Unit 10

Graphs of Functions

EXERCISE 10.1

- 1. Sketch the graph of the following linear functions:
 - (i) y = 3x 5

(ii) y = -2x + 8

(iii) y = 0.5x - 1

Solution

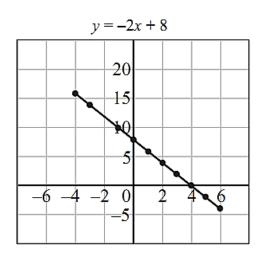
(i)

X	-2	-1	0	1	2	3
y = 3x-5	-11	-8	-5	-2	1	4

$$y = 3x - 5$$

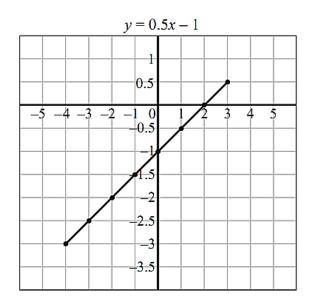
$$-5 -4 -3 -2 -1 0$$

$$-10$$


$$-10$$

$$-15$$

$$-20$$


(ii)

	-2					
y = -2x + 8	12	10	8	6	4	2

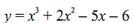
(iii)

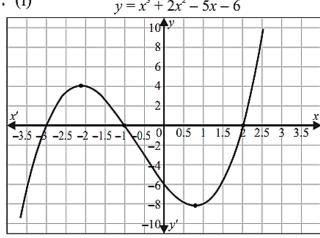
X	-2	-1	0	1	2	3
y = 0.5x-1	-2	-1.5	-1	-0.5	0	0.5

2. Plot the graph of the following quadratic and cubic functions:

(i)
$$y = x^3 + 2x^2 - 5x - 6$$
; $-3.5 \le x \le 2.5$ (ii) $y = x^2 + x - 2$
(iii) $y = x^3 + 3x^2 + 2x$; $-2.5 \le x \le 0.5$ (iv) $y = 5x^2 - 2x - 3$

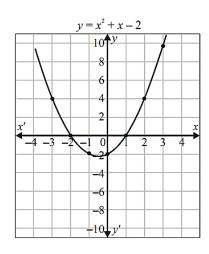
(ii)
$$y = x^2 + x - 2$$


(iii)
$$y = x^3 + 3x^2 + 2x$$
; $-2.5 \le x \le 0.5$

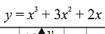

(iv)
$$y = 5x^2 - 2x - 3$$

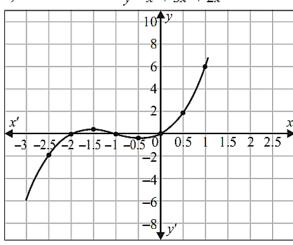
Solution

(i)


X	-3.5	-3	-2	-1	0	1	2	2.5
У	-6.88	0	4	0	-6	-8	0	9.63

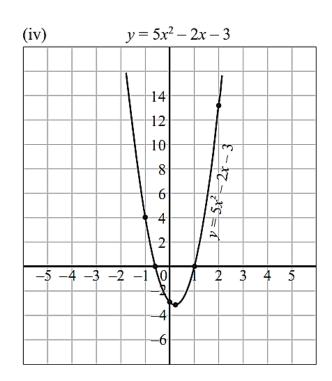
(ii)


X	-4	-3	-2	-1	0	1	2	3	4
y	10	4	0	-2	-2	0	4	10	18



(iii)

	-2.5							1
y	-1.875	0	0.375	0	-0.375	0	1.875	6


(iii)

(iv)

X	-2	-1	0	1	2
y	21	4	-3	0	13

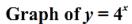
Plot the graph of the following functions: 3.

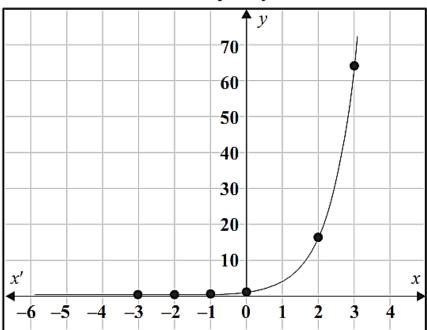
$$(i) y = 4^x$$

(ii)
$$y = 5^{-3}$$

(iii)
$$y = \frac{1}{x-3} \ x \neq 3$$

(i)
$$y = 4^x$$
 (ii) $y = 5^{-x}$ (iii) $y = \frac{1}{x-3} \ x \neq 3$
(iv) $y = \frac{2}{x} + 3, x \neq 0$ (v) $y = x^{\frac{1}{2}}$ (vi) $y = 3x^{\frac{1}{3}}$

