Mathematics 9: PCTB (2025) Authors: Arshad Ali & Muhammad Usman Hamid Available at MathCity.org

1. Identify each of the following as a rational or irrational number:

(i) 2.353535	(ii)	$0.\overline{6}$	(iii)	2.236067	(iv)	$\sqrt{7}$
(v) <i>e</i>	(vi)	π	(vii)	$5 + \sqrt{11}$	(viii)	$\sqrt{3} + \sqrt{13}$
$(ix)\frac{15}{4}$	(x)	$(2 - \sqrt{2})$	$(2+\sqrt{2})$			

Solution

(i) Rational	(ii) Rational	(iii) Irrational	(iv) Irrational	(v) Irrational
(vi) Irrational	(vii)Irrational	(viii) Irrational	(ix) Rational	(x) [–] rational

2. Represent the following numbers on number line:

(i)	$\sqrt{2}$	(ii)	$\sqrt{3}$	(iii)	$4\frac{1}{3}$
(iv)	$-2\frac{1}{7}$	(v)	$\frac{5}{8}$	(vi)	$2\frac{3}{4}$

Solution

Visit us @ YouTube "Learning with Usman Hamid"

3. Express the following as a rational	Express the following as a rational number $\frac{p}{q}$ where p and q are integers						
and $q \neq 0$:	and $q \neq 0$:						
(i) $0.\overline{4}$ (ii) $0.\overline{37}$ ((iii) 0. <u>21</u>						
$x = 0.\overline{4}$	$x = 0.\overline{37}$						
$x = 0.4444 \dots$	$x = 0.3737 \dots$						
10x = 10(0.4444)	100x = 100(0.3737)						
$10x = 4.4444 \dots$	$100x = 37.3737 \dots$						
$10x - x = (4.4444 \dots) - (0.4444 \dots)$	$100x - x = (37.3737 \dots) - (0.3737 \dots)$						
$9x = 4 \Rightarrow x = \frac{4}{9}$	$99x = 37 \Rightarrow x = \frac{37}{99}$						
$x = 0.\overline{21}$							
x = 0.2121							
100x = 100(0.2121)							
100x = 21.2121							
$100x - x = (21.2121 \dots) - (0.2121 \dots)$							
$99x = 21 \Rightarrow x = \frac{21}{99}$							

4. Name the property used in the following:

(i)	(a+4) + b = a + (4+b)	(ii)	$\sqrt{2} + \sqrt{3} = \sqrt{3} + \sqrt{2}$
(iii)	x - x = 0	(iv)	a(b+c) = ab + ac
(v)	16 + 0 = 16	(vi)	$100 \times 1 = 100$
(vii)	$4 \times (5 \times 8) = (4 \times 5) \times 8$	(viii)	ab = ba

- (i) Associative property over addition
- (iii) Additive inverse
- (v) Additive identity
- (vii)Associative property under multiplication
- (ii) Commutative property over addition
- (iv) Left distributive property Of multiplication over +
- (vi) Multiplicative identity
- (viii) Commutative property under multiplication

5. Name the property used in the following:

(i)
$$-3 < -1 \Rightarrow 0 < 2$$
 (ii) If $a < b$ then $\frac{1}{a} > \frac{1}{b}$

(iii) If
$$a < b$$
 then $a + c < b + c$ (iv) If $ac < bc$ and $c > 0$ then $a < b$

(v) If ac < bc and c < 0 then a > b (vi) Either a > b or a = b or a < b

Solution

- (i) Additive property
 (ii) Reciprocal property
 (iii) Additive property
 (iv) Multiplicative property
 (v) Multiplicative property
 (vi) Trichotomy property
- 6. Insert two rational numbers between:

(i)
$$\frac{1}{3}$$
 and $\frac{1}{4}$ (ii) 3 and 4 (iii) $\frac{3}{5}$ and $\frac{4}{5}$

Solution

i. $q_1 = \frac{1}{2} \left(\frac{1}{3} + \frac{1}{4} \right) = \frac{1}{2} \left(\frac{7}{12} \right) = \frac{7}{24}$ and $q_2 = \frac{1}{2} \left(\frac{7}{24} + \frac{1}{4} \right) = \frac{1}{2} \left(\frac{13}{24} \right) = \frac{13}{48}$ Hence required rational are $\frac{7}{24}, \frac{13}{48}$ ii. $q_1 = \frac{1}{2} \left(3 + 4 \right) = \frac{7}{2}$ and $q_2 = \frac{1}{2} \left(\frac{7}{2} + 4 \right) = \frac{1}{2} \left(\frac{15}{2} \right) = \frac{15}{4}$ Hence required rational are $\frac{7}{2}, \frac{15}{4}$ iii. $q_1 = \frac{1}{2} \left(\frac{3}{5} + \frac{4}{5} \right) = \frac{1}{2} \left(\frac{7}{5} \right) = \frac{7}{10}$ and $q_2 = \frac{1}{2} \left(\frac{7}{10} + \frac{4}{5} \right) = \frac{1}{2} \left(\frac{15}{10} \right) = \frac{3}{4}$ Hence required rational are $\frac{7}{10}, \frac{3}{4}$

