MCQs: All Chapters

Mathematics (Science Group): 10th Written by Amir Shahzad, Version: 1.0

Merging man and maths

MathCity.org

Chapter No 1

Q. 1 Multiple Choice Questions

Four possible answers are given for the following questions. Tick (\checkmark) the correct answer.

- 1. Standard form of quadratic equation is:
 - (a) Bx+c= 0, b≠0
 - (b) ax²+bx+c=0, a≠0
 - (c) $ax^2=bx, a\neq 0$
 - (d) ax²=0, a≠0
- 2. The number of terms in a standard quadratic equation ax²+bx+c= 0 is:
 (a) 1
 (b) 2
 - (c) 3 (d) 4
- 3. The number of methods to solve a quadratic equation is:
 - (a) 1 (b) 2
 - (c) 3 (d) 4
- 4. The quadratic formula is:
 - (a) $\frac{-b \pm \sqrt{b^2 4ac}}{2a}$ (b) $\frac{b \pm \sqrt{b^2 4ac}}{2a}$
(c) $\frac{-b \pm \sqrt{b^2 + 4ac}}{2a}$ (d) $\frac{b \pm \sqrt{b^2 + 4ac}}{2a}$
- 5. Two linear factors of $x^2 15x+56$ are: (a) (x-7) and (x+8)
 - (b) (x+7) and (x 8)
 - (c) (x-7) and (x-8)
 - (d) (x+7) and (x+8)
- 6. An equation, which remains unchanged when x is replaced by $\underline{1}$ is

called a/an:

(a) Exponential equation

- (b) Reciprocal equation
- (c) Radical equation
- (d) None of these
- 7. An equation of the type $3^x + 3^{2-x} + 6 = 0$ is a/an:
 - (a) Exponential equation
 - (b) Reciprocal equation
 - (c) Radical equation
 - (d) None of these
- 8. The solution set of equation $4x^2 16=0$ is: (a) $\{\pm 4\}$ (b) $\{4\}$
 - (c) $\{\pm 2\}$ (d) ± 2
- 9. An equation of the form $2x^4-3x^3+7x^2-3x+2=0$ is called a/an
 - (a) Reciprocal equation
 - (b) Radical equation
 - (c) Exponential equation
 - (d) None of these
- 10. The solution set of $25x^2 1 = 0$ is

(a)
$$\left\{\pm\frac{1}{5}\right\}$$
 (b) $\left\{-\frac{1}{5}\right\}$

(c) $\left\{+\frac{1}{5}\right\}$ (d) None of these

11. An equation of the form $2^{2x} - 3.2^{x}+5= 0$ is called a /an ____ equation.

- (a) Exponential (b) Radical
- (c) Reciprocal (d) None of these
- 12. The solution set of the equation x²-9=0 is:
 - (a) $\{\pm 3\}$ (b) $\{3\}$

	(c)	{-3}	(d)	{9}		21.	If b=0 in a quadratic equation
13.		equation of typ		³ +x ² +x+1=0 is			ax ² +bx+c=0, then it is called:
calle		Inequation		Deciprocal			(a) Pure quadratic equation
	(a)	Radical	(b)	Reciprocal			(b) Linear equation
	(c)	Exponential	(d)	None of these			(c) Quadratic equation
14.	Solv	e the equation	5 ^{1+x} -	+ $5^{1-x} = 26$			(d) Exponential equation
	(a)	{1}	(b)	{±1}		22. two	Sentences involving the sign Between algebraic expressions are called equations.
	(c)	{2}	(d)	{±2}			(a) < (b) ≥
15.	The	solution set of	equat	tion 2+9x=5x ² is:			(c) = (d) < or >
	(a)	$\left\{\frac{-1}{5},2\right\}$	(b)	$\left\{\frac{+1}{5},2\right\}$		23.	The standard form of the quadratic equation is ax ² +bx +c=0 where a, b, c are.
	(c)	$\left\{\frac{1}{5}, -2\right\}$	(d)	$\left\{\frac{-1}{5}, -2\right\}$	15	(a) (c)	Irrational numbers (b) Rational numbers Real numbers (d) Whole numbers
16.	The	solution set of	equat	tion 5x ² =30x is:	2.	24.	If a=0, in ax ² +bx+c=0, then it reduces to:
			•		ıar	(a)	Pure quadratic equation (b)Linear equation
	(a)	{5, 30}	(b)	{0, 6}		(c)Q	uadratic equations (d)Exponential equation
	(c)	{0, -6}	(d)	{5, 0}	by	25.	How many linear factors a quadratic equation has?
17.	The	solution set of	equat	tion $x^2 - x - 2 = 0$ is:	Sh		(a) 1 (b) 2
	(a)	{2, 1}	(b)	{-2,1}			(c) 3 (d) 4
	(c)	{2, -1}	(d)	{-2, -1}		26.	What is the degree of quadratic equation?
18.	The	solution set of	equat	tion x ² –16=0 is:			(a) 1 (b) 2
	(a)	$\{\pm 4\}$	(b)	{+4}			(c) 3 (d) 4
	(c)	{4}	(d)	None of these		27.	The number of roots of a quadratic
19.	The	solution set of	equat	tion x ² – 7x+6=0 is:			equation is:
	(a)	{1, 6}	(b)	{-1, -6}			(a) 1 (b) 2
	(c)	{-1,6}	(d)	{1, -6}			(c) 3 (d) 4
20.	The	solution set of	equat	tion 3x ² + 4x=5 is:		28.	Cancellation of x on both sides of $5x^{2}$
	(a)	$\left\{\frac{-2\pm\sqrt{19}}{3}\right\}$	(b)	$\left\{\frac{2\pm\sqrt{19}}{3}\right\}$		(a)	5x²= 30x means: The loss of one root
		(c) $\left\{\frac{4\pm\sqrt{19}}{3}\right\}$ (d) None of these			(b)	No loss of any root	
	(c)				(c)	Gain of one root	
						(d)	Undefined solution

29. What should be done to make the co-efficient of x^2 equal to 1, in $7x^2+2x-1=0$?

- Multiply the equation by 7 (a)
- (b) Divide the equation by 7
- (c) Add 7 in both sides
- Subtract 7 from both sides (d)

30. What should be done to make the co-efficient of x^2 equal to 1 in $3x^2 + 7x = 0$?

- Multiply the equation by $\frac{1}{3}$ (a)
- (b) Divide the equation by $\frac{1}{3}$
- (c) Add $\frac{1}{3}$ in both sides
- Subtract $\frac{1}{3}$ from both sides (d)

31. The value of variable of an equation not satisfying the equation is called:

- (b) (a) Root Extraneous root
- (c) Exponent (d) Solution set

32. The cancellation of x on both sides of the equation of the type $ax^2=bx$ means the loss of one root. That root is always equal to:

- (a) 0 (b) 1
- (c) A (d) b
- 33. If $y=x^{-1}$ and 3y=5, the value of x is:

(a)	$\frac{5}{3}$	(b)	$\frac{-5}{3}$
(c)	$\frac{-3}{5}$	(d)	$\frac{3}{5}$

- 34. If 2^x=1, then x =
 - (a) 0 (b) 1

(d) (c) 2 none of these

35. If y=2^x and 8y =1, then, x =...

- $\frac{1}{8}$ (b) (a) 8 (c) -3
 - 3 (d)

1. b 2. С 3. 4. 5. С С а 7. 8. 9. 10. 6. b а С а а 12. 15. 11. 13. b 14. а b а а 16. b 17. С 18. 19. 20. а а а 21. 22. С 23. С 24. b 25. b а b 27. 28. 26. b 29. b 30. а а 31. b 32. 33. d 34. 35. d а а

Chapter No 2

Q.1 Multiply Choice Questions.

nan Four possible answers are given for the following questions. Tick (\checkmark) the correct answer.

> 1. If α , β are the roots of $3x^2+5x-2=0$ then $\alpha + \beta$ is:

(a)	$\frac{5}{3}$	(b)	$\frac{3}{5}$
(c)	$\frac{-5}{3}$	(d)	$\frac{-2}{3}$

2. If α , β are the roots of $7x^2 - x + 4 = 0$ then $\alpha\beta$ is:

(a)	$\frac{-1}{7}$	(b)	$\frac{4}{7}$
(c)	$\frac{7}{4}$	(d)	$\frac{-4}{7}$

- 3. Roots of the equation $4x^2-5x+2 = 0$ are: Irrational (b) (a) imaginary
 - (c) Rational (d) none of these
- 4. Cube roots of –1 are:
 - $-1, -\omega, -\omega^2$ (b) $-1, \omega, -\omega^2$ (a)
 - (c) $-1, -\omega, \omega^2$ (d) $1, -\omega, -\omega^2$