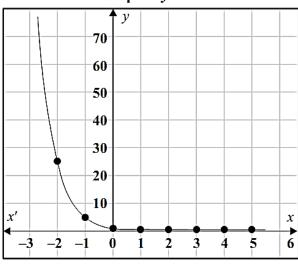

(vi)
$$y = 3x^{\frac{1}{3}}$$


$$(vii) y = 2x^{-2}$$

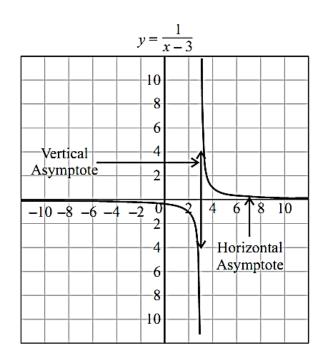
Solution

(i)

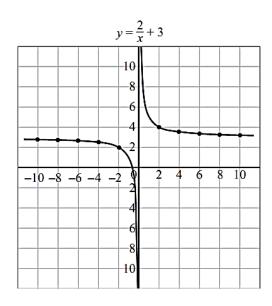
X	-3	-2	-1	0	1	2	3
У	0.02	0.06	0.25	1	4	16	64



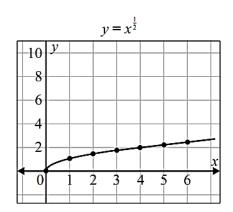
(ii)


	-3						3
y	125	25	5	1	0.2	0.04	0.008

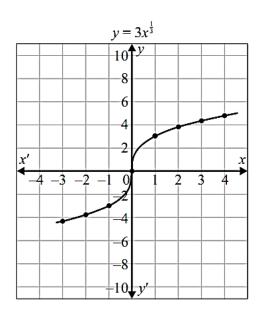
Graph of $y = 5^{-x}$


(iii)

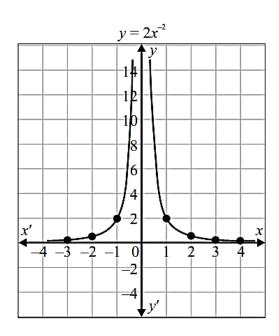
X	-2	-1	0	1	2	4	5
У	-0.2	-0.25	-0.3	-0.5	-1	1	0.5


(iv)

X	-3	-2	-1	1	2	3
y	2.3	2	1	5	4	3.7


(v)

			2				
y	0	1	1.4	1.7	2	2.2	2.4


(vi)

				2		4
y	-3	0	3	3.6	4.2	4.5

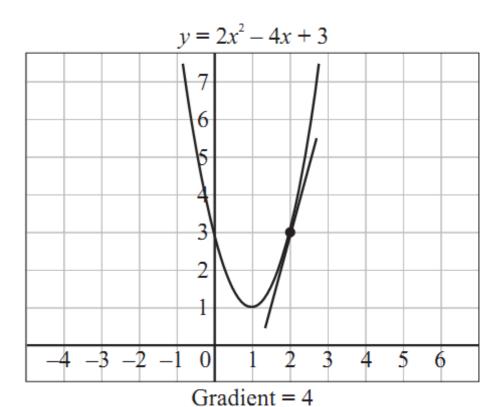
(vii)

X	-2	-1.5	-1	-0.5	0.5	1	1.5	2
V	0.5	0.9	2	8	8	2	0.9	0.5

EXERCISE 10.2

1. Plot the graph of $y = 2x^2 - 4x + 3$ for x from -1 to 3. Draw tangent at (2, 3) and find the gradient.

Solution


X	-1	-0.5	0	0.5	1	1.5	2	2.5	3
y	9	5.5	3	1.5	1	1.5	3	5.5	9

Consider (2.5,5.5)&(1.5,1.5)

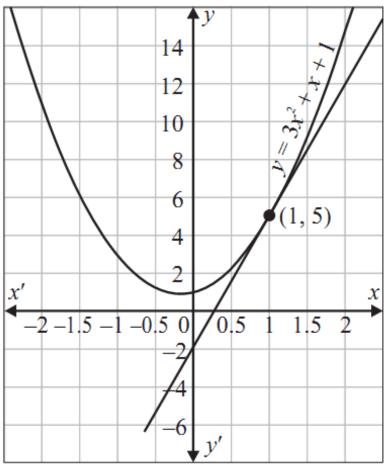
Gradient =
$$\frac{1.5-5.5}{1.5-2.5} = \frac{-4}{-1}$$

Gradient = 4

Graph

2. Plot the graph of $y = 3x^2 + x + 1$ and draw tangent at (1, 5). Also find gradient of the tangent line at this point.

