Mallcity.org

Merging man and maths
 \title{
Exercise 2.8 (Solutions)
 \title{
Exercise 2.8 (Solutions) Mathematics (Science Group): $\mathbf{1 0}^{\text {th }}$
} Mathematics (Science Group): $\mathbf{1 0}^{\text {th }}$
}

Written by Amir Shehzad, Version: 1.0
Q. 1 The product of two positive consecutive numbers is 182 . Find the numbers.

Solution:

Suppose first positive number=x
Second positive number=x+1
According to given condition:

$$
\begin{aligned}
& x(x+1)=182 \\
& x^{2}+x-182=0 \\
& x^{2}+14 x-13 x-182=0 \\
& x(x+14)-13(x+14)=0 \\
& (x+14)(x-13)=0 \\
& x+14=0 \quad \text { or } \quad x-13=0 \\
& x=-14 \quad \text { or } \quad x=-13
\end{aligned}
$$

As x is positive number therefore we neglect the negative value, So $x=13$

Then first positive number=x=13
Second positive number=x+1

$$
=13+1=14
$$

So, 13 and 14 are two required consecutive positive numbers.
Q. 2 the sum of the square of three positive consecutive numbersis77. Find them.

Solution:

Let $x,(x+1)$ and $(x+2)$ be the three consecutive positive number

According to given condition:

$$
\begin{aligned}
& x^{2}+(x+1)^{2}+(x+2)^{2}=77 \\
& x^{2}+\left[x^{2}+(1)^{2}+2(1)(x)\right]+\left[(x)^{2}+(2)^{2}+2(x)(2)\right]=77 \\
& x^{2}+x^{2}+1+2 x+x^{2}+4+4 x=77 \\
& 3 x^{2}+6 x+5-77=0 \\
& 3 x^{2}+6 x-72=0 \\
& 3\left[x^{2}+2 x-24\right]=0 \\
& x^{2}+2 x-24=0 \quad \because 3 \neq 0 \\
& x^{2}+6 x-4 x-24=0 \\
& x(x+6)-4(x+6)=0 \\
& (x+6)(x-4)=0 \\
& x+6=0 \quad \text { or } \quad x-4=0 \\
& x=-6 \quad \text { or } \quad x=4
\end{aligned}
$$

As x is a positive number therefore we neglect the negative value and we take positive value of x like $x=4$

First positive number $=x=4$
Second positive number $=x+1=4+1=5$
Third positive number $=x+2=4+2=6$
So, 4, 5 and 6 are three required positive numbers.
Q. 3 The sum of five times a number and the square of the number is 204 . Find the number.

Solution: Let required number $=x$
Five times the number=5x
Square of number $=x^{2}$
According to given condition:

$$
x^{2}+5 x=204 \Rightarrow x^{2}+5 x-204=0
$$

$$
\begin{aligned}
& x^{2}+17 x-12 x-204=0 \\
& x(x+17)-12(x+17)=0 \\
& (x+17)(x-12)=0 \\
& x+17=0 \quad \text { or } x-12=0 \\
& x=-17 \quad \text { or } x=12
\end{aligned}
$$

So, required number is -17 and 12 .
Q. 4 The product of five less than three times a certain number and one less than four times the number is 7 . Find the number.

Solution: Let required number=x
Five less than three times the number=3x-5
One less than four times the number=4x-1
According to given condition:

$$
\begin{aligned}
& (3 x-5)(4 x-1)=7 \\
& 12 x^{2}-3 x-20 x+5-7=0 \\
& 12 x^{2}-23 x-2=0 \\
& 12 x^{2}-24 x+x-2=0 \\
& 12 x(x-2)+1(x-2)=0 \\
& (x-2)(12 x+1)=0 \\
& x-2=0 \quad \text { or } 12 x+1=0 \\
& x=2 \quad \text { or } 12 x=-1 \\
& x=\frac{-1}{12}
\end{aligned}
$$

So, required number is 2 or $\frac{-1}{12}$
Q. 5 The difference of a number and its reciprocal is $\frac{15}{4}$. Find the number.