 5. Sum of the cube roots of unity is: (a) 0 (b) 1 	 15. The nature of the roots of equation ax²+bx+c = 0 is determined by: (a) Sum of the roots
(c) -1 (d) 3	
6. Product of cube roots of unity is:	(b) Product of the roots
(a) 0 (b) 1 (c) -1 (d) 3	(c) Synthetic division
7. If b^2 -4ac < 0 then the roots of	(d) Discriminant
ax ² +bx+c= 0 are: (a) Irrational (b) rational	16. The discriminant of $ax^2+bx+c=0$ is: (a) b^2-4ac (b) b^2+4ac
(c) Imaginary (d) None of these	(c) $-b^2+4ac$ (d) $-b^2-4ac$
8. If b^2 -4ac > 0, but not a perfect square	17. If $b^2 - 4ac > 0$ and is a perfect square, then
then roots of $ax^2+bx+c=0$ are:	roots of $ax^2 + bx + c = 0$ are:
(a) Imaginary (b) rational	(a) irrational, equal
(c) Irrational (d) None of these	(b) Rational, equal
9. $\frac{1}{\alpha} + \frac{1}{\beta}$ is equal to: (a) $\frac{1}{\alpha}$ (b) $\frac{1}{\alpha} - \frac{1}{\beta}$	(c) Rational, unequal
(1) (1) (1)	(d) Irrational, unequal
(a) $\frac{-}{\alpha}$ (b) $\frac{-}{\alpha} - \frac{-}{\beta}$	18. If $b^2 - 4ac = 0$, then roots of
$\alpha \beta \alpha + \beta$	$ax^{2} + bx + c = 0$ are:
(c) $\frac{\alpha - \beta}{\alpha \beta}$ (d) $\frac{\alpha + \beta}{\alpha \beta}$ 72	(a) irrational, equal
10. $\alpha^2 + \beta^2$ is equal to:	(b) Rational, equal
(a) $\alpha^2 - \beta^2$ (b) $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$ 5	(c) Rational, unequal (d) Irrational, unequal
(c) $(a + \beta)^2 - 2\alpha\beta$ (d) $\alpha + \beta$	19. Disc. of $2x^2 - 7x + 1 = 0$ is: (a) 47 (b) 41
11. Two square roots of unity are:	
(a) 1,−1 (b) 1, <i>ω</i>	(a) 40 (d) 51
(c) 1, $-\omega$ (d) ω, ω^2	20. Disc. of $x^2 - 3x + 3 = 0$ is: (a) 6 (b) 12 (c) 21 (d) -3
12. Roots of the equation $4x^2-4x+1=0$ are:	21. The roots of $x^2 + 8x + 16 = 0$ are:
(a) Real, equal (b) real, unequal	(a) Imaginary (b) equal
(c) Imaginary (d) irrational	(c) Unequal (d) irrational
13. If α , β are the roots of $px^2+qx+r=0$, then	22. If roots of a quadratic equation are
sum of the roots 2α and 2β is:	equal, then disc. is:
(a) $\frac{-q}{p}$ (b) $\frac{r}{p}$ (c) $\frac{-2q}{p}$ (d) $-\frac{q}{2p}$	(a) Positive (b) negative
p p p p $2p$	(c) Zero (d) irrational
14. If α , β are the roots of x ² -x-1=0, then	23. If roots of a quadratic equation are
product of the roots 2α and 2β is:	imaginary, then disc. is:
(a) -2 (b) 2	
(c) 4 (d) -4	(a) Positive (b) negative

(c)	Zero	(d)	irrational	-	atic equation		
	-		equation are rea	(a)	Real, irrati		
and dist (a)	inct then dis Positive	c. is: (b)	negative	(b)	Real, imag		•
(c)	Zero	(d)	imaginary	(c)	Real, irrati	onal, une	equal
			tic equation are	(d)	Complex, r	epeated	, rational
	and distinct	, then	-		ional and eq		equation are real, n possible value of
(b)	Not perfect	square		(a)	0	(b)	36
(c)	Zero			(c)	40	(d)	-49
(d)	Negative						equation are real,
	oots of a q al and distin	-	tic equation are	of c	lisc. is:	-	nen possible value
(a)	Perfect squa	,	li uist. is.	(a)	0	(b)	36
(b)	Not perfect	square		(c)	40	(d)	-25
(c)	Zero			irra	ational and		equation are real, al then possible
(d)	Negative			value o	of disc. is:	(b)	9
	-	_	ation $b^2 - 4ac = 49$	(c)	5	(d)	-7
then root (a)	ts are real and Equal	1: (b)	unequal				tic equation are
(c)	Irrational	(d)	imaginary	imagin	ary, and ue of Disc. is	unequa	-
	r a quadrati	-		(a)	0	• (b)	9
b ² – (a)	4ac = 47 , t l Real	h en ro (b)	ots are: 10302197 rational	(c)	8	(d)	-9
(c)	Irrational	(d)	complex	36. If a	$y = \frac{-1 - \sqrt{-3}}{2}$, then o	$0^2 =$
29. If fo then roo	-	c equa	tion $b^2 - 4ac = 0$	(a)	$\frac{-1\pm\sqrt{3}}{2}$	(b)	$\frac{-1+\sqrt{3}}{2}$
(a)	complex	(b)	irrational		$-1+\sqrt{-3}$		$-1 \pm \sqrt{-3}$
(c)	Repeated	(d)	distinct	(c)	$\frac{-1+\sqrt{-3}}{2}$	(d)	2
							plex cube root of
	r a quadratio	-		(a)	ty, then ω.ω ² 1	 (b)	
ю — (а)	4ac = 205, the complex	ien roo (b)	irrational	(c)	0	(d)	2
(c)	Rational	(d)	equal		=		

(c) 1 (d) 0 (a) (b) -ω ω $-\omega^2$ (d) ω^2 (c) 39. If 1, ω , ω^2 are cube root of unity, then $1+\omega+\omega^2=\ldots$ 48. If ω is complex cube root of unity, then ω^3 $\omega^{-27} = \dots$ (a) 0 (b) (c) 1 (d) -1 1 (a) (b) -1 40. If 1, ω , ω^2 are cube root of unity, then 1 (c) (d) ω^2 ω + ω = (b) 0 ω **49.** $(-1+\sqrt{-3})^3 = \dots$ (a) 1 (b) ω^2 (d) $-\omega^2$ (a) 8 (c) (c) -4 (d) -28 41. If 1, ω , ω^2 are cube root of unity, then 1 $+ \omega^2 = \dots$ 50. Cube roots of 8 are: (a) -ω (b) ω 2, 2 ω , 2 ω^2 (b) -2, -2 ω , -2 ω^2 (a) ω^2 (c) (d) $-\omega^2$ $2, -2\omega, -2\omega^2$ (d) $2, -2\omega, 2\omega^2$ (c) 42. If 1, ω , ω^2 are cube root of unity, then ω 51. Cube roots of -27 are: $+\omega^2 = \dots$ $-3, -3\omega, -3\omega^2$ $3, -3\omega, 3\omega^2$ (b) (a) 1 (b) -1 (a) nan ω^3 (d) $2\omega^2$ (c) $-3,3\omega,3\omega^2$ (d) $3,3\omega,-3\omega^2$ (c) 43. If ω is complex cube root of unity, then 52. Cube root of 64 are: $\omega^7 = \dots$ (a) ω (b) $-\omega$ $-4, -4\omega, -4\omega^{2}$ (b) (a) 4.16ω (d) ω^2 $-\omega^2$ (c) (c) 4, 4ω , $4\omega^2$ (d) $(4)^3$ 44. If ω is complex cube root of unity, then $\omega^{23} = \dots$ 53. $(1-\omega-\omega^2)^5 = \dots$ (a) (b) ω $-\omega$ 6 (a) (b) 16 (c) ω^2 (d) $-\omega^2$ 32 (d) 64 (c) 45. If ω is complex cube root of unity, then $\omega^{63} = \dots$ 54. $(1-3\omega-3\omega^2)^3 = \dots$ (b) 1 (a) ω (a) 12 (b) 16 (d) $-\omega^2$ (c) -ω (c) -125 (d) 64 46. If ω is complex cube root of unity, then 55. $(9+4\omega+4\omega^2)^3 = \dots$ $\omega^{-5} = \dots$ 1 (a) (b) ω (b) 25 (a) 15 $-\omega^2$ (d) (c) -ω $(17)^{3}$ (d) (c) 125 47. If ω is complex cube root of unity, then

56. Which of the following are symmetric

 $\omega^{-16} = \dots$

functions of the roots of a quadratic $\alpha^2 + \beta^2$ equation? (a)

(b) $\alpha^3 + \beta^3$ (c) $\frac{1}{\alpha} + \frac{1}{\beta}$ (d) all of these

57. Which of the following shows "the consecutive positive product of two numbers."

- x(x+1) (b) x(x+2)(a)
- x(x+3) (d) x(x+4)(c)

58. The sum of five times a number and the square of the number is:

 $5x^2 + x$ (b) $5x + x^2$ (a) $(5x+x)^2$ (d) $5(x+x^2)$ (c)

59. If length and width of a rectangle are x and y respectively then which of the following shows perimeter?

- $(\mathbf{x} + \mathbf{y})^2$ (a) (b) 2x - 2v
- (d) 2(x+y)(c) 2xy

60. "Five less than three times a certain number" is:

- 3x-5 3x + 5(a) (b)
- 5x + 3(d) 5x - 3(c)

61. The equation $x^4 - 49x^2 + 36x + 252 = 0$ is called equation. 1

- Quadratic quartic (a) (b)
- (c) Linear (d) cubic

					r				
1.	С	2.	b	3.	b	4.	а	5.	а
6.	b	7.	С	8.	С	9.	d	10.	С
11.	а	12.	а	13.	С	14.	d	15.	d
16.	а	17.	С	18.	b	19.	b	20.	d
21.	b	22.	С	23.	b	24.	а	25.	а
26.	b	27.	b	28.	d	29.	С	30.	b
31.	С	32.	а	33.	b	34.	С	35.	d
36.	С	37.	а	38.	b	39.	а	40.	d
41.	а	42.	b	43.	а	44.	С	45.	b
46.	а	47.	d	48.	а	49.	а	50.	а
51.	b	52.	С	53.	С	54.	d	55.	С
56.	d	57.	а	58.	b	59.	d	60.	а
61.	b								

Chapter No 3

Q. 1 Multiple Choice Questions

Four possible answers are given for the following questions. Tick (\checkmark) the correct answer.

