2}
\end{equation*}
$$

Simplifying above equations:

$$
\begin{gathered}
x-y=6 \\
x+y=106
\end{gathered}
$$

1. Matrix Inversion method

Writing in matrices form:

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
6 \\
106
\end{array}\right]
$$

If we let:

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \\
X & =\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
B & =\left[\begin{array}{c}
6 \\
106
\end{array}\right]
\end{aligned}
$$

Than we can write above equation as:

$$
A X=B
$$

$$
X=A^{-1} B
$$

\qquad
So,

$$
|A|=\left|\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right|=(1 \times 1)-(-1 \times 1)=1-(-1)=2
$$

$$
\operatorname{Adj}(A)=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

$A^{-1}=\frac{1}{|A|} \times \operatorname{Adj}(A)$
$A^{-1}=\frac{1}{2} \times\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$
Putting values in equation (1):
$X=\frac{1}{2} \times\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]\left[\begin{array}{c}6 \\ 106\end{array}\right]$
$X=\frac{1}{2} \times\left[\begin{array}{c}6+106 \\ -6+106\end{array}\right]$
$X=\frac{1}{2} \times\left[\begin{array}{l}112 \\ 100\end{array}\right]$
$X=\left[\begin{array}{l}112 \times \frac{1}{2} \\ 100 \times \frac{1}{2}\end{array}\right]$

MOIN LATIF

Solution Manuall

$\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}56 \\ 50\end{array}\right]$
So, $x=56 ; y=50$
Solution set: (56,50)
Speed of a car $=56 \mathrm{kmh}^{-1}$
Speed of other car $=50 \mathrm{kmh}^{-1}$

Cramer rule

$$
\begin{gathered}
x-y=6 \\
x+y=106
\end{gathered}
$$

Writing in matrices form:

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
6 \\
106
\end{array}\right]
$$

If we let:

$$
A=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

$\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]=\left[\begin{array}{c}6 \\ 106\end{array}\right]$
According to Cramer rule:

$$
\begin{gather*}
x=\frac{\left|A_{x}\right|}{|A|} . \ldots \tag{1}\\
y=\frac{\left|A_{y}\right|}{|A|} . \ldots \tag{2}
\end{gather*}
$$

Here

$$
A=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

$$
\begin{gathered}
A_{x}=\left[\begin{array}{cc}
b_{1} & -1 \\
b_{2} & 1
\end{array}\right]=\left[\begin{array}{cc}
6 & -1 \\
106 & 1
\end{array}\right] \\
A_{y}=\left[\begin{array}{ll}
1 & b_{1} \\
2 & b_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 6 \\
1 & 106
\end{array}\right] \\
|A|=\left|\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right|=(1 \times 1)-(-1 \times 1)=1-(-1)=2 \\
\left|A_{x}\right|=\left|\begin{array}{cc}
6 & -1 \\
106 & 1
\end{array}\right|=(6 \times 1)-(-1 \times 106)=6-(-106)=112 \\
\left|A_{y}\right|=\left|\begin{array}{cc}
1 & 6 \\
1 & 106
\end{array}\right|=(1 \times 106)-(1 \times 6)=106-6=100
\end{gathered}
$$

So , from (1) and (2)

$$
\begin{aligned}
& x=\frac{\left|A_{x}\right|}{|A|}=\frac{112}{2}=56 \\
& y=\frac{\left|A_{y}\right|}{|A|}=\frac{100}{2}=50
\end{aligned}
$$

So, $x=56 ; y=50$
Solution set: (56,50)
Speed of a car $=56 \mathrm{kmh}^{-1}$
Speed of other car $=50 \mathrm{kmh}^{-1}$

MOIN LATIF