Solution: Let required number=x
Reciprocal of the number $=\frac{1}{x}$

According to given condition:

$$
\begin{aligned}
& x-\frac{1}{x}=\frac{15}{4} \\
& \frac{x^{2}-1}{x}=\frac{15}{4} \\
& 4\left(x^{2}-1\right)=15 x \\
& 4 x^{2}-4-15 x=0 \\
& 4 x^{2}-15 x-4=0 \\
& 4 x^{2}-16 x+1 x-4=0 \\
& 4 x(x-4)+1(x-4)=0 \\
& (x-4)(4 x+1)=0 \\
& x-4=0 \quad \text { or } 4 x+1=0 \\
& x=4 \quad \text { or } 4 x=-1 \\
& x=4 \quad \text { or } \quad x=\frac{-1}{4}
\end{aligned}
$$

So, required number is 4 or $\frac{-1}{4}$
Q. 6 The sum of squares of two digits of a positive integral number is 65 and the number is 9 times the sum of its digits. Find the number.

Solution: Let
Digits at unit's place of a number $=x$
Digits at ten's place of a number=y
Required number $=10 y+x$
According to first condition:

$$
\begin{equation*}
x^{2}+y^{2}=65 \tag{i}
\end{equation*}
$$

According to second condition:

$$
\begin{align*}
& 10 y+x=9(x+y) \\
& 10 y+x=9 x+9 y \\
& 10 y-9 y=9 x-x \\
& y=8 x \tag{ii}
\end{align*}
$$

Put value of y in eq. (i)

$$
\begin{aligned}
& x^{2}+(8 x)^{2}=65 \\
& x^{2}+64 x^{2}=65 \\
& 65 x^{2}=65 \\
& x^{2}=1 \\
& \sqrt{x^{2}}= \pm \sqrt{1} \\
& x= \pm 1 \\
& x=1 \quad \text { or } \quad x=-1
\end{aligned}
$$

As x is a digit at unit's place which is always positive therefore we neglect the negative value and take the positive value like $\mathrm{x}=1$ Put $x=1$ in eq. (i)

$$
\begin{aligned}
& y=8(1) \\
& y=8
\end{aligned}
$$

So, required number $=10 y+x$

$$
\begin{aligned}
& =10(8)+1 \\
& =80+1=80
\end{aligned}
$$

Q. 7 The sum of the co-ordinates of a point is 9 and sum of their squares is 45 . Find the coordinates of the point.

Solution: Let (x, y) are co-ordinates of required point.

According to given condition:

$$
\begin{align*}
& x+y=9 \tag{i}\\
& x^{2}+y^{2}=45 \tag{ii}
\end{align*}
$$

From equation (i)

$$
\begin{align*}
& x+y=9 \\
& x=9-y \tag{iii}
\end{align*}
$$

Putting this in eq. (ii), we get

$$
\begin{aligned}
& (9-y)^{2}+y^{2}=45 \\
& (9)^{2}-2(9)(y)+(y)^{2}+(y)^{2}=45 \\
& 81-18 y+y^{2}+y^{2}=45
\end{aligned}
$$

$$
\begin{aligned}
& 2 y^{2}-18 y+81-45=0 \\
& 2 y^{2}-18 y+36=0 \\
& 2\left(y^{2}-9 y+8\right)=0 \\
& \therefore y^{2}-9 y^{2}+18=0 \quad \because 2 \neq 0 \\
& y^{2}-6 y-3 y+18=0 \\
& y(y-6)-3(y-6)=0 \\
& (y-6)(y-3)=0 \\
& y-6=0 \quad \text { or } \quad y-3=0 \\
& y=6 \quad \text { or } \quad y=3
\end{aligned}
$$

Putting values of y in eq. (iii)

$$
\begin{array}{lll}
y=6 & \text { or } & y=3 \\
x=9-6 & \text { or } & x=9-6 \\
x=3 & \text { or } & x=6
\end{array}
$$

The co-ordinates of the point are either $(3,6)$ or $(6,3)$.
Q. 8 Find two integers whose sum is 9 and the difference of their squares is also 9 .

