Available at MathCity.org

Unit 13

Probability

EXERCISE 13.1

1. Arshad rolls a dice, with sides labelled L, M, N, O, P, U. What is the probability that the dice lands on consonant?

Solution

S = {L, M, N, 0, P, U} ;
$$n(S) = 6$$

A = {L, M, N, P} ; $n(A) = 4$
P(A) = $\frac{n(A)}{n(S)} = \frac{4}{6} = \frac{2}{3}$

- 2. Shazia throws a pair of fair dice. What will be the probability of getting:
 - (i) sum of dots is at least 4.
 - (ii) product of both dots is between 5 to 10.
 - (iii) the difference between both the dots is equal to 4.
 - (iv) number at least 5 on the first dice and the number at least 4 on the second dice.

Solution

$$S = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)\}$$

$$n(S) = 36$$

(i) Sum of dots is at least 4

When a pair of fair dice is rolled, the sample space is as follows; Let A be the even, when Sum of dots is at least 4

$$A = \{(1,3), (1,4), (1,5), (1,6), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\}.$$

$$n(A) = 33$$

 $P(A) = \frac{n(A)}{n(S)} = \frac{33}{36} = \frac{11}{12}$

(ii) Product of both dots is between 5 to 10

$$B = \{(1,5), (1,6), (2,3), (2,4), (2,5), (3,2), (3,3), (4,2), (5,1), (5,2), (6,1)\}$$

$$n(B) = 11$$

$$P(B) = \frac{n(B)}{n(S)} = \frac{11}{36}$$

(iii) The difference between both the dots is equal to 4

$$C = \{(1,5), (2,6), (5,1), (6,2)\}$$

$$n(C) = 4$$

$$P(C) = \frac{n(C)}{n(S)} = \frac{4}{36} = \frac{1}{9}$$

(iv) Number at least 5 on the first dice and the number at least 4 on the second dice

$$D = \{(5,4), (5,5), (5,6), (6,4), (6,5), (6,6)\}$$

$$n(D) = 4$$

$$P(D) = \frac{n(D)}{n(S)} = \frac{6}{36} = \frac{1}{6}$$

- 3. One alphabet is selected at random from the word "MATHEMATICS". Find the probability of getting:
 - (i) vowel

- (ii) consonant
- (iii) an E

(iv) an A

(v) not M

(vi) not T

Solution

Given word MATHEMATICS

Total words are 11

$$n(S) = 11$$

(i) Vowel	(ii) Consonant
$A = \{A, E, A, I\} ; n(A) = 4$	$B = \{M, T, H, M, T, C, S\} ; n(B) = 7$
$P(A) = \frac{n(A)}{n(S)} = \frac{4}{11}$	$P(B) = \frac{n(B)}{n(S)} = \frac{7}{11}$
(iii) an E	(iv) an A
$C = \{E\} \; ; \; n(C) = 1$	$D = \{A, A\} \; ; \; n(D) = 2$
$P(C) = \frac{n(C)}{n(S)} = \frac{1}{11}$	$P(D) = \frac{n(D)}{n(S)} = \frac{2}{11}$
(v) not M	(vi) not T
$E = \{A, T, H, E, T, I, C, S\} ; n(E) = 9$	$F = \{M, A, H, E, M, A, I, C, S\} ; n(F) = 9$
$P(E) = \frac{n(E)}{n(S)} = \frac{9}{11}$	$P(F) = \frac{n(F)}{n(S)} = \frac{9}{11}$

Aslam rolled a dice. What is the probability of getting the numbers 3 or 4? Also find the probability of not getting the numbers 3 or 4.