Solution

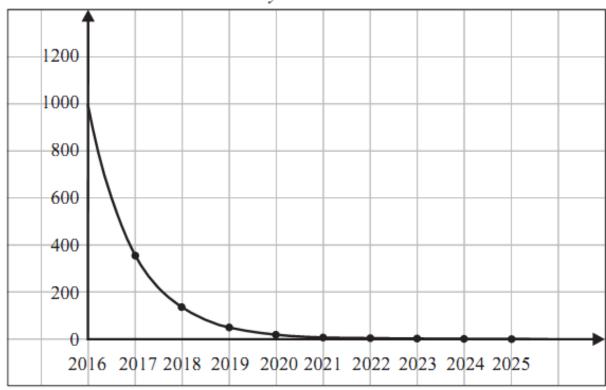

X	-1	-0.5	0	0.5	1	1.5
y	3	1.25	1	2.25	5	9.25

Consider (1.5,8.5)&(0.5,1.5)

Gradient =
$$\frac{1.5 - 8.5}{0.5 - 1.5} = \frac{-7}{-1}$$

Gradient = 7

Graph


Gradient = 7

- 3. The strength of students in a school was 1000 in 2016. If the strength decay according to the equation $S = 1000 e^{-t}$, where S is the number of students at time t.
 - (a) Graph the given equation for t = 0 (in 2016) to t = 9 (in 2025).
 - (b) From the graph, estimate the student's strength in 2019 and in 2023.

Solution

X	0	1	2	3	4	5	6	7	8	9
y	1000	368	135	50	18	7	2	0.9	0.3	0.1

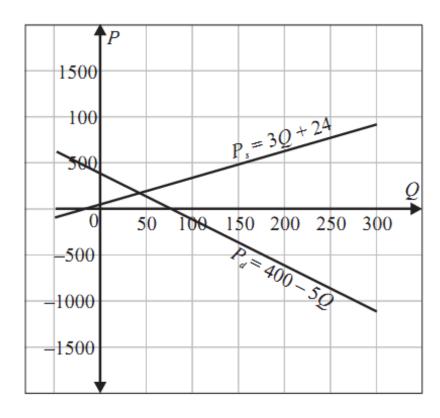
$$y = 100e^{-t}$$

(b) From the graph, students' strength in 2019 is approximately 50, and in 2023 approximately 1.

4. The demand and supply functions for a product are given by the equations $P_d = 400 - 5Q$, $P_s = 3Q + 24$:

Plot the graph of each function over the interval Q = 0 to Q = 300.

Solution


$$P_d = 400 - 5Q$$

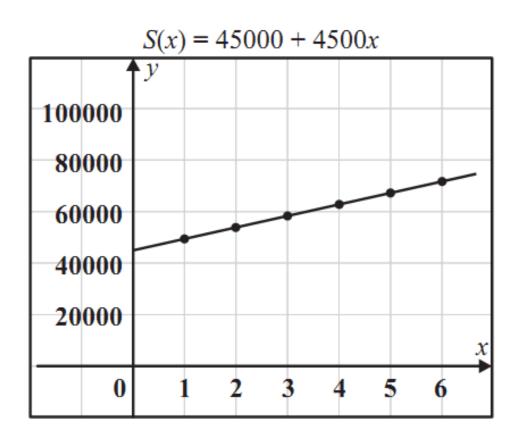
Q	0	50	100	150	200	250	300
P_{d}	400	150	-100	-350	-600	-850	-1100

$$P_s = 3Q + 24$$

Q	0	50	100	150	200	250	300
P_{s}	24	174	324	474	624	774	924

Graph

5. Shahid's salary S(x) in rupees is based on the following formula:


$$S(x) = 45000 + 4500x$$
,

where x is the number of years he has been with the company. Sketch and interpret the graph of salary function for $0 \le x \le 5$.