- 1. In a ratio a: b, a is called: (a)
 - Relation (b) antecedent
 - None of these (c) Consequent (d)
- 2. In a ratio x: y, y is called: Relation (a) (b) antecedent
 - Consequent (d) None of these (c)
- 3. In a proportion a: b:: c: d, a and d are called:
 - Means (a)
 - (b) Extremes
 - Fourth proportional (c)
 - (d) None of these
- 4. In a proportion a:b::c: d, b and c are called:
 - (a) Means (b) extremes

(c) Fourth proportional
(d) none of these
5. In continued proportion a: b = b: c,
ac = b², b is said to be _____proportional.
(a) Third (b) fourth
(c) means (d) none of these
6. In continued proportion a: b = b: c, c is
said to be ____proportional to a and b.
(a) Third (b) fourth
(c) means (d) none of these
7. Find x in proportion 4:x::5:15
(a)
$$\frac{75}{4}$$
 (b) $\frac{4}{3}$
(c) $\frac{3}{4}$ (d) 12
8. If $u \propto v^{2}$, then:
(a) $u = v^{2}$ (b) $u = kv^{2}$
(c) $u^{2} = k$ (d) $uv^{2} = 1$
9. If $y^{2} \propto \frac{1}{x^{3}}$, then:
(a) $u = wk^{2}$ (b) $y^{2} = \frac{1}{x^{3}}$
(c) $u = wk^{2}$ (b) $u = vk^{2}$
(c) $u = wk^{2}$ (c) $u = vk^{2}$
(d) $\frac{x}{x^{2}}$ (e) $x^{2}y^{2}$
(e) $\frac{y^{4}}{x^{2}}$ (f) $\frac{y^{2}}{x^{4}}$
11. The third proportional of x^{2} and y^{2} is:
(a) $\frac{y^{2}}{x^{2}}$ (b) $x^{2}y^{2}$
(c) $\frac{y^{4}}{x^{2}}$ (d) $\frac{y^{2}}{x^{4}}$
13. If $a: b = x; y$, then alternant property
is:
(a) $\frac{a}{b} = \frac{b}{y}$ (b) $\frac{a}{b} = \frac{x}{y}$
14. If $a: b = x; y$, then inverted property
is:
(a) $\frac{a}{x} = \frac{b}{y}$ (b) $\frac{a}{a} = \frac{y}{x}$
15. If $\frac{a}{b} = \frac{c}{d}$, then components property
is:
(a) $\frac{a}{a+b} = \frac{c}{c+d}$ (b) $\frac{a}{a-b} = \frac{c-d}{d}$
16. The simplest form of the ratio $\frac{(x+y)(x^{2}+xy+y^{2})}{x^{3}-y^{3}}$
17. Newton's law of Gravitation is an example of:
(b) variation
(c) variation
(c) variation

- 12. The fourth proportional w of x:y::v:w is:
- 18. The relation between radius and circumference of a circle is an example

(b) direct variation

(c) inverse variation (d) joint variation

 $\frac{4}{3}$

16

15

1

±mnp

2

84

9a

 $9a^7$

40

20

 $9x^2$

 $9x^4$

 ± 25

±15

of: A third proportional of 12 and 4, is: 26. (a) $\frac{3}{4}$ (b) Variation (a) (b) **Direct** variation (c) 12 (d) (c) Inverse variation 27. The fourth proportional of 15, 6, 5 is: (a) 30 (b) (d) Joint variation (c) 2 (d) 19. If $\frac{24}{7} = \frac{6}{x}$, then $4x = \dots$ The mean proportional of 4m²n⁴ and 28. p^6 is: (a) 7 (b) $\frac{7}{4}$ 1 (a) $\pm 2mnp$ (b) (c) 4 (d) $\frac{42}{24}$ (c) $\pm \frac{2m^2n}{P^3}$ (d) $\pm 2mn^2p^3$ 20. If $\frac{5a}{3x} = \frac{15b}{y}$, then $ay = \dots$ The continued proportion of 4, m, 9 is: 29. (a) $\frac{9bx}{y}$ (b) $\frac{9y}{9b}$ (a) 4:m::m:9 (b) 4: 9:: 9: m 5ay = 45bx (d) 9bx (c) 21. In proportion 7:4::p:8, p =..... 9: 4:: 4: m (c) 28 (b) (a) 1 (D) 9: 4:: m : m (c) 14 (d) 56 30. Third proportional of 6, 12 is: 10303175 (a) 24 (b) 22. If 6: m:: 9: 12, then m = (a) 6 (b) (c) 18 (d) (c) 1 (d) 31. Third proportional of a³, 3a² is:10303176 $3a^5$ (a) (b) 23. If x and y varies directly, then $x = \dots$ (a) Y (b) ky (c) $9a^4$ (d) (c) $\frac{k}{v}$ (d) k Fourth proportional of 5, 8, 15 is: 32. (a) 120 (b) 24. If v varies directly as u^3 , then $u^3 = \dots$ (c) 24 (d) (b) (a) Vk Fourth proportional of $4x^4$, $2x^3$, $18x^5$ is: 33. 36x⁸ (a) (b) (c) $\frac{v}{k}$ $9x^{12}$ (d) vk³ (c) (d) 34. Mean Proportional of 20 and 45 is: 25. If w varies inversely as p^2 , then $k = \dots$ (a) ±30 (b) (a) $\frac{W}{P^2}$ wp² (b) ± 20 (c) (d) 35. Mean proportional of $20x^3y^5$, $5x^7y$ is: (c) $\frac{P^2}{w}$ (d) WP (b) $\pm 10x^5y^3$ $\pm 10x^5v^6$ (a)

	(c)	±10	x ¹⁰ y	/ ⁶	(d)	100	x ¹⁰ y	/ ⁶							
36.		at is (portic			-	p in tl ?	he c	ontin	ued	l				Chapter	No 4
	(a)	225		<i>.</i>	(b)	±50)					Q. 1	Multi	ple Choice Questio	ns:
	(c)	±15			(d)	±9						- - -		r possible answers	
37.		at is t portic				x in tl ?	he c	ontin	ued	l			follo	owing questions. Ti wer.	-
	(a)	±14	4		(b)	± 8						1.	The	identity (5x +4) ² =	25x² + 40x + 16 is
	(c)	±18			(d)	±12	2					true	for.		
38.	If $\frac{9}{2}$	<u>) 2000 –</u> 2010 –	18 <u>1</u> 5m	$\frac{p}{1}$, the	en 5	q =	•••					x	(a)	One value of x	(b) two values of
	(a)	4m			(b)	4р							(c)	All values of x	(d) none of these
•••		4 ℓ			(d)	4q		6 1	_			2.	A fu	nction of the form	f(x)= $\frac{N(x)}{D(x)}$, with
39.	r ⁸ is	s:				nal of ±9p			and		1			vhere N(x) and D(x)) are polynomials in
						±3p							(a)	and the second	an equation
		•	•				•	•		18	n		(c)	A fraction (d)	none of these
40.		porti					nc	ontin	ued	by	/		nerato	action in which the or is greater or equa otor is called'	-
	(c)	±30			(d)	±2				5	h	e	(a)	A proper fraction	
41. ther		w ma	any	type	es o	of va	riat	ions	are				(b)	An improper fract	ion
	(a)	One			(b)	two							(c)	An equation	
	(c)	three	е		(d)	four	-						(d)	Algebraic relation	
1.	b	2.	с	3.	b	4.	а	5.	с]		4.	A fra	action in which the	degree of
6.	a	7.	d	8.	b	9.	a	10.	a					erator is less than	the degree of the
11.	С	12.	b	13.	а	14.	d	15.	а				deno	ominator is called:	
16.	b	17.	d	18.	а	19.	а	20.	d				(a	· ·	
21.		22.	d	23.	b	24.	с	25.	b				(b	 An improper fra 	action
26.		27.	с	28.	d	29.	а	30.	а	-			(c	:) An identity	
31.	-	32.	c d	33. 38.	d	34. 39.	a	35. 40.	b b				(c	l) A proper fracti	on
36. 41.		37.	u	5ð.	С	59.	а	40.	u	l					
<u> </u>	~	J										5.		$\frac{2x+1}{(x-1)}$ is:	

$$\overline{(x+1)(x-1)}$$
 is:

- (a) An improper fraction
- (b) An equation

- (c) A proper fraction
- (d) None of these
- 6. $(x+3)^2 = x^2 + 6x + 9$ is:
 - (a) A linear equation
 - (b) An equation
 - (c) An identity
 - (d) None of these

7.
$$\frac{x^3+1}{(x-1)(x+2)}$$
 is:

- (a) A proper fraction
- (b) An improper fraction
- (c) An identity
- (d) A constant term
- 8. Partial fractions of $\frac{x-2}{(x-1)(x+2)}$ are of the

form:

(a)
$$\frac{A}{x-1} + \frac{B}{x+2}$$
 (b) $\frac{Ax}{x-1} + \frac{B}{x+2}$
(c) $\frac{A}{x-1} + \frac{Bx+C}{x+2}$ (d) $\frac{Ax+B}{x-1} + \frac{C}{x+2}$

9. Partial fractions of $\frac{x+2}{(x+1)(x^2+2)}$

are of the form:

(a)
$$\frac{A}{x+1} + \frac{B}{x^2+2}$$

(b)
$$\frac{A}{x+1} + \frac{Bx+C}{x^2+2}$$

(b)
$$\frac{11}{x+1} + \frac{2x+2}{x^2+2}$$

(c)
$$\frac{Ax+B}{x+1} + \frac{C}{x^2+2}$$

$$(d) \quad \frac{A}{x+1} + \frac{Bx}{x^2+2}$$

10. Partial fractions of $\frac{x^2+1}{(x+1)(x-1)}$ are of the form:

(a)
$$\frac{A}{x+1} + \frac{B}{x-1}$$

(b) $1 + \frac{A}{x+1} + \frac{Bx+C}{x-1}$
(c) $1 + \frac{A}{x+1} + \frac{B}{x-1}$

(d)
$$\frac{Ax+B}{(x+1)} + \frac{C}{x-1}$$

								5.	
6.	С	7.	b	8.	а	9.	b	10.	С

Chapter No 5

Q.1 Multiple choice questions. Four possible answers are given for the following questions. Tick mark (\checkmark) the correct answer.