Solution

$$S = \{1,2,3,4,5,6\}$$
 ; $n(S) = 6$
 $A = \{3,4\}$; $n(A) = 2$
 $P(A) = \frac{n(A)}{n(S)} = \frac{2}{6} = \frac{1}{3}$

Probability of not gettig 3 or $4 = P(A') = 1 - P(A) = 1 - \frac{1}{3} = \frac{2}{3}$

- Abdul Hadi labelled cards from 1 to 30 and put them in a box. He selects a card at random. What is the probability that selected card containing:
 - (i) the number 25

- (ii) number between 17 to 22
- (iii) number at least 20
- (iv) number not 27 and 29
- (v) number not between 12 15

Solution

Since the cards are labeled from 1 to 30, therefore n(S) = 30

(i)
$$A = \{25\}$$
 ; $n(A) = 1 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{1}{30}$

(ii)
$$A = \{17,18,19,20,21,22\}$$
 ; $n(A) = 6 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{6}{30} = \frac{1}{5}$

(iii)
$$A = \{20,21,22,23,24,25,26,27,28,29,30\}$$
 ; $n(A) = 11 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{11}{30}$

(iv)
$$A = \{27,29\}$$
 ; $n(A) = 2 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{2}{30} = \frac{1}{15}$

Probability of not gettig 27 and 29 = $P(A') = 1 - P(A) = 1 - \frac{1}{15} = \frac{14}{15}$

(v)
$$A = \{12,13,14,15\}$$
 ; $n(A) = 4 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{4}{30} = \frac{2}{15}$

Probability of not gettig 12 to 15 =
$$P(A') = 1 - P(A) = 1 - \frac{2}{15} = \frac{13}{15}$$

6. The probability that Ayesha will pass the examination is 0.85. What will be the probability that Ayesha will not pass the examination?

Solution

Ayesha will pass the examinition = P(A) = 0.85Ayesha will not pass the examinition = P(A') = 1 - P(A) = 1 - 0.85 = 0.15

- Taabish tossed a fair coin and rolled a fair dice once. Find the probability of the following events:
 - (i) tail on coin and at least 4 on dice.
 - (ii) head on coin and the number 2,3 on dice.
 - (iii) head and tail on coin and the number 6 on dice.
 - (iv) not tail on coin and the number 5 on dice.
 - not head on coin and the number 5 and 2 on dice. (v)

Solution

When a fair coin is tossed and fair dice is rolled, the sample space is as follows;

Die	1	2	3	4	5	6
Coin						V
Н	Н, 1	H, 2	Н, 3	H, 4	H, 5	H, 6
T	T, 1	T, 2	T, 3	T, 4	T, 5	T, 6

Sample space =
$$\{(H,1), (H,2), (H,3), (H,4), (H,5), (H,6)\}$$

 $\{(T,1), (T,2), (T,3), (T,4), (T,5), (T,6)\}$

Therefore n(S) = 12

(i)
$$A = \{(T, 4), (T, 5), (T, 6)\}$$
; $n(A) = 3 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{3}{12} = \frac{1}{4}$
(ii) $A = \{(H, 2), (H, 3)\}$; $n(A) = 2 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{2}{12} = \frac{1}{6}$

(ii)
$$A = \{(H, 2), (H, 3)\}$$
; $n(A) = 2 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{2}{12} = \frac{1}{6}$

(iii)
$$A = \{(H, 5), (T, 5)\}$$
; $n(A) = 2 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{2}{12} = \frac{1}{6}$

(iv)
$$A = \{(T, 5)\}$$
 ; $n(A) = 1 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{1}{12}$

$$P(A') = 1 - P(A) = 1 - \frac{1}{12} = \frac{11}{12}$$

(v)
$$A = \{1(H,5), (H,2)\}$$
 ; $n(A) = 2 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{2}{12} = \frac{1}{6}$

$$P(A') = 1 - P(A) = 1 - \frac{1}{6} = \frac{5}{6}$$

- 8. A card is selected at random from a well shuffled pack of 52 plying cards. What will be the probability of selecting:
 - (i) a queen
- (ii) neither a queen nor a jack

Solution

Since there are 52 playing cards, so n(S) = 52

(i)
$$A = 4$$
 queen ; $n(A) = 4 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{4}{52} = \frac{1}{13}$

(ii)
$$A = 4$$
 queen and 4 Jack; $n(A) = 8 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{8}{52} = \frac{2}{13}$

Probability of selecting neither a queen nor a jack = P(A') = 1 - P(A)Probability of selecting neither a queen nor a jack = $P(A') = 1 - \frac{2}{13} = \frac{11}{13}$