Solution

S	0	1	2	3	4	5
S(x)	45000	49500	54000	58500	63000	67500

Graph

Shahid's salary increases linearly with years of service and rises by Rs. 4500 for every year.

- 6. A company manufactures school bags. The cost function of producing x bags is C(x) = 1200 + 20 x and the revenue from selling x bags is R(x) = 50x.
 - (a) Find the break-even point.
 - (b) Determine the profit or loss when 250 bags are sold.
 - (c) Plot the graphs of both the functions and identify the break-even point.

Solution

(a) The break – even point

The break – even point occur when R(x) = C(x)

$$50x = 1200 + 20x$$

$$50x - 20x = 1200$$

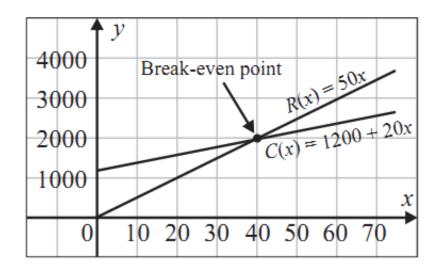
$$30x = 1200$$

$$x = 40 \text{ bags}$$

(b) Profit or Loss after Sale

$$P(x) = R(x) - C(x)$$

$$P(x) = 50x - 1200 - 20x$$

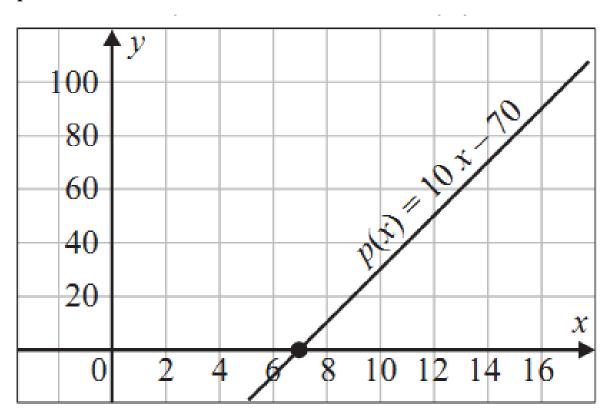

$$P(x) = 30x - 1200$$

$$P(250) = 30(250) - 1200$$

Profit = Rs.
$$6300$$

(c) Graph

X	0	30	60	90	120	150	180	210
C(x)	1200	1800	2400	3000	3600	4200	4800	5400
R(x)	0	1500	3000	4500	6000	7500	9000	10500


7. A newspaper agency fixed cost of Rs. 70 per edition and marginal printing and distribution costs of Rs. 40 per copy. Profit function is p(x) = 10 x - 70, where x is the number of newspapers. Plot the graph and find profit for 500 newspapers.

Solution

X	6	7	8	10
P(x)	-10	0	10	30

$$P(500) = 10(500) - 70 = 5000 - 70 = 4930$$

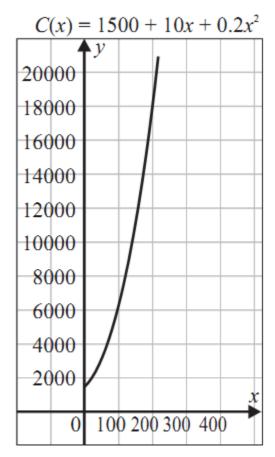
Graph

Profit for 500 newspapers = Rs. 4930

8. Ali manufactures expensive shirts for sale to a school. Its cost (in rupees) for x shirts is $C(x) = 1500 + 10x + 0.2x^2$, $0 \le x \le 150$. Plot the graph and find the cost of 200 shirts.

Solution

X	0	50	100	150	200
P(x)	1500	2500	4500	7500	11500


 $C(x) = 1500 + 10x + 0.2x^2$

 $C(200) = 1500 + 10(200) + 0.2(200)^2$

C(200) = 1500 + 2000 + 8000

C(200) = 11500

Graph

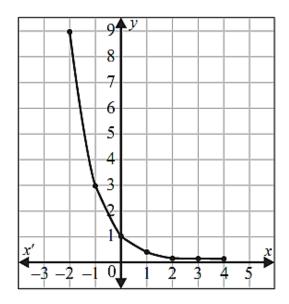
Cost of 200 shirts = Rs. 11500

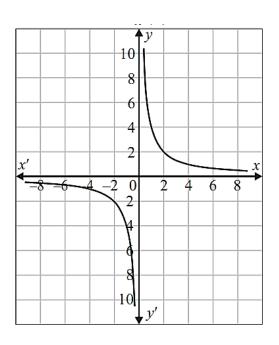
(REVIEW EXERCISE 10)

