

THEOREMS CH#12

9th class Math Science (English medium)

by Bahadar Ali Khan

Prepared by: BAHADAR ALI KHAN

Civil Engineer from University of Engineering & Technology Lahore (Narowal Campus)

Available at https://www.mathcity.org For Home Tuition Contact at 0305-8069878 Theorem #1: Any Point on the right bisector of a line segment is equidistant from its end points.

Given: \overrightarrow{LM} intersects \overrightarrow{AB} at point C such that $\overrightarrow{LM} \perp \overrightarrow{AB}$ and $\overrightarrow{AC} \cong \overrightarrow{BC}$. Point P is on \overrightarrow{LM} **To** Prove: $\overrightarrow{PA} \cong \overrightarrow{PB}$ **Construction**: Join P to A and B.

Р

С

A

B

Proof

Statements	Reasons
$\Delta ACP \leftrightarrow \Delta BCP$	
$\overline{AC} \cong \overline{BC}$	Given
$\angle 1 \cong \angle 2 = 90^{\circ}$	$\overleftarrow{PC} \perp \overline{AB}$
$\overline{PC} \cong \overline{PC}$	Common
$\Delta ACP \cong \Delta BCP$	S.A.S Postulate
$\overline{PA} \cong \overline{PB}$	Corresponding sides of congruent triangles

Theorem #2: Any Point equidistant from the end points of a line segment is on the right bisector of it.

Proof

Statements	Reasons
$\Delta ACP \leftrightarrow \Delta BCP$	
$\overline{PA} \cong \overline{PB}$	Given
$\overline{PC} \cong \overline{PC}$	Common
$\overline{AC} \cong \overline{BC}$	Construction
$\Delta ACP \cong \Delta BCP$	S.S.S Postulate
$\angle 1 \cong \angle 2 \dots \dots$	Corresponding angles of congruent triangles
$\angle 1 + \angle 2 = 180$ (2)	Supplementary angles
$\angle 1 = \angle 2 = 90^{\circ}$	From (1) and (2)
$\overline{PC} \perp \overline{AB}$ (3)	$\angle 1 = \angle 2 = 90^{\circ}$
$\overline{AC} \cong \overline{BC}$ (4)	Construction
Point P is on the right bisector of \overline{AB}	

Theorem #3: The right bisectors of the sides of a triangle are concurrent.

Given : $\triangle ABC$

To Prove : The right bisectors of \overline{AB} , \overline{BC} and \overline{CA} are concurrent. **Construction** : Draw the right bisectors of \overline{AB} and \overline{BC} which meet each other at point O. Join O to A,B and C.

Proof

Statements	Re <i>asons</i>
$\overline{OA} \cong \overline{OB}$ (1)	Any Point on the right bisector of a line segment is equidistant from its end points
$\overline{OB} \cong \overline{OC}$ (2)	Same as (1) .
$\overline{OA} \cong \overline{OC}$ (3)	From (1) and (2)
\therefore Point O is on the right bisector on \overline{CA} (4)	
But point O is also on the right bisector	
of \overline{AB} and \overline{BC} (5)	Construction
<i>Hence</i> the right bisectors \overline{AB} , \overline{BC} and \overline{CA} are concurrent	From (4) and (5)

Merging man and math Theorem #4: Any point on the bisector of an angle is equidistant from its arms.

Given : A point P is on \overrightarrow{OM} , the bisector of $\angle AOB$	A
To Prove: $\overline{PQ} \cong \overline{PR}$ Bahadar Ali	Khan /
<i>Construction</i> : Draw $\overrightarrow{PR} \perp \overrightarrow{OA}$ and $\overrightarrow{PQ} \perp \overrightarrow{OB}$	R M
	2 13
Proof	O Q B

Proof

Statements	Re <i>asons</i>
$\Delta POQ \leftrightarrow \Delta POR$	
$\overline{OP} \cong \overline{OP}$	Common
$\angle 1 \cong \angle 2$	Given
$\angle 3 \cong \angle 4$	Construction
$\Delta POQ \cong \Delta POR$	S.A.A Postulate
$\overline{PQ} \cong \overline{PR}$	Corresponding sides of congruent triangles

Available at https://www.mathcity.org For Home Tuition Contact at 0305-8069878

Theorem #5: Any point inside and angle, equidistant from its arms, is on the bisector of it.

Given : A point P lies inside $\angle AOB$ such that $\overline{PQ} \cong \overline{PR}$, where $\overline{PR} \perp \overrightarrow{OA}$ and $\overline{PQ} \perp \overrightarrow{OB}$ *To* Pr*ove* : Point P is on the bisector of $\angle AOB$ *Construction* : Join P to O

Proof

Statements	Re <i>asons</i>
$\Delta POQ \leftrightarrow \Delta POR$	
$\angle 3 \cong \angle 4 = 90^{\circ}$	Given
$\overline{PO} \cong \overline{PO}$	Common
$\overline{PQ} \cong \overline{PR}$	Given
$\Delta POQ \cong \Delta POR$	H.S≅H.S
$\angle 1 \cong \angle 2$	Corresponding angles of congruent triangles
Hence point P is on the bisector of $\angle AOB$	an and math

by

Theorem #6: The bisectors of angles of a triangle are concurrent.

Given : $\triangle ABC$ *To* Pr*ove* : The bisectors of $\angle A$, $\angle B$ and $\angle C$ are concurrent. *Construction* : Draw the bisectors of $\angle A$ and $\angle C$ which intersect at I. From I, Draw $\overline{IF} \perp \overline{AB}, \overline{ID} \perp \overline{BC}$ and $\overline{IE} \perp \overline{CA}$

Proof

Statements	Re <i>asons</i>
$\overline{ID} \cong \overline{IF}$	(any point on bisector of an angle is
$\overline{ID} \cong \overline{IE}$	equidistant from its arms)
$\overline{IE} \cong \overline{IF}$	Pr oved
So, the point I is on the bisector of $\angle A$ (1)	
Also, the point I is on the bisector of $\angle B$ and $\angle C$ (2)	Construction
bisectors of $\angle A$, $\angle B$ and $\angle C$ are concurrent	From (1) and (2)

Available at <u>https://www.mathcity.org</u> For Home Tuition Contact at 0305-8069878