Probability of selecting neither a queen nor a jack = $P(A') = \frac{11}{13}$

- A card is chosen at random from a pack of 52 playing cards. Find the probability of getting:
 - (i) a jack

(ii) no diamond

Solution

Since there are 52 playing cards, so n(S) = 52

(i)
$$A = 4$$
 jack; $n(A) = 4 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{4}{52} = \frac{1}{13}$

(ii)
$$A = 13$$
 diamond; $n(A) = 13 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{13}{52} = \frac{1}{4}$

Probability of selecting no diamond = P(A') = 1 - P(A)

Probability of selecting no diamond = $P(A') = 1 - \frac{1}{4}$

Probability of selecting no diamond = $P(A') = \frac{3}{4}$

EXERCISE 13.2

1. A researcher collected data on number of deaths from Horse-Ricks in Russian Army crops over to years. The table is as follows:

No. of death	0	1	2	3	4	5	6
Frequency	60	50	87	40	32	15	10

Find the relative frequency of the given data.

Solution: using the formula $r \cdot f = \frac{f}{\sum f}$

No. of death	f	r.f.
0	60	$\frac{60}{294} = \frac{10}{49}$
1	50	25 147
2	87	29 98
3	40	$\frac{20}{147}$
4	32	16 147
5	15	5 98
6	10	$\frac{5}{147}$
Total	$\Sigma f = 294$	

2. The frequency of defective products in 750 samples are shown in the following table. Find the relative frequency for the given table.

No. of defectives per sample	0	1	2	3	4	5	6	7	8
No. of sample	120	140	94	85	105	50	40	66	50

Solution: using the formula $r \cdot f = \frac{f}{\sum f}$

No. of defective per sample	f	r.f.
0	120	<u>4</u> 25
1	140	14 75
2	94	47 375
3	85	17 150
4	105	$\frac{21}{150}$
5	50	1 15
6	40	4 75
7	66	$\frac{66}{750} = \frac{33}{375}$
8	50	$\frac{1}{15}$
Total	$\sum f = 750$	

3. A quiz competition on general knowledge is conducted. The number of corrected answers out of 5 questions for 100 sets of questions is given below.

X	0	1	2	3	4	5
f	10	23	15	25	18	9

Find the relative frequencies for the given data.

Solution: using the formula $r extbf{.} f = \frac{f}{\sum f}$

X	f	r.f.
0	10	$\frac{1}{10}$
1	23	23 100
2	15	$\frac{3}{20}$
3	25	$\frac{1}{4}$
4	18	9 50
5	09	9 100
Total	$\Sigma f = 100$	

4. A survey was conducted from the 50 students of a class and asked about their favourite food. The responses are as under:

Name of food item	Biryani	Biryani Fresh Juice		Bar. B.Q	Sweets
No. of students	40	07	21	15	25

- (i) how many percentages of students like biryani?
- (ii) how many percentages of students like chicken?
- (iii) which food is the least like by the students?
- (iv) which food is the most prefer by the students?

Solution

Total number of students = 50, so n(S) = 50

- (i) Relative frequency of students who like biryani $=\frac{40}{50}=0.8=80\%$
- (ii) Relative frequency of students who like chicken $=\frac{21}{50}=0.42=42\%$
- (iii) Fresh Juice is the least like by the students. i.e. 7 students out of 50.
- (iv) Biryani is the most prefer by the students. i.e. 40 students out of 50.
- 5. In 500 trials of a thrown of two dice, what is expected frequency that the sum will be greater than 8?

Solution

$$S = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)\}$$

$$n(S) = 36$$

Let A be the event that sum will be greater than 8;

$$A = \{(3,6), (4,5), (4,6), (5,4), (5,5), (5,6), (6,3), (6,4), (6,5), (6,6)\}$$

$$n(A) = 10$$

$$P(A) = \frac{n(A)}{n(S)} = \frac{10}{36} = \frac{5}{18}$$

Expected Frequency = E(A) = N × P(A) =
$$500 \times \frac{5}{18} = 138.89 \approx 139$$

6. What is the expectation of a person who is to get Rs. 120 if he obtains at least 2 heads in single toss of three coins?