1.	Fou	r optic	ons are given	again	st each stater	nent. En	circle the co	orrect op	otion.
	(i)	(a)	5 represents: x-axis line to x-a	nxis		(b)	y-axis	v-axis	
	(ii)		be of the line		+ 3 is:	(9)		y unio	
	(11)	_	3			(b)	5	(d)	- 5
	(iii)	The	y- intercepts	of $y =$	-2x - 1 is:				
		(a)	-2			(b)	2		
		6	-1			(d)	1		
	(iv)	The	graph of $y =$	x^3 , cut	ts the <i>x</i> -axis a	at:			
		(b)	x = 0	(b)	x = 1	(c)	x = -1	(d)	x = 2
	(v)	The	graph of 3 ^x 1	eprese	nts:				
		(6)	growth	(b)	decay	(c)	both(a)a	nd(b) (d) a line
	(vi)	The	graph of $y = -$	$-x^2 + 5$	onens:				
	(12)				downward	(c)	left side	(d)	right side
	(vii)	The	graph of y = 3	$x^2 - 9$ c	pens:				
		(2)	upward	(b)	downward	(c)	left side	(d)	right side
	(viii	y = 5	'x is	fu	nction.			,	
		(a) li	inear	(b)	quadratic	(c)	cubic		exponential
	(ix)	Reci	procal function	on is:					
		(a)	$y = 7^x$		$y = \frac{2}{x}$	(c)	$y = 2x^2$	(d)	$y = 5x^3$
	(v)	2	$2x^3 \pm 7$ is		funct	ion			

(a) exponential (b) cubic (c) linear (d) reciprocal

Plot the graph of the following functions: 2.

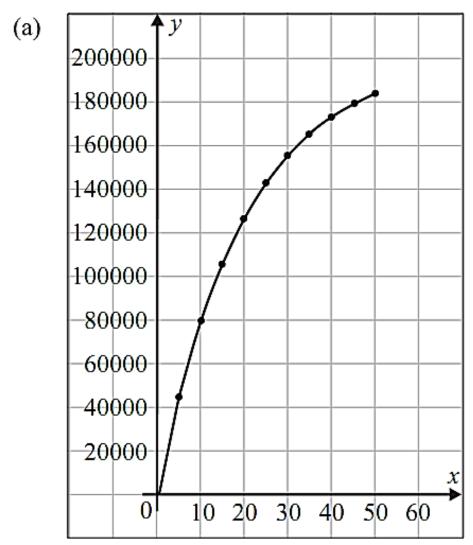

(i)
$$y = 3^{-x} \text{ for } x \text{ from } -2 \text{ to } 4$$


(i)
$$y = 3^{-x}$$
 for x from -2 to 4 (ii) $y = \frac{2}{x}$, $x \neq 0$

Solution

X	$y = 3^{-x}$
-2	9
-1	3
0	1
1	0.33
2	0.11
3	0.04
4	0.01

X	y = 2/x
-3	-2/3
-2	-1
-1	-2
-0.5	-4
-0.2	-10
0.2	10
0.5	4
1	2
2	1
3	2/3



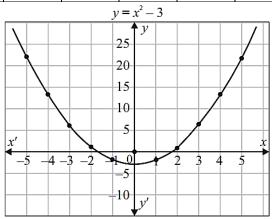
- 3. Sales for a new magazine are expected to grow according to the equation: $S = 200000 (1 e^{-0.05t})$, where t is given in weeks.
 - (a) Plot graph of sales for the first 50 weeks.
 - (b) Calculate the number of magazines sold, when t = 5 and t = 35.

Solution

t	0	10	20	30	40	50
S(t)	0	78694	126424	155374	172933	183583

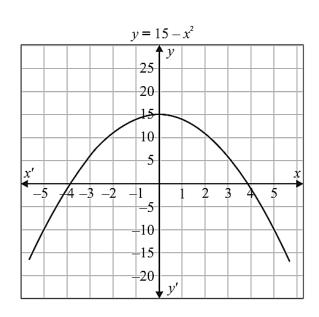
(b) For t = 5, S = 44239.84 and for t = 35, S = 165245.2