1. Rationalize the denominator of following: (i) $\frac{13}{4+\sqrt{3}}$ (ii) $\frac{\sqrt{2}+\sqrt{5}}{\sqrt{3}}$ (iii) $\frac{\sqrt{2}-1}{\sqrt{5}}$ (iv) $\frac{6-4\sqrt{2}}{6+4\sqrt{2}}$ (v) $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ (vi) $\frac{4\sqrt{3}}{\sqrt{7}+\sqrt{5}}$

$$i. \frac{13}{4+\sqrt{3}} = \frac{13}{4+\sqrt{3}} \times \frac{4-\sqrt{3}}{4-\sqrt{3}} = \frac{13(4-\sqrt{3})}{(4)^2 - (\sqrt{3})^2} = \frac{13(4-\sqrt{3})}{16-3} = \frac{13(4-\sqrt{3})}{13} = 4 - \sqrt{3}$$

$$ii. \frac{\sqrt{2}+\sqrt{5}}{\sqrt{3}} = \frac{\sqrt{2}+\sqrt{5}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{(\sqrt{2}+\sqrt{5})\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{\sqrt{2}\sqrt{3}+\sqrt{5}\sqrt{3}}{3} = \frac{\sqrt{6}+\sqrt{15}}{3}$$

$$iii. \frac{\sqrt{2}-1}{\sqrt{5}} = \frac{\sqrt{2}-1}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{(\sqrt{2}-1)\sqrt{5}}{\sqrt{5}\sqrt{5}} = \frac{\sqrt{2}\sqrt{5}-1\sqrt{5}}{5} = \frac{\sqrt{10}-\sqrt{5}}{5}$$

$$iv. \frac{6-4\sqrt{2}}{6+4\sqrt{2}} = \frac{6-4\sqrt{2}}{6+4\sqrt{2}} \times \frac{6-4\sqrt{2}}{6-4\sqrt{2}} = \frac{(6-4\sqrt{2})^2}{(6)^2 - (4\sqrt{2})^2} = \frac{(6)^2 + (4\sqrt{2})^2 - 2(6)(4\sqrt{2})}{36-16(2)}$$

$$= \frac{36+32-48\sqrt{2}}{36-32} = \frac{68-48\sqrt{2}}{4} = 17 - 12\sqrt{2}$$

$$v. \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} = \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} \times \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}} = \frac{(\sqrt{3}-\sqrt{2})^2}{(\sqrt{3})^2 - (\sqrt{2})^2} = \frac{(\sqrt{3})^2 + (\sqrt{2})^2 - 2(\sqrt{3})(\sqrt{2})}{3-2}$$

$$= \frac{3+2-2\sqrt{6}}{1} = 5 - 2\sqrt{6}$$

$$vi. \frac{4\sqrt{3}}{\sqrt{7}+\sqrt{5}} = \frac{4\sqrt{3}}{\sqrt{7}+\sqrt{5}} \times \frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}-\sqrt{5}} = \frac{4\sqrt{3}(\sqrt{7}-\sqrt{5})}{(\sqrt{7})^2 - (\sqrt{5})^2} = \frac{4\sqrt{3}(\sqrt{7}-\sqrt{5})}{7-5}$$

$$= \frac{4\sqrt{3}(\sqrt{7}-\sqrt{5})}{2} = 2\sqrt{3}(\sqrt{7} - \sqrt{5})$$

$$=\frac{2^{4x}(2^4+20)}{2^{4x}\cdot 2^3}=\frac{(16+20)}{2^3}=\frac{36}{8}=\frac{9}{2}$$

$$= x^{14 \times \frac{1}{7}} \times y^{7 \times \frac{1}{7}} \times z^{28 \times \frac{1}{7}} = x^2 y z^4$$

