MathCity.org

Exercise 2.5 (Solutions) Mathematics (Science Group): $\mathbf{1 0}^{\text {th }}$

Merging man and maths

Written by Amir Shehzad, Version: 1.0

Q. 1 Write the quadratic equation having following roots.
(a) 1,5

Solution: Since 1 and 5 are the roots of the required quadratic equation, therefore

Sum of roots $=S=1+5=6$
Product of roots $=P=1 \times 5=5$
As $x^{2}-S x+P=0$ so the required equation is $x^{2}-6 x+5=0$
(b) 4,9

Solution: Since 4 and 9 are the roots of the required quadratic equation, therefore

Sum of roots $=S=4+9=13$
Product of roots $=P=4 \times 9=36$
As $x^{2}-S x+P=0$ so the required equation is $x^{2}-13 x+36=0$
(c) $-2,3$

Solution: Since -2 and 3 are the roots of the required quadratic equation, therefore

Sum of roots $=S=-2+3=1$
Product of roots $=P=-2 \times 3=-6$
As $x^{2}-S x+P=0$ so the required equation is $x^{2}-x+6=0$
(d) 0, -3

Solution: Since 0 and -3 are the roots of the required quadratic equation, therefore

Sum of roots $=S=0+(-3)=-3$
Product of roots $=P=0 \times-3=0$
As $x^{2}-S x+P=0$ so the required equation is
$x^{2}-(-3) x+0=0 \quad \Rightarrow x^{2}+3 x=0$
(e) 2, -6

Solution: Since 2 and -6 are the roots of the required quadratic equation, therefore

Sum of roots $=S=2+(-6)=2-6=-4$
Product of roots $=P=2 \times-6=-12$
As $x^{2}-S x+P=0$ so the required equation is
$x^{2}-(-4) x+(-12)=0 \Rightarrow x^{2}+4 x-12=0$
(f) $-1,-7$

Solution: Since -1 and -7 are the roots of the required quadratic equation, therefore

Sum of roots=S=(-1)+(-7) $=-1-7=-8$
Product of roots $=P=(-1) \times(-7)=7$
As $x^{2}-S x+P=0$ so the required equation is $x^{2}-(-8) x+7=0 \Rightarrow x^{2}+8 x+7=0$
(g) $1+i, 1-i$

Solution: Since $1+i$ and $1-i$ are the roots of the required quadratic equation, therefore

Sum of roots=S $=1+i+1-i=2$

Product of roots $=\mathrm{P}=(1+i) \times(1-i)$

$$
P=(1)^{2}-(i)^{2}=1-(-1)
$$

$$
=1+1=2
$$

As $x^{2}-S x+P=0$ so the required equation is $x^{2}-2 x+2=0$
(h) $3+\sqrt{2}, 3-\sqrt{2}$

Solution: Since $3+\sqrt{2}$ and $3-\sqrt{2}$ are the roots of the required quadratic equation, therefore

Sum of roots $=S=3+\sqrt{2}+3-\sqrt{2}=6$
Product of roots $=P=(3+\sqrt{2}) \times(3-\sqrt{2})$

$$
\begin{aligned}
P & =(3+\sqrt{2})(3-\sqrt{2}) \\
& =(3)^{2}-(\sqrt{2})^{2}=9-2=7
\end{aligned}
$$

As $x^{2}-S x+P=0$ so the required equation is $x^{2}-6 x+7=0$
Q. 2 If α, β are the roots of the equation
$x^{2}-3 x+6=0$. From equation whose roots are:

Solution: As α, β are the roots of the equation

$$
\begin{aligned}
& x^{2}-3 x+6=0 . \\
& a=1, b=-3, c=6
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\alpha+\beta & =\frac{-b}{\mathrm{a}}=\frac{-(-3)}{1} \\
& =3 \Rightarrow \alpha+\beta=3 \\
\alpha \beta & =\frac{\mathrm{c}}{\mathrm{a}}=\frac{6}{1}=6 \Rightarrow \alpha \beta=6
\end{aligned}
$$

(a) $2 \alpha+1,2 \beta+1$

Solution: Sum of roots

$$
\begin{aligned}
& \mathrm{S}=2 \alpha+1,2 \beta+1 \\
& \mathrm{~S}=2 \alpha+2 \beta+2
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{S}=2(\alpha+\beta)+2 \\
& \mathrm{~S}=2(3)+2=6+2=8 \Rightarrow \mathrm{~S}=8
\end{aligned}
$$

Product of roots

$$
\begin{aligned}
& \mathrm{P}=(2 \alpha+1)(2 \beta+1) \\
& \mathrm{P}=4 \alpha \beta+2 \alpha+2 \beta+1 \\
& \mathrm{P}=4 \alpha \beta+2(\alpha+\beta)+1 \\
& \mathrm{P}=4(6)+2(3)+1 \\
& \mathrm{P}=24+6+1=31 \\
& \mathrm{P}=31
\end{aligned}
$$

Using $x^{2}-S x+P=0$, we have

$$
x^{2}-8 x+31=0
$$

(b) α^{2}, β^{2}

Solution: Sum of roots $=\mathrm{S}=\alpha^{2}, \beta^{2}$

$$
\begin{aligned}
& \mathrm{S}=(\alpha+\beta)^{2}-2 \alpha \beta \\
& \mathrm{~S}=(3)^{2}-2(6)=9-12 \\
& \mathrm{~S}=-3 \Rightarrow \mathrm{~S}=-3
\end{aligned}
$$

Product of roots

$$
\begin{aligned}
& \mathrm{P}=\alpha^{2}, \beta^{2}=(\alpha \beta)^{2} \\
& \mathrm{P}=(6)^{2}=36 \Rightarrow \mathrm{P}=36
\end{aligned}
$$