4. Plot the graph of following for x from -5 to 5:

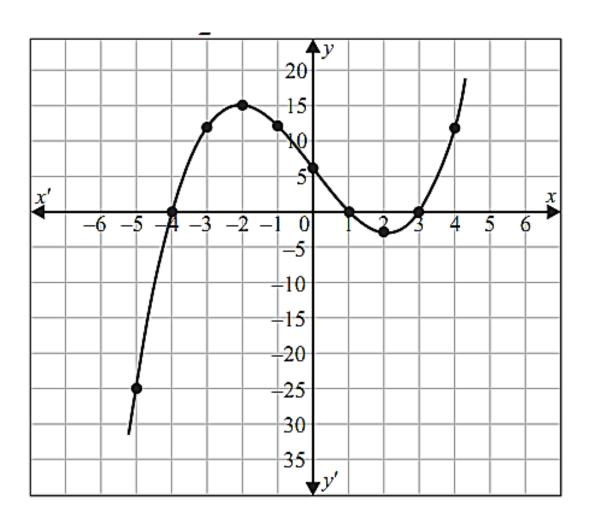

(i)
$$y = x^2 - 3$$

(ii)
$$y = 15 - x^2$$

Solution


4(i)

X	-5	-4	-3	-2	-1	0	1	2	3	4	5
y	22	13	6	1	-2	-3	-2	1	6	13	22


4(ii)

X	-5	-4	-3	-2	-1	0	1	2	3	4	5
y	-10	-1	6	11	14	15	14	11	6	-1	-10

5. Plot the graph of $y = \frac{1}{2} (x+4)(x-1)(x-3)$ for x from -5 to 4 Solution

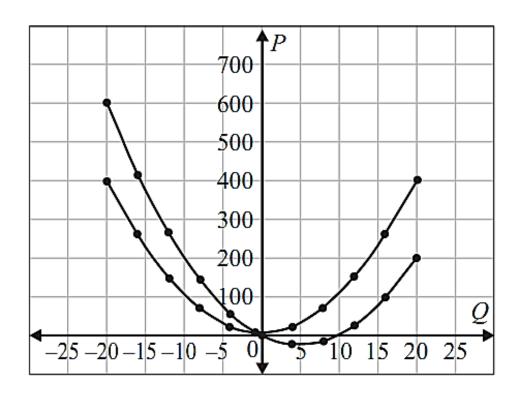
X	-5	-4	-3	-2	-1	0	1	2	3	4
y	-24	0	12	15	12	6	0	-3	0	12

6. The supply and demand functions for a particular market are given by the equations:

 $P_s = Q^2 + 5$ and $P_d = Q^2 - 10Q$, where P represents price and Q represents quantity,

Sketch the graph of each function over the interval Q = -20 to Q = 20.

Solution


$$P_s = Q^2 + 5$$

Q	-20	-15	-10	-5	0	5	10	15	20
P_{s}	405	230	105	30	5	30	105	230	405

$$P_{\rm d} = Q^2 - 10Q$$

Q	-20	-15	-10	-5	0	5	10	15	20
P_d	600	375	200	75	0	-25	0	75	200

Graph

7. A television manufacturer company make 40 inches LEDs. The cost of manufacturing x LEDs is C(x) = 60,000 + 250x and the revenue from selling x LEDs is R(x) = 1200x. Find the break-even point and find the profit or loss when 100 LEDs are sold. Identify the break-even point graphically.

Solution

(a) The break – even point (no profit or loss)

The break – even point occur when R(x) = C(x)

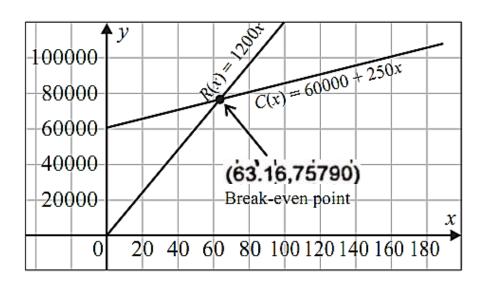
1200x = 60000 + 250x

x = 63.16 LED's

(b) Profit or Loss after Sale

P(x) = R(x) - C(x)

P(x) = 1200x - 60000 - 250x


P(x) = 950x - 60000

P(100) = 950(100) - 60000

Profit = Rs. 35000

(c) Graph

X	20	40	60	80	100	120	140
C(x)	65000	70000	75000	80000	85000	90000	95000
R(x)	24000	48000	72000	96000	120000	144000	168000

Profit = Rs. 35000