Solution: Suppose x and y are two integers
According to given condition:

$$
\begin{align*}
& x+y=9 \tag{i}\\
& x^{2}-y^{2}=9 \tag{ii}
\end{align*}
$$

From eq. (i)

$$
\begin{align*}
& x+y=9 \\
& x=9-y \tag{iii}
\end{align*}
$$

Putting value of x in eq. (ii)

$$
\begin{aligned}
& (9-y)^{2}-y^{2}=9 \\
& (9)^{2}+(y)^{2}-2(9)(y)-y^{2}=0 \\
& 81+y^{2}-18 y-y^{2}-9=0 \\
& 72-18 y=0 \\
& -18 y=-72
\end{aligned}
$$

$$
y=\frac{-72}{-18} \Rightarrow y=4
$$

Putting the value of y in eq. (iii)

$$
\begin{aligned}
& x=9-y \\
& x=9-4 \Rightarrow x=5
\end{aligned}
$$

So, 4 and 5 are required integers.
Q. 9 Find two integers whose difference is 4 and whose squares differ by 72 .

Solution: Let x and y are two integers
According to given condition:

$$
\begin{align*}
& x-y=4 \tag{i}\\
& x^{2}-y^{2}=72 \tag{ii}
\end{align*}
$$

From eq. (i)

$$
\begin{equation*}
x=4+y \tag{iii}
\end{equation*}
$$

Putting the value of x in eq. (ii)

$$
\begin{aligned}
& (4+y)^{2}-y^{2}=72 \\
& {\left[(4)^{2}+(y)^{2}+2(4)(y)\right]-y^{2}=72}
\end{aligned}
$$

$$
16+y^{2}+8 y-y^{2}=72
$$

$$
16+8 y=72
$$

$$
8 y=72-16
$$

$$
8 y=56
$$

$$
y=\frac{56}{8} \Rightarrow y=7
$$

Putting the value of y in eq. (iii)

$$
\begin{aligned}
& x=4+y \\
& x=4+7 \quad \Rightarrow \quad x=11
\end{aligned}
$$

So, required integers are 7 and 11.
Q. 10 Find the dimensions of a rectangle, whose perimeter is 80 cm and its area is $375 \mathrm{~cm}^{2}$

Solution:

Let width of a rectangle=x cm
Length of rectangle $=y \mathrm{~cm}$
Perimeter of rectangle $=80 \mathrm{~cm}$
Area of rectangle $=375 \mathrm{~cm}^{2}$
$\because \quad 2(L+W)=P$
$2(x+y)=80$
$x+y=\frac{80}{2}$
$x+y=40$
Area=Length \times Width

$$
375=x \times y
$$

$$
\begin{equation*}
x y=375 \tag{ii}
\end{equation*}
$$

From eq. (i)

$$
\begin{aligned}
& x+y=40 \\
& x=40-x
\end{aligned}
$$

Put it in eq. (ii)

$$
\begin{aligned}
& x(40-x)=375 \\
& 40 x-x^{2}=375 \\
& 0=x^{2}-40 x+375 \\
& x^{2}-40 x+375=0 \\
& x^{2}-25 x-15 x+375=0 \\
& x(x-25)-15(x-25)=0 \\
& (x-15)(x-25)=0 \\
& x-15=0 \quad \text { or } \quad x-25=0 \\
& x=15 \quad \text { or } \quad x=25
\end{aligned}
$$

Putting the value of x in eq. (i)

$$
\begin{array}{lll}
x=15 & \text { or } & x=25 \\
15+y=40 & \text { or } & 25+y=40 \\
y=40-15 & \text { or } & y=40-25 \\
y=25 & \text { or } y=15
\end{array}
$$

If $x=15$ then $y=25$ and $x=25$ then $y=15$
So, dimensions of rectangle are either 25 cm by 15 cm or 15 cm by 25 cm .

Amir
S

For updates and news visit http://www.mathcity.org these notes are written by Amir shehzad http://www.mathcity.org/people/amir