Using $x^{2}-S x+P=0$, we have

$$
\begin{aligned}
& x^{2}-(-3) x+36=0 \\
& x^{2}+3 x+36=0
\end{aligned}
$$

(c) $\frac{1}{\alpha}, \frac{1}{\beta}$

Solution : Sum of roots $=\mathrm{S}=\frac{1}{\alpha}, \frac{1}{\beta}=\frac{\beta+\alpha}{\alpha \beta}$

$$
\mathrm{S}=(\alpha+\beta) \cdot \frac{1}{\alpha \beta}
$$

$$
\mathrm{S}=3 \times \frac{1}{6}=\frac{3}{6}=\frac{1}{2} \Rightarrow \mathrm{~S}=\frac{1}{2}
$$

Product of roots

$$
\begin{aligned}
& \mathrm{P}=\left(\frac{1}{\alpha}\right)\left(\frac{1}{\beta}\right)=\frac{1}{\alpha \beta} \\
& \mathrm{P}=\frac{1}{6} \Rightarrow \mathrm{P}=\frac{1}{6}
\end{aligned}
$$

Using $x^{2}-S x+P=0$, we have
$x^{2}-\frac{1}{2} x+\frac{1}{6}=0$
Multiplying by '6' on both sides
$6 x^{2}-3 x+1=0$
(d) $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$

Solution : Sum of roots $=\mathrm{S}=\frac{\alpha}{\beta}, \frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\beta \alpha}$

$$
\begin{aligned}
& \mathrm{S}=. \frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}=\frac{(3)^{2}-2(6)}{6} \\
& \mathrm{~S}=\frac{9-12}{6}=\frac{-3}{6} \Rightarrow \mathrm{~S}=\frac{-1}{2}
\end{aligned}
$$

Product of roots

$$
\begin{aligned}
& \mathrm{P}=\left(\frac{\alpha}{\beta}\right)\left(\frac{\beta}{\alpha}\right)=\frac{\alpha \beta}{\beta \alpha} \\
& \mathrm{P}=\frac{6}{6} \Rightarrow \mathrm{P}=1
\end{aligned}
$$

Using $x^{2}-S x+P=0$, we have
$x^{2}+\frac{1}{2} x+1=0$
Multiplying by '2'on both sides
$2 x^{2}+x+2=0$
(e) $\alpha+\beta, \frac{1}{\alpha}+\frac{1}{\beta}$

Solution : Sum of roots $=\mathbf{S}=(\alpha+\beta)+\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)$

$$
\begin{aligned}
& \mathrm{S}=(\alpha+\beta) \frac{\beta+\alpha}{\alpha \beta}=(\alpha+\beta)+\frac{(\alpha+\beta)}{\alpha \beta} \\
& \mathrm{S}=3+\frac{3}{6}=3+\frac{1}{2}=\frac{6+1}{2} \Rightarrow \mathrm{~S}=\frac{7}{2}
\end{aligned}
$$

Product of roots

$$
\begin{aligned}
& \mathrm{P}=(\alpha+\beta)\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)=(\alpha+\beta)\left(\frac{\beta+\alpha}{\beta \alpha}\right) \\
& \mathrm{P}=(\alpha+\beta)\left(\frac{\alpha+\beta}{\beta \alpha}\right)=3\left(\frac{3}{6}\right) \Rightarrow \mathrm{P}=\frac{3}{2}
\end{aligned}
$$

Using $x^{2}-S x+P=0$, we have
$x^{2}+\frac{7}{2} x+\frac{3}{2}=0$
Multiplying by ' 2 ' on both sides
$2 x^{2}-7 x+3=0$
Q. 3 If α, β are the roots of the equation $x^{2}+p x+q=0$. From equation whose roots are

Solution: Since α, β are the roots of the equation $x^{2}+p x+q=0$.

$$
a x^{2}+b x+c=0
$$

By compering the coefficients of these equations, we have

$$
a=1, b=p, c=q
$$

$\alpha+\beta=\frac{-b}{a}=\frac{-p}{1}$

$$
=-p \Rightarrow \alpha+\beta=-p
$$

$$
\alpha \beta=\frac{c}{a}=\frac{q}{1}=q \Rightarrow \alpha \beta=q
$$

(a) α^{2}, β^{2}

Sum of roots $=\mathrm{S}=\alpha^{2}+\beta^{2}$

$$
=(\alpha+\beta)^{2}-2 \alpha \beta
$$

$$
=(-p)^{2}-2 q \Rightarrow p^{2}-2 q
$$

Product of roots $=\mathrm{P}=\alpha^{2} \beta^{2}=(\alpha \beta)^{2}$

$$
=(q)^{2} \Rightarrow q^{2}
$$

Using $x^{2}-S x+P=0$, we have
$x^{2}-\left(p^{2}-2 q\right) x+q^{2}=0$.
(b)
$\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$
Sum of roots $=\mathrm{S}=\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}$

$$
\begin{aligned}
& =\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}=\frac{(-p)^{2}-2 q}{q} \\
& =\frac{p^{2}-2 q}{q} \Rightarrow \frac{p^{2}-2 q}{q}
\end{aligned}
$$

Product of roots $=\mathrm{P}=\left(\frac{\alpha}{\beta}\right)\left(\frac{\beta}{\alpha}\right)=\left(\frac{\alpha \beta}{\beta \alpha}\right)$

$$
=\left(\frac{q}{q}\right)=1 \Rightarrow 1
$$

Using $x^{2}-S x+P=0$, we have
$x^{2}-\left(\frac{p^{2}-2 q}{q}\right) x+1=0$
Multiplying by q
$q x^{2}-\left(p^{2}-2 q\right) x+q=0$

For updates and news visit http://www.mathcity.org