- 1. A collection of well-defined distinct objects is called:
 - (a) Subset (b) power set
 - set (d) none of these
- 2. A set $Q = \left\{ \frac{a}{b} | a, b \in Z \land b \neq 0 \right\}$ is called a

set of :

(c)

- (a) Whole numbers
- (b) Natural numbers
- (c) Irrational numbers
- (d) Rational numbers
- 3. The different number of ways to describe a set are:
 - (a) 1 (b) 2
 - (c) 3 (d) 4
- 4. A set with no element is called:
 - (a) Subset (b) empty set
 - (c) Singleton set (d) super set
- 5. The set $\{x \mid x \in W \land x \le 101\}$ is:

	(a) (c)	Infinite set Null set	(b) (d)	subset finite set	15.	set			n set A is 3 and in er of elements in
6.	The	set having	only	one element is		(a)	3	(b)	4
	calle (a)	ed: Null set	(b)	power set		(c)	12	(d)	7
	(c)	Singleton set		subset	16.	set	B is 2, the	en nu	n se A is 3 and in umber of binary
7.	Pow (a)	er set of an er ϕ	npty s (b)	et is: { <i>a</i> }		rela (a)	tions in A×B i 2 ³	s: (b)	2 ⁶
	(c)	$\left\{ \phi, \left\{ a \right\} \right\}$	(d)	$\{ \phi \}$	17.	(c) The	2 ⁸ domain of R	(d)	2^{2}
8.		number of $\{3\}$ is:	eleme	nts in power set	17.		(0,2),(2,3),(3,3 {0,3,4})(3,4) (b)	} is: {0,2,3}
	(a)	4	(b)	6		(c)	{0,2,4}	(d)	{2,3, 4}
	(c)	8	(d)	9	18.		Range of R (1,3),(2,2),(3,1	(A A)	lie
9.	If <i>A</i> (a)	$\subseteq B$ then $A \subseteq$	<i>B</i> is () (b)	equal to:	f	—(a)	{1,2,4}	(b)	{3,2,4}
	(c)	φ	(d)	None of these	LY.	(c)	{1,2,3,4}	(d)	{1,3,4}
10.		$\subseteq B$ then $A \subset$	- N		19.		nt (-1,4) lies in	_	uadrant: II
10.	(a)	A A	(b)	B		(a) (c)	1 	(b) (d)	II IV
11	(c)	φ D.1	(d)	None of these	20.	The (a)	relation {(1,2) Onto function),(3,3)(3,4)} is:
11.	If A (a)	$\subseteq B$ then $A - A$	(b)	B B	h	(b)	Into function		
	(c)	ϕ	(d)	None of these		(c)	Not a functior	ı	
12.	`	$(B) \cup C$ is eq				(d)	one-one funct	tion	
	(a)			$(A \cup B) \cap C)$	21.		•		nd B aresets.
	(c)	$A \cup (B \cup C)$		$A \cap (B \cap C)$		(a)	Sub	(b)	over lapping
13.	$A \cup$ (a)	$(B \cap C)$ is eq $(A \cup B) \cap (A)$			22	(c)	Disjoint $B = B$ and $B = B$	(d)	power
	(b)	$A \cap (B \cap C)$			22.	11 A (a)	$A \subseteq B$ and $B \subseteq$ A = B	A , tr (b)	A \neq B
	(c)	$(A \cap B) \cap (A)$	$(\cap C)$			(c)	$A \cap B = \phi$	(d)	$A \cup B = \phi$
	(d)	$A \cup (B \cup C)$			23.	The	complement of	of U is	:
14.				sets, then $A \cup B$ is		(a)	U	(b)	ϕ
17.	equa	l to:				(c)	Impossible	(d)	union
	(a)	A	(b)	B	24.	The (a)	complement o	of ϕ is (b)	s:
	(c)	ϕ	(d)	$B \cup A$		(c)	Impossible	(d)	Ψ union
						(0)	mpossible	(0)	

25.	A∩ (a)	$A^{c} = \dots$ U	(b)	A
	(c)	A ^c	(d)	ϕ
26.	A∪ (a)	$\mathbf{U}\mathbf{A}^{c}=\dots$	(b)	A
	(c)	A ^c	(d)	ϕ
27.		set { $x \mid x \in A$ $A \cup B$		$x \notin B$ } is: $A \cap B$
	(c)	A – B	(d)	B – A
28.	The (a)		') lies (b)	in quadrant. II 1
	(c) II	II (d)	IV	
29.	The (a)	point (4, -6) 1 I	lies in (b)	ı Quadrant. II
	(c)	III	(d)	IV
30.	-	o-ordinate of e +ve		ooint on x–axis is: –ve
	(c)	Zero	(d)	1
31.32.	(a) (c) The	+ve zero	(b) (d) a,b), (point on y-axis is: -ve b,c), (c,d) is: b,c,d
	(c)	{a,b}		{a, b,c,d,}
33.	The	range of {(a,a {a,b}	ı), (b,l	
	(c)	{a}	(d)	ϕ
34.		n diagram wa John Venn	s first	used by: (b) Newton
	(c)	Arthur Clayey	d)	John Napier
35.	A sı (a)	ubset of A×A Set		ledin A. relation
	(c)	Function	(d)	into function
36.		$: A \rightarrow B and rates A$	inge o	of $f = B$, then f is
	an: (a)	Into function	(b)	onto function
	(c)	Objective fun	ction	(d) function

	37.		$A \rightarrow B$ and rate	ange o	of $f \neq B$, then f is				
		an: (a)	Into function						
		(b)	Onto function						
		(c)	Objective function						
		(d)	Function						
	38.	The	relation $\{(a,b),(b,c),(a,d),\}$ is:						
		(a)	a function	(b)	not a function				
		(c)	range	(d)	domain				
	39.	By c set?	lefinition, whi	ch of	the following is a				
		(a)	$\left\{a,b,c,a\right\}$	(b)	$\{1, 2, 3, 2\}$				
		(c)	$\left\{\ell,m,n,o ight\}$	(d)	{0,1,2,3,1}				
Í	40.	Whi (a)	ch of the follo $W \subseteq N$		is true? Z⊆W				
n		(c)	$N \subseteq P$	(d)	$P \subseteq W$				
	41.		ch of the follo $P \subseteq N \subseteq Z \subseteq$		is true?				
		(b)	$P \subseteq N \subseteq W$	⊒Z					
h		(c)	$P \subseteq W \subseteq N$	⊒Z					
		(d)	$P \subseteq Z \subseteq N \subseteq$	W					
	42.	Whi (a)	Which of the following is true? a) N and $W \subseteq Z$						
		(b)	$\operatorname{Pand} O \subseteq W$	r					
		(c)	O and $\mathbf{E} \subseteq \mathbf{W}$	τ					
		(d)	P and $E \subseteq N$						
	43.	N∩	$\mathbf{W} = \dots$						
		(a)	φ	(b)	$\{0\}$				
		(c)	Ν	(d)	W				
	44.		W =		(a)				
		(a)	φ	(b)	{0}				
		(c)	Ν	(d)	W				
	45.	N –	W =						

Written by Amir Shehzad (MSc Mathematics)

Page 14 of 29

(b) {0} (a) ø (d) w (c) Ν W – N = 46 (a) φ (b) {0} (c) (d) W Ν 47 $0 \cap E = \dots$ (a) φ (b) 0 Ε (d) Ζ (c) 48. $O \cup E = \dots$ 0 (a) φ (b) (c) E (d) Ζ 49. E-O=..... (a) (b) 0 ø Ζ (d) (c) E 50. $O - E = \dots$ (a) φ (b) 0 Z (d) E (c) Which of the following is complete 51. description of Real numbers? $O \cup E = R$ $N \cup W = R$ (b) (a) (d) $Q \cup Q' = R$ $P \cup Q = R$ (c) If $x \in A$ and $x \in B$, then $\{x\}$ is equal to: 52. A^c A - B(a) (b) B^c (c) $A \cap B$ (d) 53. If $x \in A$ and $x \notin B$, then $\{x\}$ is equal to: A - BB - A(a) (b) $A \cap B$ A^c (c) (d) 54. If $x \in U$ and $x \notin A$, then $\{x\}$ is equal to: A^c $\mathbf{U}^{\mathbf{C}}$ (b) (a) $\phi^{\rm C}$ A-U (c) (d) 55. Which of the following is De-Morgan's law? $(A \cup B) \cup C = A \cup (B \cup C)$ (a) (b) $(A \cap B)^{C} = A^{C} \cup B^{C}$

(c) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (d) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ 56. Which of the following is associative law of union? $A \cup (B \cup C) = (A \cup B) \cup C$ (a) $A \cap (B \cap C) = (A \cap B) \cap C$ (b) (c) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (d) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ 57. Which of the following is associative law of intersection? $A \cup (B \cup C) = (A \cup B) \cup C$ (a) $A \cap (B \cap C) = (A \cap B) \cap C$ (b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (c) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (d) 58. Which of the following is distributive property of union over intersection? $A \cup (B \cup C) = A \cup (B \cup C)$ (a) $A \cap (B \cap C) = (A \cap B) \cap C$ (b) (c) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (d) Which of the following is distributive 59. property of intersection over union? $A \cup (B \cup C) = A \cup (B \cup C)$ (a) $A \cap (B \cap C) = (A \cap B) \cap C$ (b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (c) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (d) Which of the following is commutative 60. law? $A \cup (B \cup C) = (A \cup B) \cup C$ (a) $A \cap (B \cap C) = (A \cap B) \cap C$ (b) $A \cap B = B \cap A$ (c) (d) $(A \cup B)^{C} = A^{C} \cap B^{C}$