Solution

$$S = \{HHH, HTH, HHT, THH, TTH, THT, HTT, TTT\} ; n(S) = 8$$

$$A = \{HHH, HTH, HHT, THH\}$$
; $n(S) = 4$

$$P(A) = \frac{n(A)}{n(S)} = \frac{4}{8} = \frac{1}{2}$$

Expected Frequency = E(A) = N × P(A) =
$$120 \times \frac{1}{2} = 60$$

7. Find the expected frequencies of the given data if the experiment is repeated 200 times.

x	0	1	2	3	4	5	6
P(x)	0.11	0.21	0.17	0.18	0.09	0.17	0.07

Solution: using the formula $EF = P(X) \times 200$

X	0	1	2	3	4	5	6
P(X)	0.11	0.21	0.17	0.18	0.09	0.17	0.07
Expected Frequency	22	42	34	36	18	34	14

8. The probability of getting 5 sixes while tossing six dice is $\frac{2}{5}$. How many times would you expect it to show 5 sixes?

Solution

$$N = 200$$
 ; $P(A) = \frac{2}{5}$

Expected Frequency = E(A) = N × P(A) =
$$200 \times \frac{2}{5} = 80$$
 times

REVIEW EXERCISE 13

I. Four	r option	is are give	en agan	nst each st	atement	. E	incircle the c	orrect o	ption.
(i)	Eacl	h elemen	t of the	sample sp	ace is ca	all	ed:		
	(a)	event			(b)		experiment		
	(c)	√ samp	le point		(d)		outcomes		
(ii)	An o	outcome	which 1	epresents	how ma	ıny	times we ex	pect the	e things to be
	happ	pened is o	called:						
	(a)	outco	mes		(b) V		favourable of	outcome	•
	(c)	samp	le space	•	(d)		sample poin	ıt	
(iii)	Which	one tell	s us ho	w often a	specific	се	vent occurs	relative	to the total
	numbe	er of frequ	uency e	event or tri	als?				
	(a)	expecte	d frequ	ency	(b)	sı	ım of relativ	e freque	ency
	(c) V	relative	freque	ncy	(d)	fr	equency		
(iv)	Estima	ated prob	ability	of an even	t occurr	ing	g is also knov	wn as:	
	(a) V	relative	freque	ncy	(b)	e	xpected frequ	iency	
	(c)	class bo	undari	es	(d)	sı	ım of expect	ed frequ	iency
(v)	The su	ım of all	expecte	ed frequen	cies is e	qu	al to the fixe	d numb	er of:
	(a) \	trials			(b)	re	elative freque	encies	
	(c)	outcome	es		(d)	e	vents		
(vi)	The ch	nance of o	occurre	nce of a pa	articular	ev	ent is called	:	
	(a)	sample	space		(b)	es	stimated prol	bability	
	(c)	probabi	lity		(d)	ez	xpected frequ	uency	
(vii)			will p	robably oc	cur. It h	nas	greater char	ice to o	ccur is
	called:				,				
	(a)	equally	likely e	event	(b) V	li	kely event		
	(c)	unlikely	event		(d)	C	ertain event		
(viii)	Find o	ut the tot	al num	_		_	-	en 4 dice	e are rolled.:
	(a)	6^2	(b)	6^3	(c)	6	1	(d)	6^6

(ix) While rolling a pair of dice, what will be the probability of double 2?

(a) $\frac{1}{6}$ (b) $\frac{1}{3}$ (c) $\frac{5}{6}$ (d) $\sqrt{\frac{1}{36}}$

(x) A card is chosen from a pack of 52 playing cards, find the probability of getting no jack and king:

- (a) $\frac{2}{13}$ (b) $\sqrt{\frac{11}{13}}$ (c) $\frac{2}{52}$
- (d) $\frac{11}{52}$

2. Define the following:

- relative frequency (i)
- (ii) expected frequency

Solution

Relative Frequency: Relative Frequency is an estimated probability of an event occurring when an experiment is repeated a fixed number of times.