v. $\frac{5.(25)^{n+1} - 25.(5)^{2n}}{5.(5)^{2n+3} - (25)^{n+1}} = \frac{5.(5^2)^{n+1} - 5^2.(5)^{2n}}{5.(5)^{2n+3} - (5^2)^{n+1}} = \frac{5.5^{2n+2} - 5^2.5^{2n}}{5.5^{2n+3} - 5^{2n+2}} = \frac{5^{2n+3} - 5^{2n+2}}{5^{2n+4} - 5^{2n+2}}$
$$= \frac{5^{2n+2}(5-1)}{5^{2n+2}(5^2-1)} = \frac{5-1}{25-1} = \frac{4}{24} = \frac{1}{6}$$

vi. $\frac{(16)^{x+1} + 20(4^{2x})}{2^{x-3} \times 8^{x+2}} = \frac{(2^4)^{x+1} + 20.(2^2)^{2x}}{2^{x-3} \times (2^3)^{x+2}} = \frac{2^{4x+4} + 20.2^{4x}}{2^{x-3} \times 2^{3x+6}} = \frac{2^{4x+4} + 20.2^{4x}}{2^{4x+3}}$

$$\mathbf{iii.} \ (\mathbf{0}. \ \mathbf{027})^{-\frac{1}{3}} = \left(\frac{27}{1000}\right)^{-\frac{1}{3}} = \left(\frac{1000}{27}\right)^{\frac{1}{3}} = \left(\frac{10^3}{3^3}\right)^{\frac{1}{3}} = \frac{10^{3\times\frac{1}{3}}}{3^{3\times\frac{1}{3}}} = \frac{10}{3}$$
$$\mathbf{iv.} \ \sqrt[7]{\frac{x^{14} \times y^{21} \times z^{35}}{y^{14} \times z^7}} = \left(\frac{x^{14} \times y^{21} \times z^{35}}{y^{14} \times z^7}\right)^{\frac{1}{7}} = (x^{14} \times y^7 \times z^{28})^{\frac{1}{7}}$$

$$\mathbf{i.} \left(\frac{\mathbf{81}}{\mathbf{16}}\right)^{-\frac{3}{4}} = \left(\frac{16}{81}\right)^{\frac{3}{4}} = \left(\frac{2^4}{3^4}\right)^{\frac{3}{4}} = \frac{2^{4\times\frac{3}{4}}}{3^{4\times\frac{3}{4}}} = \frac{2^3}{3^3} = \frac{\mathbf{8}}{27}$$
$$\mathbf{ii.} \left(\frac{3}{4}\right)^{-2} \div \left(\frac{4}{9}\right)^3 \times \frac{\mathbf{16}}{27} = \left(\frac{4}{3}\right)^2 \div \left(\frac{4}{9}\right)^3 \times \frac{\mathbf{16}}{27} = \frac{4^2}{3^2} \times \frac{9^3}{4^3} \times \frac{\mathbf{16}}{27} = \frac{\mathbf{16} \times 729 \times \mathbf{16}}{9 \times 64 \times 27} = \mathbf{12}$$

(i)
$$\left(\frac{81}{16}\right)^{-\frac{3}{4}}$$
 (ii) $\left(\frac{3}{4}\right)^{-2} \div \left(\frac{4}{9}\right)^{3} \times \frac{16}{27}$ (iii) $(0.027)^{-\frac{1}{3}}$
(iv) $\sqrt[7]{\frac{x^{14} \times y^{21} \times z^{35}}{y^{14} z^{7}}}$ (v) $\frac{5 \cdot (25)^{n+1} - 25 \cdot (5)^{2n}}{5 \cdot (5)^{2n+3} - (25)^{n+1}}$
(vi) $\frac{(16)^{x+1} + 20(4^{2x})}{2^{x-3} \times 8^{x+2}}$ (vii) $(64)^{-\frac{2}{3}} \div (9)^{-\frac{3}{2}}$
(viii) $\frac{3^{n} \times 9^{n+1}}{3^{n-1} \times 9^{n-1}}$ (ix) $\frac{5^{n+3} - 6.5^{n+1}}{9 \times 5^{n} - 4 \times 5^{n}}$

2. Simplify the following:

vii.
$$(64)^{-\frac{2}{3}} \div (9)^{-\frac{3}{2}} = \frac{(64)^{-\frac{2}{3}}}{(9)^{-\frac{3}{2}}} = \frac{(9)^{\frac{3}{2}}}{(64)^{\frac{2}{3}}} = \frac{(3^2)^{\frac{3}{2}}}{(4^3)^{\frac{2}{3}}} = \frac{3^3}{4^2} = \frac{27}{16}$$

viii. $\frac{3^n \times 9^{n+1}}{3^{n-1} \times 9^{n-1}} = \frac{3^n \times (3^2)^{n+1}}{3^{n-1} \times (3^2)^{n-1}} = \frac{3^n \times 3^{2n+2}}{3^{n-1} \times 3^{2n-2}} = \frac{3^{3n+2}}{3^{3n-3}} = 3^{3n+2-3n+3} = 3^5 = 243$
ix. $\frac{5^{n+3} - 6.5^{n+1}}{9 \times 5^{n-4} \times 5^{n}} = ???$
 $= \frac{5^n (5^3 - 6.5^1)}{5^n (9 - 2^2)}$
 $= \frac{125 - 30}{9 - 4} = \frac{95}{5} = 19$
3. If $x = 3 + \sqrt{8}$ then find the value of:

If
$$x = 3 + \sqrt{8}$$
 then find the value of:
(i) $x + \frac{1}{x}$ (ii) $x - \frac{1}{x}$ (iii) $x^2 + \frac{1}{x^2}$
(iv) $x^2 - \frac{1}{x^2}$ (v) $x^4 + \frac{1}{x^4}$ (vi) $\left(x - \frac{1}{x}\right)^2$

$$x = 3 + \sqrt{8} \Rightarrow \frac{1}{x} = \frac{1}{3+\sqrt{8}} = \frac{1}{3+\sqrt{8}} \times \frac{3-\sqrt{8}}{3-\sqrt{8}} = \frac{3-\sqrt{8}}{(3)^2 - (\sqrt{8})^2} = \frac{3-\sqrt{8}}{9-8} = 3 - \sqrt{8}$$

Hence $x = 3 + \sqrt{8}$ and $\frac{1}{x} = 3 - \sqrt{8}$
i. $x + \frac{1}{x} = (3 + \sqrt{8}) + (3 - \sqrt{8}) = 6$
ii. $x - \frac{1}{x} = (3 + \sqrt{8}) - (3 - \sqrt{8}) = 2\sqrt{8}$
iii. $x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 - 2 = (6)^2 - 2 = 36 - 2 = 34$
iv. $x^2 - \frac{1}{x^2} = (x + \frac{1}{x})(x - \frac{1}{x}) = (6)(2\sqrt{8}) = 12\sqrt{8}$
v. $x^4 + \frac{1}{x^4} = (x^2 + \frac{1}{x^2})^2 - 2 = (34)^2 - 2 = 1156 - 2 = 1154$
vi. $(x - \frac{1}{x})^2 = (2\sqrt{8})^2 = 4 \times 8 = 32$

7

4. Find the rational numbers p and q such that $\frac{8-3\sqrt{2}}{4+3\sqrt{2}} = p + q\sqrt{2}$

Solution

$$\frac{8-3\sqrt{2}}{4+3\sqrt{2}} = p + q\sqrt{2}$$

$$\frac{8-3\sqrt{2}}{4+3\sqrt{2}} \times \frac{4-3\sqrt{2}}{4-3\sqrt{2}} = p + q\sqrt{2}$$

$$\frac{32-24\sqrt{2}-12\sqrt{2}+18}{(4)^2 - (3\sqrt{2})^2} = p + q\sqrt{2}$$

$$\frac{50-36\sqrt{2}}{16-18} = p + q\sqrt{2}$$

$$\frac{50-36\sqrt{2}}{-2} = p + q\sqrt{2}$$

$$-25 + 18\sqrt{2} = p + q\sqrt{2}$$

Hence p = -25 and q = 18

5. Simplify the following:

(i)
$$\frac{(25)^{\frac{3}{2}} \times (243)^{\frac{3}{5}}}{(16)^{\frac{5}{4}} \times (8)^{\frac{4}{3}}}$$
 (ii) $\frac{54 \times \sqrt[3]{(27)^{2x}}}{9^{x+1} + 216(3^{2x-1})}$
(iii) $\sqrt{\frac{(216)^{\frac{2}{3}} \times (25)^{\frac{1}{2}}}{(0.04)^{\frac{-3}{2}}}}$ (iv) $\left(a^{\frac{1}{3}} + b^{\frac{2}{3}}\right) \times \left(a^{\frac{2}{3}} - a^{\frac{1}{3}}b^{\frac{2}{3}} + b^{\frac{4}{3}}\right)$

$$\begin{aligned} \mathbf{i.} & \frac{(25)^{\frac{3}{2}} \times (243)^{\frac{3}{5}}}{(16)^{\frac{5}{4}} \times (8)^{\frac{3}{3}}} = \frac{(5^{2})^{\frac{3}{2}} \times (3^{2})^{\frac{4}{3}}}{(2^{4})^{\frac{4}{4}} \times (2^{3})^{\frac{3}{3}}} = \frac{5^{3} \times 3^{3}}{2^{5} \times 2^{4}} = \frac{5^{3} \times 3^{3}}{2^{9}} = \frac{125 \times 27}{512} = \frac{3375}{512} \end{aligned}$$