61. Two sets having no common element are called sets.

		(a)	subs	et		(b)	over	lappir	١g	
6	52.	If two but n	o se	oint ts hav ll are c	e so	ome e eds	leme ets.			mon
6	53.	If set set B	Αĥ	oint as all n set A	its e	eleme	nts c	comm set.	on	with
6	54.	A and	d Å	oint ^C are versal	• • • • •	sets.	-	oping		
6	55.	If un equal	ion the	oint and ir n sets oint	nters are	section	n of sets.			are
		(c)	Equa	al		(d)	supe	er		
6	6	lf∆is	sub	set of I	∣I th	en (A	c)c	1		
			A		0, 11		A ^c			
		(c)				(d)	U ^c			
1.	с	2.	d	3.	с	4.	b	5.	_d	
6.	с	7.	d	8.	с	9.	b	10.	а	
11.	С	12.	с	13.	а	14.	d	15.	с	
16.	b	17.	b	18.	с	19.	b	20.	с	
21.	С	22.	а	23.	b	24.	а	25.	d	
26.	а	27.	С	28.	С	29.	d	30.	С	
31.	С	32.	а	33.	b	34.	а	35.	b	
36.	С	37.	а	38	b	39.	С	40.	d	
41.	b	42.	а	43,	С	44.	d	45.	а	
46.	b	47.	а	48.	d	49.	С	50.	b	
51.	d	52.	С	53.	а	54.	b	55.	b	
56.	а	57.	b	58.	С	59.	d	60.	С	
61.	с	62.	b	63.	а	64.	С	65.	С	

66. a

Chapter No 6

- A grouped frequency table is also called:
 - (a) Data
 - (b) Frequency distribution
 - (c) Frequency polygon
 - (d) Histogram
- 2. A histogram is a set of adjacent:
 - (a) Squares (b) rectangles
 - (c) Circles (d) Dots
- **3.** A frequency polygon is a many sided:
 - (a) Closed figure (b) rectangle
 - (c) Square (d) Circles
- **4.** A cumulative frequency table is also called:
 - (a) Frequency distribution
 - (b) Data
 - (c) Less than cumulative frequency distribution
 - (d) Histogram
- **5.** In a cumulative frequency polygon frequencies are plotted against:
 - (a) Midpoints
 - (b) Upper class boundaries
 - (c) Class limits (d) frequencies
- 6. Arithmetic mean is a measure that determines a value of the variable under study by dividing the sum of all values of the variable by their:
 - (a) Number (b) group
 - (c) Denominator (d) numerator
- **7.** A deviation is defined as a difference of any value of the variable from a:
 - (a) Constant (b) histogram
 - (c) Sum (d) frequency
- **8.** A data in the form of frequency distribution is called:
 - (a) Grouped data
 - (b) Ungrouped data
 - (c) Histogram
 - (d) Dispersion
- **9.** Mean of a variable with similar observations say constant k is:
 - (a) Negative (b) k itself
 - (c) Zero (d) one

10.	Mean is affected by change in: (a) Value (b) ratio (c) Origin (d) none of these		variation in a data set are called measures of: (a) Dispersion (b) central tendency
11.	(c) Origin(d) none of theseMean is affected by change in:		(c) Average (d) quartile
12.	 (a) Place (b) scale (c) Rate (d) none of these Sum of the deviations of the variable x from its mean is always: (a) Zero (b) one 	20.	The extent of variation between two extreme observations of a data set is measured by: (a) Average (b) range
	(c) Same (d) negative		(c) Quartiles (d) mode
13.	The n th positive root of the product of the $x_1, x_2, x_3, \ldots, x_n$ observations is called: (a) Mode (b) Mean	21.	The mean of the squared deviations of x_i (i = 1, 2,n) observations from their arithmetic mean is called: (a) Variance
	(c) Geometric mean d) median		(b) Standard deviation
14.	The value obtained by reciprocating		(c) Range (d) mode
	 the mean of the reciprocal of x₁,x₂,x₃x_n observations is called: (a) Geometric mean (b) Median 	22.	The positive square root of mean of the squared deviations of x_i $(i - 1,2,, n)$ observations from their arithmetic mean is called:
	(c) Harmonic mean Merging ma	n ai	(a) Harmonic mean (b) range
	(d) S.D		(c) S.D (d) variance
15.	The most frequent occurring observation in a data set is called: (a) Mode	23.	The size of class interval (6–10) is: (a) 4 (b) 5
	(b) Median Amir S	hel	(c) 8 (d) 10
16.	(c) Harmonic mean(d) MeanThe measure which determines the middlemost observation in a data set is	24.	The arrangement of data is necessary to find the value of: (a) Mean (b) Median
	called:		(c) Mode (d) Range
17.	 (a) median (b) mode (c) Mean (d) variance The observation that divide a data set 	25.	The class having maximum frequency is calledclass. (a) Modal (b) Median
	into four equal part, are called:(a) defiles(b) quartiles		(c) Lower (d) Upper
	(c) Percentiles (d) mode	26.	The class containing $\frac{n}{2}$ th observation is
18.	The spread or scatterings of observations in a data set is called: (a) average		called class. (a) Modal (b) Median
	(b) dispersion		(c) Boundary of (d) Size of
19.	(c) central tendency(d) quartileThe measures that are used to	27.	During frequency distribution number of groups should be between: (a) 5 and 10 (b) 10 and 15
	determine the degree or extent of		(c) 10 and 20 (d) 5 and 15

28. Direct formula to find mean from ungrouped data.

(a)
$$\overline{X} = \frac{\sum x}{n}$$
 (b) $\overline{X} = \frac{\sum fx}{\sum f}$
(c) $\overline{X} = A + \frac{\sum D}{n}$ (d) $\overline{X} = A + \frac{\sum fD}{\sum f}$

29. Direct formula to find mean from grouped data is: 1

(a)
$$\overline{X} = \frac{\sum x}{n}$$
 (b) $\overline{X} = \frac{\sum fx}{\sum f}$

(c)
$$\overline{X} = A + \frac{\sum D}{n}$$
 (d) $\overline{X} = A + \frac{\sum fD}{\sum f}$

- **30.** Short formula to find mean from ungrouped data is:
 - (a) $\overline{X} = \frac{\sum x}{n}$ (b) $\overline{X} = \frac{\sum fx}{\sum f}$ (c) $\overline{X} = A + \frac{\sum D}{n}$ (d) $\overline{X} = A + \frac{\sum fD}{\sum f}$
- **31.** Short formula to find mean from grouped data is:
 - (a) $\overline{X} = \frac{\sum x}{n}$ (b) $\overline{X} = \frac{\sum fx}{\sum f}$

(c)
$$\overline{X}=A+\frac{\sum D}{n}$$
 (d) $\overline{X}=A+\frac{\sum fD}{\sum f}$

32. Coding formula to find mean from ungrouped data is:

(a)
$$\overline{X} = \frac{n}{\sum \frac{1}{x}}$$
 (b) $\overline{X} = \frac{n}{\sum \frac{f}{x}}$
(c) $\overline{X} = A + \frac{\sum u}{n} \times h$ (d) $\overline{X} = A + \frac{\sum fu}{\sum f} \times h$

33. Coding formula to find mean from grouped data is:

(a)
$$\overline{X} = \frac{n}{\sum \frac{1}{x}}$$
 (b) $\overline{X} = \frac{n}{\sum \frac{f}{x}}$

(c)
$$\overline{X} = A + \frac{\sum u}{n} \times h$$
 (d) $\overline{X} = A + \frac{\sum fu}{\sum f} \times h$

34. Formula to find Harmonic mean from ungrouped data is:

(a)
$$\overline{X} = \frac{n}{\sum \frac{1}{x}}$$
 (b) $\overline{X} = \frac{n}{\sum \frac{f}{x}}$
(c) $\overline{X} = A + \frac{\sum fu}{n} \times h$
(d) $\overline{X} = A + \frac{\sum fu}{\sum f} \times h$

35. Formula to find Harmonic mean from grouped data is:

(a)
$$\overline{X} = \frac{n}{\sum \frac{1}{x}}$$
 (b) $\overline{X} = \frac{n}{\sum \frac{f}{x}}$
(c) $\overline{X} = A + \frac{\sum fu}{n} \times h$ (d) $\overline{X} = A + \frac{\sum fu}{\sum f} \times h$

36. The concept of antilogarithm is used to find the value of:(a) A.M(b) G.M

Mode

- **37.** Variance is denoted by: (a) V (b) S (c) S^2 (d) \overline{X}
- **38.** Standard deviation is denoted by: (a) \mathbf{X} (b) \mathbf{S}

(c)
$$S^2$$
 (d) \overline{X}

- **39.** Median is denoted by:
 - (a) \overline{X} (b) X (c) S (d) S²
- **40.** On the basis of types of variable or data, the types of frequency distribution are:
 - (a) 2 (b) 3 (c) 4 (d) 5
- **41.** In class (10 19), upper class limit is: (a) 10 (b) 19

