

THEOREMS CH\#12

9th class Math Science (English medium)

by
Bahadar Ali Khan

Prepared by: BAHADAR ALI KHAN
Civil Engineer from University of Engineering \& Technology Lahore (Narowal Campus)

Theorem \#1: Any Point on the right bisector of a line segment is equidistant from its end points.

Given: $\widehat{\boldsymbol{L M}}$ intersects $\overline{\boldsymbol{A B}}$ at point C such that $\widetilde{\boldsymbol{L M}} \perp \overrightarrow{\boldsymbol{A B}}$ and $\overline{\boldsymbol{A C}} \cong \overline{\boldsymbol{B C}}$. Point P is on $\overleftrightarrow{\boldsymbol{L M}}$

To Prove: $\overline{\boldsymbol{P A}} \cong \overline{\boldsymbol{P B}}$
Construction: Join P to A and B.

Proof

Statements	Reasons
$\Delta A C P \leftrightarrow \Delta B C P$	
$\overline{A C} \cong \overline{B C}$	Given
$\angle 1 \cong \angle 2=90^{\circ}$	$\overleftrightarrow{P C} \perp \overline{A B}$
$\overline{P C} \cong \overline{P C}$	Common
$\Delta A C P \cong \triangle B C P$	S.A.S Postulate
$\overline{P A} \cong \overline{P B}$	Corresponding sides of congruent triangles

Theorem \#2: Any Point equidistant from the end points of a line segment is on the right bisector of it.

Given : $\overline{\boldsymbol{A B}}$ is a line segment. Point P is such that $\boldsymbol{P} \boldsymbol{P} \cong \overline{\boldsymbol{P B}}$ To Prove : Point P is on the right bisector of $\overline{\boldsymbol{A B}}\left\|^{*} \mathrm{~A}\right\| \mathrm{Khan}$ Construction: Join P with C , that is mid-point of $\overline{\boldsymbol{A B}}$

Proof

Statements	Reasons
$\begin{align*} & \Delta A C P \leftrightarrow \triangle B C P \\ & \overline{P A} \cong \overline{P B} \\ & \overline{P C} \cong \overline{P C} \\ & \overline{A C} \cong \overline{B C} \\ & \Delta A C P \cong \triangle B C P \\ & \angle 1 \cong \angle 2 \ldots \ldots \ldots \ldots . .(1) \\ & \angle 1+\angle 2=180 \ldots \ldots \ldots .(\text { (2) } \\ & \angle 1=\angle 2=90^{\circ} \\ & \overline{P C} \perp \overline{A B} . \ldots \ldots . . \text { (3) } \tag{3}\\ & \overline{A C} \cong \overline{B C} \ldots \text { (4) } \tag{4} \end{align*}$ Point P is on the right bisector of $\overline{\boldsymbol{A B}}$	Given Common Construction S.S.S Postulate Corresponding angles of congruent triangles Supplementary angles From (1) and (2) $\angle 1=\angle 2=90^{\circ}$ Construction

Theorem \#3: The right bisectors of the sides of a triangle are concurrent.
Given : $\triangle A B C$
To Prove : The right bisectors of $\overline{\boldsymbol{A B}}, \overline{\boldsymbol{B C}}$ and $\overline{\boldsymbol{C A}}$ are concurrent.
Construction: Draw the right bisectors of $\overline{\boldsymbol{A B}}$ and $\overline{\boldsymbol{B C}}$ which meet each other at point O . Join O to A, B and C .

Proof

Statements	Reasons
$\begin{equation*} \overline{O A} \cong \overline{O B} \tag{1} \end{equation*}$ $\begin{align*} & \overline{O B} \cong \overline{O C} . \tag{2}\\ & \overline{O A} \cong \overline{O C} . \tag{3} \end{align*}$ \therefore Point O is on the right bisector on $\overline{C A}$ But point O is also on the right bisector of $\overline{A B}$ and $\overline{B C}$ Hence the right bisectors $\overline{A B}, \overline{B C}$ and $\overline{C A}$ are concurrent	Any Point on the right bisector of a line segment is equidistant from its end points Same as (1) . From (1) and (2) Construction From (4) and (5)

Mergina man and math

Theorem \#4: Any point on the bisector of an angle is equidistant from its arms.

Given: A point P is on $\overrightarrow{\boldsymbol{O M}}$, the bisector of $\angle \boldsymbol{A} \boldsymbol{O} \boldsymbol{B}$
To Pr ove: $\overline{\boldsymbol{P Q}} \cong \overline{\boldsymbol{P R}}$
Construction : Draw $\overline{\boldsymbol{P R}} \perp \overrightarrow{\boldsymbol{O A}}$ and $\overrightarrow{\boldsymbol{P Q}} \perp \overrightarrow{\boldsymbol{O B}}$

Proof

Statements	Reasons
$\triangle P O Q \leftrightarrow \triangle P O R$	
$\overline{O P} \cong \overline{O P}$	Common
$\angle 1 \cong \angle 2$	Given
$\angle 3 \cong \angle 4$	Construction
$\triangle P O Q \cong \triangle P O R$	S.A.A Postulate
$\overline{P Q} \cong \overline{P R}$	Corresponding sides of congruent triangles

Theorem \#5: Any point inside and angle, equidistant from its arms, is on the bisector of it.
Given: A point P lies inside $\angle A O B$ such that $\overline{\boldsymbol{P Q}} \cong \overline{\boldsymbol{P R}}$, where $\overline{\boldsymbol{P R}} \perp \overrightarrow{\boldsymbol{O A}}$ and $\overline{\boldsymbol{P Q}} \perp \overrightarrow{\boldsymbol{O B}}$ To Prove: Point P is on the bisector of $\angle A O B$

Construction : Join P to O

Proof

Statements	Reasons
$\triangle P O Q \leftrightarrow \triangle P O R$	
$\angle 3 \cong \angle 4=90^{\circ}$	Given
$\overline{P O} \cong \overline{P O}$	Common
$\overline{P Q} \cong \overline{P R}$	Given
$\Delta P O Q \cong \triangle P O R$	$\mathrm{H} . \mathrm{S} \cong \mathrm{H} . \mathrm{S}$
$\angle 1 \cong \angle 2$	Corresponding angles of congruent triangles
Hence point P is on the bisector of $\angle A O B G$ man and math	

by

Theorem \#6: The bisectors of angles of a triangle are concurrent.
Given: $\triangle A B C$
To Prove: The bisectors of $\angle \boldsymbol{A}, \angle \boldsymbol{B}$ and $\angle \boldsymbol{C}$ are concurrent.
Construction: Draw the bisectors of $\angle \boldsymbol{A}$ and $\angle C$ which intersect at I. From I, Draw $\overline{\boldsymbol{I F}} \perp \overline{\boldsymbol{A B}}, \overline{\boldsymbol{I D}} \perp \overline{\boldsymbol{B C}}$ and $\overline{\boldsymbol{I E}} \perp \overline{\boldsymbol{C A}}$

Proof

Statements	Reasons
$\overline{I D} \cong \overline{I F}$	(any point on bisector of an angle is
$\overline{I D} \cong \overline{I E}$	equidistant from its arms)
$\overline{I E} \cong \overline{I F}$	Proved
So, the point I is on the bisector of $\angle A \ldots(1)$	
Also, the point I is on the bisector of $\angle B$ and $\angle C \ldots(2)$	Construction
bisectors of $\angle A, \angle B$ and $\angle C$ are concurrent	From (1) and (2)