Expected Frequency: Expected Frequency is a measure that estimates how often an event should be occur depended on probability. Expected frequency is found by using the following method;

Expected Frequency = Total number of trials \times Probability of an event Expected Frequency = $E(A) = N \times P(A)$

3. An urn contains 10 red balls, 5 green balls and 8 blue balls. Find the probability of selecting at random.

- a green ball (i)
- a red ball (ii)
- a blue ball (iii)

- (iv) not a red ball
- (v) not a green ball

Solution

Since total balls are 23, therefore n(S) = 10 + 5 + 8 = 23

(i)
$$A = \text{Green balls}$$
 ; $n(A) = 5 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{5}{23}$

(ii)
$$A = \text{Red balls}$$
 ; $n(A) = 10 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{10}{23}$

(iii)
$$A = \text{Blue balls}$$
 ; $n(A) = 8 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{8}{23}$

(iv)
$$A = \text{Red balls}$$
 ; $n(A) = 10 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{10}{23}$

Probability of not gettig a red ball = $P(A') = 1 - P(A) = 1 - \frac{10}{23} = \frac{13}{23}$

(v)
$$A = \text{Green balls}$$
 ; $n(A) = 5 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{5}{23}$

Probability of not gettig a green ball = $P(A') = 1 - P(A) = 1 - \frac{5}{22} = \frac{18}{22}$

- 4. Three coins are tossed together, what is the probability of getting:
 - (i) exactly three heads
 - (ii) at least two tails
 - (iii) not at least two heads
 - (iv) not exactly two heads

Solution

 $S = \{HHH, HTH, HHT, THH, TTH, THT, HTT, TTT\} ; n(S) = 8$

(i)
$$A = \{HHH\}$$
; $n(A) = 1 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{1}{8}$

(ii) A = {TTH, THT, HTT, TTT};
$$n(A) = 4 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{4}{8} = \frac{1}{2}$$

(iii) A = {HHH, HTH, HHT, THH} ;
$$n(A) = 4 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{4}{8} = \frac{1}{2}$$

Probability of not gettig at least two Heads = $P(A') = 1 - P(A) = 1 - \frac{1}{2} = \frac{1}{2}$

(iv) A = {HTH, HHT, THH} ;
$$n(A) = 3 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{3}{8}$$

Probability of not gettig exactly two Heads = $P(A') = 1 - P(A) = 1 - \frac{3}{8} = \frac{5}{8}$

- 5. A card is drawn from a well shuffled pack of 52 playing cards. What will be the probability of getting:
 - (i) king or jack of red colour
 - (ii) not "2" of club and spade

Solution

Since there are 52 playing cards, so n(S) = 52

(i) A = king or jack of red colour;
$$n(A) = 2 + 2 = 4 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{4}{52} = \frac{1}{13}$$

(ii) A = 2 of club and spade ;
$$n(A) = 2 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{2}{52} = \frac{1}{26}$$

Probability of selecting not 2 of club and spade = P(A') = 1 - P(A)

Probability of selecting not 2 of club and spade = $P(A') = 1 - \frac{1}{26} = \frac{25}{26}$

Probability of selecting not 2 of club and spade = $P(A') = \frac{25}{26}$

6. Six coins are tossed 600 times. The number of occurrence of tails are recorded and shown in the table given below:

No. of tails	0	1	2	3	4	5	6
Frequency	110	90	105	80	76	123	16

Find the relative frequency of given table.

Solution: using the formula $r \cdot f = \frac{f}{\sum f}$

No. of tails	0	1	2	3	4	5	6	Total
f	110	90	105	80	76	123	16	$\Sigma f = 600$
Relative Frequency	11 60	$\frac{3}{20}$	$\frac{7}{40}$	2 15	19 150	41 200	2 75	

7. From a lot containing 25 items, 8 items are defective. Find the relative frequency of non-defective items, also find the expected frequency of non-defective items.

Solution

Total Items = 25

Defective Items = 8

Non – Defective Items = 25 - 8 = 17

So expected frequency of Non – Defective Items is 17

Relative Frequency = $\frac{\text{frequency of Non - Defective Items}}{\text{Total Items}}$

Relative Frequency = $\frac{17}{25}$ = 0.68