b

С

а

b

а

С

b

а

b

b

С

(c) 29 (d) 14.5 (c) 3 (d) 6 **42.** In class (30–39), lower class limit is: **53.** $\Sigma(X - \overline{X}) = \dots$ 39 (b) 9 (a) (a) 0 (b) 1 (c) 30 (d) 34.5 (c) -1 (d) 2 43. In class (20–29), Midpoint or class **54.** Arithmetic mean of 34,34,34,34,34,34 is mark is: (a) 0 (b) 34 20.5 (b) 24.5 (a) (c) 6 (d) 170 (d) 49 (c) 29 55. If Y = X + 5 then $\overline{Y} = \dots$ 44. Types of measures of central tendency (a) \overline{X} (b) 5 are: (a) 3 (b) 4 (c) \overline{X} +5 (d) $5\overline{X}$ **56.** If y = 10X then $\overline{y} = \dots$ (c) 5 (d) 6 45. Median from the data 82,93,86,92 and (a) 10 (b) 10 X 79 is: (c) \overline{X} (d) $10+\overline{X}$ (a) 82 (b) 86 57. Which one is formula for weighted (c) 92 (d) 93 Arithmetic mean? **46.** Median from the data 2.3, 2.7, 2.5, 3.1 $\sum W$ Σ wx (a) (b) and 1.9 is: Σ wx (a) 2.3 (b) 2.5 $\frac{\sum wx}{\sum w}$ (c) $\sum x$ (c) 2.7 (d) 2.9 (d) following data **47.** Mode from the **58.** Types of dispersion are:. 4,4,5,5,6,6,6,7,7,5,8,8,8,6,5,6,5,7 is: (a) 4 (b) 5 (a) 4 (b) 5 (c) 6 (d) 3 (c) 5,6 (d) 5,7 **48.** Geometric Mean of 2,4,8 is: (b) 4 (a) 2 1. b 2. b 3. 4. С 5. а (c) 8 (d) - 3 9. 6. 7. а 8. b 10. а а **49.** Harmonic mean for 12,5,8,4 is: 11. b 12. 13. 14. 15. а С С (a) 6.08 (b) 5.08 16. 17. b 18. 19. 20. а b а 22. 23. 24. b (c) 7.08 (d) 4.08 21. а С b 25. **50.** Range = 26. 27. d 28. 29. b b 30. а (a) $X_m + X_o$ (b) $X_m - X_o$ 31. d 32. С 33. d 34. 35. а 38. b 39. 36. b 37. С b 40. (c) $\frac{X_m}{X}$ (d) $\frac{X_o}{X}$ b 42. 43. 44. 45. 41. С b С b 47. С 48. b 49. 50. 46. а 51. 52. 53. 54. b 55. С b а **51.** Range for the data 110, 109, 84, 89, 77, 56. b 57. d 58. b 104, 74, 97, 49, 59, 103, 62 is: (a) 41 (b) 51 (d) 71 (c) 61 52. If standard deviation is 6 then its variance is: (a) $\sqrt{6}$ (b) 36

	Chapter No 7	8.	$\frac{1}{2}$ cosec45°
Q. 1	Multiple choice questions:		(a) $\frac{1}{2\sqrt{2}}$ (b) $\frac{1}{\sqrt{2}}$
	Four possible answers are given for the following questions. Tick (✓) the correct answer.		(c) $\sqrt{2}$ (d) $\frac{\sqrt{3}}{2}$
1.	The union of two non–collinear rays, which have common end point is called:	9.	$\sec\theta \cot\theta =$ (a) $\sin\theta$ (b) $\frac{1}{2}$
	(a) An angle (b) a degree		$\cos \theta$
	(c) A minute (d) a radian		(c) $\frac{1}{\sin \theta}$ (d) $\frac{\sin \theta}{\cos \theta}$
2.	The system of measurement in which the angle is measured in radians is called:	10.	$cosec^2\theta - cot^2\theta =$
	(a) CGS system		(a) -1 (b) 1
	(b) Sexagesimal system	itv.	(c) 0 (d) $tan\theta$
	(c) MKS system	11.	In degree measurement, 1° is equal to: (a) 1' (b) $60'$
-	(d) Circular system Merging ma	n	(c) 90' (d) 360'
3.	20° = (a) 360' (b) 630' b	12.	In degree measurement, 1' is equal to: (a) 1" (b) 60"
	(c) 1200' (d) 3600'	h	(c) 90" (d) 360"
4.	$\frac{3\pi}{4}$ Radians =	13.	How many right angles are there in 360 degrees?
	(a) 115° (b) 135°		(a) Two (b) four
	(c) 150° (d) 30°		(c) Six (d) eight
5.	If tan $ heta$ = $\sqrt{3}$, then $ heta$ is equal to:	14.	If 'r' is the radius of a circle, then its circumference is:
	(a) 90° (b) 45°		(a) $\frac{\pi}{2}$ r (b) π r
-	(c) 60° (d) 30°		(c) $2\pi r$ (d) $4\pi r$
6.	$\sec^2 \theta =$	15.	The radian measure of an angle that form
	(a) $1 - \sin^2 \theta$ (b) $1 + \tan^2 \theta$		a complete circle is: π
	(c) $1 + \cos^2 \theta$ (d) $1 - \tan^2 \theta$		(a) $\frac{\pi}{2}$ (b) π
7.	$\frac{1}{1+\sin\theta} + \frac{1}{1-\sin\theta}$		(c) 2π (d) 4π
	(a) $2\sec^2\theta$ (b) $2\cos^2\theta$	16.	2π radians =
	(c) $\sec^2\theta$ (d) $\cos\theta$		(a) 0° (b) 90°

Page 20 of 29

	(c)	180°	(d)	360°		(c)	1.75 radians		
17.	π ra	dians =				(d)	175 radians		
	(a)	0°	(b)	90°	26.	Аp	art of circum	nferen	ce of a circle is
	(c)	180°	(d)	360°		calle (a)		(b)	chord
18.	$1^{ m o} =$ (a)	180π radian	(b)	π radian		(c)	sector	(d)	arc
	(c)	$\frac{\pi}{180}$ radian	(d)	$\frac{180}{\pi}$ radian	27.	Forr (a)	nula for arc le $\ell = r\theta$	ngth i (b)	s: $r = \ell \theta$
19.	1 rac	lian =				(c)	$\theta {=} \ell r$	(d)	$\ell = \frac{r}{2}$
	(a)	$(180\pi)^{\circ}$	(b)	$(180)^{\circ}$					0
		$\left(\frac{\pi}{180}\right)^{\circ}$			28.	Area (a)	a of a circular rθ	sector (b)	$r^2 \theta$
			()	(π)		(c)	$\frac{1}{2}r\theta$	(d)	$\frac{1}{2}r^2\theta$
20.	$\frac{\pi}{2}$ ra	dians =		lathfi	1	1			
	(a)	30°	(b)	45°	29.	Sin	Ē		
	(c)	60°	(d)	90°		(a)	Cosθ	(b)	Secθ
			()	erging nia	n	(c)	$\cos \theta$	(d)	$\cot \theta$
21.	$\frac{\pi}{3}$ ra	dians =			20	1			
	(a)	30°	(b)	45° by	30.	Cos			~ ^
	(c)	60°	(d)	90° mir S	h	(a)	Sin0	(b)	Secθ
22.	$\frac{\pi}{-}$ ra	dians =				(c)	$\cos \theta$	(d)	Cotθ
	4 (a)		(b)	45°	31.	1	_ =		
						tan (a)	θ tan θ	(b)	Secθ
	(c)	60°	(d)	90°			Co sec θ	(0) d)	Cot θ
23.	$\frac{\pi}{c}$ ra	dians =						u)	Colo
	о (а)	30°	(b)	45°	32.	Sin ⁴		(h)	$\sqrt{2}$
		60°		90°		(a)	1	(b)	N2
	(c)		(d)	90		(c)	$\frac{1}{\sqrt{2}}$	(d)	0
24.	$\frac{3\pi}{2}$	radians=							
	(a)	90°	(b)	180°	33.		45°=	(1-)	$\sqrt{2}$
	(c)	270°	(d)	360°		(a)	1	(b)	N2
25.	$1^{\circ} =$		177			(c)	$\frac{1}{\sqrt{2}}$	(d)	0
<i>2</i> 3.	1 = (a)	0.0175 radian	S						
	(b)	0.175 radians			34.		45° =	(h)	$\sqrt{2}$
						(a)	Ŧ	(b)	N Z

(c)
$$\frac{1}{\sqrt{2}}$$
 (d) 0

 35.
 $Cosec 4S^{\circ} =$

 (a) 1
 (b) $\sqrt{2}$

 (c) $\frac{1}{\sqrt{2}}$
 (d) 0

 36.
 Sec45^{\circ} =

 (a) 1
 (b) $\sqrt{2}$

 (c) $\frac{1}{\sqrt{2}}$
 (d) 0

 37.
 $Cot45^{\circ} =$

 (a) 1
 (b) $\sqrt{2}$

 (c) $\frac{1}{\sqrt{2}}$
 (d) 0

 37.
 $Cot45^{\circ} =$

 (a) 1
 (b) $\sqrt{2}$

 (a) 1
 (b) $\sqrt{2}$

 (a) 1
 (b) $\sqrt{2}$

 (c) $\frac{1}{\sqrt{2}}$
 (d) 0

 38.
 $Sin30^{\circ} =$

 (c) 2
 (d) $\frac{2}{\sqrt{3}}$

 (c) 2
 (d) $\frac{2}{\sqrt{3}}$

 (a) $\frac{1}{2}$
 (b) $\frac{\sqrt{3}}{2}$

 (a) $\frac{1}{2}$
 (b) $\frac{\sqrt{3}}{\sqrt{2}}$

 (a) $\frac{1}{2}$
 (b) $\frac{\sqrt{3}}{\sqrt{2}}$

 (a) $\frac{1}{2}$
 (b) $\frac{\sqrt{3}}{\sqrt{2}}$

 (c) $\sqrt{3}$
 (d) $\frac{1}{\sqrt{3}}$

 (a) $\frac{1}{2}$
 (b) $\frac{\sqrt{3}}{\sqrt{2}}$

 (a) $\frac{1}{2}$
 (b) $\frac{\sqrt{3}}{\sqrt{2}}$

 (c) $\sqrt{3}$
 (d) $\frac{1}{\sqrt{3}}$

 (a) $\frac{1}{2}$
 (b) $\frac{\sqrt{3}}{\sqrt{2}}$

 (c) $\sqrt{3}$
 (d) $\frac{1}{\sqrt{3}}$

51.	(c) III In which quadrant are positive?	(d) only	IV $\cos\theta$ and	Secθ	62.	In which quadrate all trigonometric ratios are positive? (a) I (b) II
52.	(a) I(c) IIIIn which quadrant are positive?			Cotθ	63.	 (c) III (d) IV Fundamental trigonometric ratios are: (a) 3 (b) 4 (c) 5 (d) 6
53.		(b) (d) lrant	II IV θ lie	when	64.	Which one is a quadrant angle? (a) 30° (b) 45° (c) 60° (d) 90°
	$\sin\theta > 0$, $\tan\theta < 0$ (a) I	? (b)	II		65.	$Sin\theta.cosec\theta = (b) 0$
54.	(c) III In which quad $\cos\theta < 0$, $\sin\theta < 0$	(d) Irant ?	IV θ lie	when	66.	(c) $\sin\theta$ (d) $\cos\theta$ $\cos\theta$. $\sec\theta =$ (a) 1 (b) $\tan\theta$
	(a) I	(b)	II			(a) 1 (b) $\tan \theta$ (c) 0 (d) $\cot \theta$
55.	(c) III In which quad $\sec\theta > 0, \sin\theta < 0$	(d) Irant ?	IV θ lie	when	67.	$\tan \theta \cot \theta =$ (a) $\sin \theta$ (b) $\sec \theta$
	(a) I	(b)			68.	(c) 1 (d) 0 Angles between 180° and 270° are in
56.	(c) III In which quac $\cos\theta < 0, \tan\theta < 0$		IV θ lie	when		which quadrant? (a) I (b) II
	(a) I (c) III	(b)	II IV mo	by	69.	C .
57.	In which quad Cosec $\theta > 0$, Cos θ			when	ler	quadrant? (a) I (b) II
	(a) I	(b)	II		70	(c) III (d) IV Sin $(-310^{\circ})=$
58.	(c) III In which quad	(d) Irant	IV θ lie	when	70.	(a) Sin310° (b) –Sin310°
	$\sin\theta < 0$, $\sec\theta < 0$ (a)	? (b)	11		71.	(c) $\cos 310^{\circ}$ (d) $\tan 310^{\circ}$ Sec $(-60^{\circ})=$
	(c) III	(d)	IV			(a) -Sec60° (b) Sec60°
59.	$\sin^2\theta + \cos^2\theta =$ (a) $\tan^2\theta$	(b)	$\text{Cot}^2\theta$			(c) $\cos 60^{\circ}$ (d) $\cot 60^{\circ}$
60	(c) 1 1+ $\tan^2 \theta =$	(d)	0			
60.	(a) $\sin^2 \theta$	(b)	$\cos^2\theta$			
61.	(c) $\operatorname{Cosec}^2 \theta$ 1+ $\operatorname{Cot}^2 \theta$ =	(d)	$Sec^2\theta$			
	(a) $\sin^2\theta$	(b)	$\cos^2\theta$			
	(c) $\operatorname{Cosec}^2 \theta$	(d)	$Sec^2\theta$			

1.	а	2.	d	3.	С	4.	b	5.	С
6.	b	7.	а	8.	b	9.	С	10.	b
11.	b	12.	b	13.	b	14.	С	15.	С
16.	d	17.	С	18.	С	19.	d	20.	d
21.	С	22.	b	23.	а	24.	С	25.	а
26.	d	27.	а	28.	d	29.	с	30.	b
31.	d	32.	С	33.	С	34.	а	35.	b
36.	b	37.	а	38.	а	39.	b	40.	d
41.	С	42.	d	43.	С	44.	b	45.	а
46.	С	47.	d	48.	С	49.	d	50.	b
51.	d	52.	С	53.	b	54.	С	55.	d
56.	b	57.	а	58.	С	59.	С	60.	d
61.	С	62.	а	63.	d	64.	d	65.	а
66.	а	67.	С	68.	С	69.	а	70.	b
71.	b								

Chapter No 9

- Q.1 Four possible answers are given for the following questions.
- 1. In the circular figure. ADB is called:
 - (a) An arc
 - (b) A secant
 - (c) A chord
 - (d) A diameter
- In the circular figure, ACB is called:
 (a) An arc
 - (a) Allarc
 - (b) A secant
 - (c) A chord
 - (d) A diameter
- **3.** In the circular figure, AOB is called:
 - (a) an arc
 - (b) a secant
 - (c) A chord
 - (d) Diameter

4. In a circular figure, two chords \overline{AB} and \overline{CD} are equidistant from the center. They will be:

- (a) parallel
- (b) non congruent
- (c) congruent
- (d) perpendicular

- 5. Radii of a circle are.
 - (a) all equal
 - (b) double of the diameter
 - (c) all unequal
 - (d) half of any chord
- 6. A chord Passing through the center of a circle is called:
 - (a) radius
 - (b) diameter
 - (c) circumference
 - (d) secant
- 7. Right bisector of the chord of a circle always passes through the:
 - (a) radius (b) circumference
 - (c) center (d) diameter
- **8.** The circular region bounded by two radii and the corresponding arc is called:
 - (a) circumference of a circle 10309034
 - (b) sector of a circle
 - (c) diameter of a circle
 - (d) segment of a circle
- **9.** The distance of any point of the circle to its center is called:
 - (a) radius (b) diameter
 - (c) a chord (d) an arc
- **10.** Line segment joining any point of the circle to the center is called:
 - (a) circumference
 - (b) diameter
 - (c) Radial segment
 - (d) Perimeter
- **11.** Locus of a point in a plane equidistant from a fixed point is called:
 - (a) radius (b) circle
 - (c) circumference (d) diameter
- **12.** The symbol for a triangle is denoted by:
 - (a) \angle (b) \triangle
 - (c) \perp (d) \odot
- 13. A complete circle is divided into:
 (a) 90 degree
 (b) 180 degree
 (c) 270 degree
 (d) 360 degree
- **14.** Through how many non-collinear points, a circle can pass?
 - (a) one (b) two
 - (c) Three (d) None
- **15.** The vertex of central angle is at:

- (a) circumference
- (b) center
- (c) Any point of radius
- (d) Any point of diameter
- **16.** The line segment joining the center and any point of circle is called:
 - (a) circumference
 - (b) radial segment
 - (c) Chord
 - (d) Diameters
- **17.** The length of boundary traced by a moving point in a circular path is called:
- (a) circumference
 - (b) radial segment
 - (c) Chord
 - (d) Diameter
- **18.** The ling segment joining any two points of circle is called:
 - (a) circumference
 - (b) radial segment Merg
 - (c) Chord
 - (d) Diameter
- **19.** The central chord of circle is its:
 - (a) circumference
 - (b) radial segment
 - (c) Chord
 - (d) Diameter
- **20.** The largest chord of a circle is its:
 - (a) circumference
 - (b) radial segment
 - (c) Chord
 - (d) Diameter
- **21.** A circle of radius 4cm has a chord few cm away from its center, which of the following length of chord may be?
 - (a) 6cm (b) 8cm
 - (c) 10cm (d) 12cm
- 22. π is the ratio of:
 - (a) radius and diameter
 - (b) diameter and circumference
 - (c) circumference and diameter
 - (d) Circumference and radius

- 23. $\pi \approx \frac{22}{7}$ is an number.
 - (a) rational (b) irrational
 - (c) Natural (d) prime
- 24. If radius of a circle is "r", then its diameter is:
 - (a) r^2 (b) 2 + r(c) 2r (d) r-2
- **25.** If central chord of a circle is 12cm, then its radius is:
 - (a) 6cm (b) 8cm
 - (c) 12cm (d) 24cm

1.	С	2.	а	3.	d	4.	с	5.	а
6.	b	7.	С	8.	b	9.	а	10.	С
11.	b	12.	b	13.	d	14.	с	15.	b
16.	b	17.	а	18.	С	19.	d	20.	d
21.	а	22.	С	23.	b	24.	с	25.	а

Chapter No 10

Q.1 Four possible answers are given for the following questions.

- In the adjacent figure of the circle, the line is ← PTQ named as.
 (a) An arc
 - (b) A chord

in and math

- (c) A tangent
- (d) A secant
- 2. In a circle with center O, \overrightarrow{OT} is the radical segment and \overrightarrow{PTQ} is the tangent line, then:
 - (a) $\overrightarrow{OT} \perp \stackrel{\longleftrightarrow}{\operatorname{PQ}} \longleftrightarrow$
 - (b) $\overrightarrow{OT} \measuredangle \overrightarrow{PQ}$
 - (c) $\overline{OT} \parallel \overleftrightarrow{PQ}$
 - (d) \overline{OT} is the right bisector of

ÌPÓ

3.	In the adjacent figure find semicircular area if $\pi \approx 3.1416$ and m \overline{OA} =20cm. (a) 62.83sq cm		11.	(c) collinear (d) perpendicularThe distance between the centers of two congruent touching circles externally is:(a) of zero length								two
	(b) 314.16sq cm			e								
	(c) 436.20sq cm			(c) the diameter of each circle(d) twice the diameter of each circle2. In the adjacent circular figure with centerO and radius 5cm. The length of th								
	(d) 628.32sq cm		12.									
4.	In the adjacent figure find half the perimeter of circle with center O if $\pi = 3.1416$ and m $\overline{OA} = 20$ cm. (a) 31.42 cm			cho	rd int	erce this	is 5cr epted a circle	at 4		-		
	(b) 62.832 cm			(b)	6cm	ı						
	(c) 125.65 cm			(c)	7cm							
	(d) 188.50 cm			(d)	9cm							
5.	A line which has two points in common with a circle is called:(a) sine of a circle	t	13.	with	1 cent	er C	ning f). If Ē 20°, tl	$\overline{\mathbf{DC}}$	dian	neter	\overline{AB}	
	(b) Cosine of a circle(c) Tangent of a circle	n		(b) (c)	30° 50°							
	(d) Secant of a circle	/		(d)	60°							
6.	A line which has only one point in common with a circle is called: (a) sine of a circle	h) <mark>P</mark> =	diagra 4cm a					m
	(b) Cosine of a circle			(b)	2.67							
	(c) Tangent of a circle			(c)	2.8 c	m						
	(d) Secant of a circle			(d)	3cm							
7.	Two tangents drawn to a circle from a point outside it arein length. (a) Half (b) equal			In tl	U	$m\overline{O}$	liagra Y =9c		nd m	OX	if	m
	(c) Double (d) triple			(c)	9cm							
8.	A circle has only one: (a) secant (b) chord			(d)	12cr							
9.	(c) diameter (d) center A tangent line intersects the circle.			(a)	4cm							
	(a) three points (b) two points		1.	с	2.	а	3.	d	4.	b	5.	d
10.	(c) single point (d) no point at allTangents drawn at the ends of diameter											
	of a circle are to each other.		6.	С	7.	b	8.	d	9.	С	10.	а
	(a) parallel (b) non-parallel	I	11.	С	12.	b	13.	b	14.	b	15.	а

Chapter No 11

Q.1 Multiple Choice Questions

Four possible answers arc given for the following questions.

- 1. A 4 cm long chord subtends central angle of 60°. The radial segment of this, circle:
 - (a) 1cm (b) 2cm
 - (c) 3cm (d) 4cm
- 2. The length of a chord and the radial segment of a circle are congruent, the central angle made by the chord will be: 30° (b) 45° (a)
 - (c) 60° (d) 75°
- 3. Out of two congruent arcs of a circle, if one arc makes a central angle of 30° then the other arc will subtend the central angle of: 30°
 - (a) 15° (b)_
 - 45° (d) (c)
- An arc subtends a central angle of 40° 4. then the corresponding chord will subtended a central angle of: 20° (a) (b) 40°

60°

- 60° 80° (c) (d)
- 5. A pair of chords of a circle subtending two congruent central angles is:
 - (a) Congruent (b) incongruent
 - (c) Over lapping (d) parallel
- 6. If an arc of a circle subtends a central angle of 60° , then the corresponding chord of the arc will make the central angle of:
 - (a) 20° 40° (b)
 - 60° 80° (c) (d)
- 7. The semi circumference and the diameter of a circle both subtend a central angle of
 - 90° 180° (a) (b)
 - (c) 270° (d) 360°
- The chord length of a circle subtending a 8. central angle of 180° is always:

- Less than radial segment (a)
- Equal to the radial segment (b)
- (c) Double of the radial segment
- (d) None of these
- 9. If a chord of a circle subtends a central angle of 60° , then the length of the chord and the radial segment are:
 - (a) congruent (b) incongruent
 - (c) parallel perpendicular (d)
- 10. The arcs opposite to incongruent central angles of a circle are always:
 - (a) Congruent (b) incongruent
 - parallel (d) perpendicular (c)

V	1.	d	2.	с	3.	b	4.	b	5.	а
y a	6.	с	7.	b	8.	С	9.	а	10.	b

Chapter No 12

Q. 1 Multiple Choice Questions

Four possible answers arc given for the following questions.

- 1. A circle passes through the vertices of a right angled $\triangle ABC$ with mAC = 3cm and mBC = 4 cm, $m \angle C = 90^{\circ}$, Radius of the circle is:
 - (a) 1.5 cm (b) 2.0 cm
 - (c) 2.5 cm(d) 3.5 cm
- 2. In the adjacent circular figure, central and inscribed angles stand on the same arc AB:
 - (a) $m \angle 1 = m \angle 2$
 - $m \angle 1 = 2m \angle 2$ (b)
 - $m \angle 2 = 3m \angle 1$ (c)
 - $m \angle 2 = 2m \angle 1$ (d)
- In the adjacent figure if $m \angle 3 = 75^{\circ}$, then 3. find $m \angle 1$ and $m \angle 2$

(a)
$$37\frac{1^{\circ}}{2}$$
, $37\frac{1^{\circ}}{2}$
(b) $37\frac{1^{\circ}}{2}$, 75°
(c) 75° , $37\frac{1^{\circ}}{2}$
(d) 75° , 75°

- 4. Given that O is the center of the circle, the angle marked x will be:
 - (a) $12\frac{1^{\circ}}{2}$ (b) 25°
 - (c) 50° (d) 75°
- **5.** Given that O is the center of the circle the angle marked y will be:
 - (a) $12\frac{1^{\circ}}{2}$ (b) 25°
 - (c) 50° (d) 75°
- 6. In the figure, O is the center of the circle

and \overrightarrow{ABN} is a straight line. The obtuse angle AOC = x is:

- (a) 32° (b) 64°
- (c) 96° (d) 128°
- 7. In the figure , O is the center of the circle, then the angle x is:
 - (a) 55°
 - (b) 110°
 - (c) 220°
 - (d) 125°
- 8. In the figure, O is the center of the circle then angle x is:
 - (a) 15°
 - (b) 30°
 - (c) 45°
 - (d) 60°

9. In the figure ,O is the center of the circle then the angle x is:

(a) 15°

- (b) 30°
- (c) 45°
- (d) 60°

10.	In the figure, O	is the center of the circle
then	the angle x is:	10312024

- (a) 50°
- (b) 75°
- (c) 100°
- (d) 125°

1.	С	2.	d	3.	а	4.	С	5.	b
6.	d	7.	d	8.	b	9.	d	10.	С

Chapter No 13

Multiple Choice Questions

Three possible answers are given for the following questions. Tick (✓) the correct answer.

- The circumference of a circle is a called:
 (a) Chord (b) segment
 - (c) Boundary (d) point
- A line intersecting a circle is called:
 (a) Tangent (b) secant

(c) Chord (d) diameter

- 3. The portion of a circle between two radii and an arc is called:
 - 10313062
 - (a) Sector (b) segment
 - (c) Chord (d) interior
- 4. Angle inscribed in a semi-circle is:

(a)
$$\frac{\pi}{2}$$
 (b) $\frac{\pi}{3}$

(c)
$$\frac{\pi}{4}$$
 (d) π

- 5. The length of the diameter of a circle is how many times the radius of the circle?
 - (a) 1 (b) 2
 - (c) 3 (d) 4
- 6. The tangent and radius of a circle at the point of contact are:
 - (a) Parallel
 - (b) Not perpendicular
 - (c) Perpendicular
 - (d) Collinear
- 7. Circles having three points in common
 - (a) Overlapping
 - (b) Collinear
 - (c) Not coincide
 - (d) Non-concentric
- 8. If two circles touch each other, their center and point of contact are:
 - (a) Coincident (b) non collinear
 - (c) Collinear (d) non co planer
- 9. The measure of the external angle of a regular hexagon is:
 - (a) $\frac{\pi}{3}$ (b)
 - (c) $\frac{\pi}{6}$ (d) π
- 10. If the in-center and circum-centre of a triangle coincide, the triangle is:
 - (a) An isosceles
 - (b) A right triangle
 - (c) An equilateral

8

- (d) A scalene triangle
- 11. The measure of the external angle of a regular octagon is:

(a)	$\frac{\pi}{4}$	(b)	$\frac{\pi}{6}$
(c)	$\frac{\pi}{2}$	(d)	π

- 12. Tangents drawn at the end points of the diameter of a circle are:
 - (a) Parallel (b) perpendicular
 - (c) Intersecting (d) non co planer
- 13. The lengths of two transverse tangents to a pair of circles are:
 - (a) Un equal (b) equal
 - (c) Overlapping
 - (d) Double of each other
- 14. How many tangents can be drawn from a point outside the circle?
 - (a) 1 (b) 2
 - (c) 3 (d) none
- 15. If the distance between the center of two circles is equal to the sum of the their radii, then the circles will:
 - (a) Intersect
 - (b) Do not intersect
 - (c) Touch each other externally
 - (d) Touch each other internally
- 16. If the two circles touches externally, then the distance between their center is equal to the:
 - (a) Difference of their radii
 - (b) Sum of their radii
 - (c) Product of the their radii
 - (d) Division of their radii
- 17. How many common tangents can be drawn for two touching circles?
 - (a) 1 (b) 2
 - (c) 3 (d) 4
- 18. How many common tangents can be drawn for two disjoint circles?(a) 1 (b) 2
 - (c) 3 (d) 4

Page 29 of 29

- 19. How many common tangents can be drawn for two intersecting circles?(a) 1(b) 2
 - (c) 3 (d) 4
- 20. The word geometry is derived from two _____ words Geo and Matron.
 - (a) English (b) Latin
 - (c) Greek (d) Chinese
- 21. Euclid was a ____ mathematician.
 - (a) English (b) Latin
 - (c) Greek (d) Chinese
- 22. The circle passing through vertices of a triangle is called:
 - (a) circus circle (b) in-circle
 - (c) Escribed circle (d) right circle

23. The circle which touches the three sides of a triangle is called:

- (a) circus circle (b) in-circle
- (c) Escribed circle (d) right circle
- 24. The circle touching one side of the triangle externally and two produced sides internally is called:
 - (a) circus circle (b) in-circle
 - (c) Escribed circle (d) right circle
- 25. Tangent is a line touching a circle at:
 - (a) No point (b) one point
 - (c) Two points (d) infinite points
- 26. Two circles of different radii can touch each other at:
 - (a) No point (b) one point
 - (c) Two points (d) infinite points
- 27. Two circles of same radii can touch each other at:
 - (a) No point (b) one point
 - (c) Two points (d) infinite points

1.		С	2.	b	3.	а	4.	a	5.	b
6.		С	7.	a	8.	С	9.	a	10.	С
11	L.	а	12.	а	13.	b	14.	b	15.	С
16	5.	b	17.	С	18.	d	19.	b	20.	С
21	L.	С	22.	а	23.	b	24.	С	25.	b
26	5.	b	27.	d						

Reference: Mathematics 10 (Science Group) written by Muhammad Habib, Ch Asghar Ali, Prof. Abdul Rauf Khan and.

These notes are written by Amir Shehzad http://www.mathcity.org/people/amir

Page link: https://mathcity.org/matric/10th_science

ehzad