$$\begin{aligned} \mathbf{ii.} & \frac{54 \times \sqrt[3]{(27)^{\frac{27}{2}}}}{9^{x+1} + 216(3^{2x-1})} = \frac{54 \times (27)^{\frac{23}{3}}}{9^{x+1} + 216(3^{2x-1})} = \frac{54 \times 3^{2x}}{3^{2x+2} + 216(3^{2x-1})} \end{aligned}$$

$$\begin{aligned} = \frac{54 \times 3^{2x}}{3^{2x}(3^{2} + 216(3^{-1}))} = \frac{54}{(3^{2} + \frac{216}{3})} = \frac{54}{9^{+72}} = \frac{54}{81} = \frac{2}{3} \end{aligned}$$

$$\begin{aligned} \mathbf{iii.} & \sqrt{\frac{(216)^{\frac{2}{3}} \times (25)^{\frac{1}{2}}}{(0.04)^{-\frac{3}{2}}} = \left(\frac{(6^{3})^{\frac{2}{3}} \times (5^{2})^{\frac{1}{2}}}{(\frac{4}{100})^{-\frac{3}{2}}}\right)^{\frac{1}{2}} = \left(\frac{6^{2} \times 5}{(\frac{100}{4})^{\frac{3}{2}}}\right)^{\frac{1}{2}} = \left(\frac{6^{2} \times 5}{(25)^{\frac{3}{2}}}\right)^{\frac{1}{2}} = \left(\frac{6^{2} \times 5}{(52)^{\frac{3}{2}}}\right)^{\frac{1}{2}} = \left(\frac{6^{2} \times 5}{(52)^{\frac{3}{2}}}\right)^{\frac{1}{2}} = \left(\frac{6^{2} \times 5}{5^{3}}\right)^{\frac{1}{2}} = \left(\frac{6^{2}}{5^{2}}\right)^{\frac{1}{2}} = \frac{6^{2}}{5} \end{aligned}$$

$$\begin{aligned} \mathbf{iv.} & \left(a^{\frac{1}{3}} + b^{\frac{2}{3}}\right) \times \left(a^{\frac{2}{3}} - a^{\frac{1}{3}}b^{\frac{2}{3}} + b^{\frac{4}{3}}\right) \\ = \left(a^{\frac{1}{3}} + b^{\frac{2}{3}}\right) \times \left(a^{\frac{2}{3}} - a^{\frac{1}{3}}b^{\frac{2}{3}} + b^{\frac{4}{3}}\right) \\ = \left(a^{\frac{1}{3}} + a^{\frac{2}{3}} + a^{\frac{1}{3}}b^{\frac{4}{3}} + a^{\frac{2}{3}}b^{\frac{2}{3}} - a^{\frac{2}{3}}a^{\frac{1}{3}}b^{\frac{2}{3}} + b^{\frac{2}{3}}b^{\frac{4}{3}}\right) \\ = \left(a^{\frac{3}{4}} - a^{\frac{1}{3} + \frac{1}{3}}b^{\frac{4}{3}} + a^{\frac{2}{3}}b^{\frac{2}{3}} - a^{\frac{1}{3}}b^{\frac{2}{3} + 2^{\frac{4}{3}}}b^{\frac{4}{3}}\right) \\ = \left(a^{\frac{3}{4} + a^{\frac{2}{3}}}b^{\frac{2}{3}} + a^{\frac{1}{3}}b^{\frac{4}{3}} + a^{\frac{2}{3}}b^{\frac{2}{3}} - a^{\frac{1}{3}}b^{\frac{2}{3} + 2^{\frac{4}{3}}}b^{\frac{4}{3}}\right) \\ = \left(a^{\frac{3}{4} - a^{\frac{1}{3} + \frac{1}{3}}b^{\frac{2}{3}} + a^{\frac{2}{3}}b^{\frac{2}{3}} - a^{\frac{1}{3}}b^{\frac{2}{3} + \frac{2}{3}}b^{\frac{2}{3}} + b^{\frac{2}{3}}b^{\frac{4}{3}}\right) \\ = \left(a^{\frac{3}{4} - a^{\frac{2}{3}}b^{\frac{2}{3}} + a^{\frac{2}{3}}b^{\frac{2}{3}} - a^{\frac{2}{3}}b^{\frac{2}{3} + a^{\frac{2}{3}}b^{\frac{2}{3}} + a^{\frac{2}{3}}b^{\frac{4}{3}}\right) \\ = \left(a^{\frac{3}{4} - a^{\frac{2}{3}}b^{\frac{2}{3}} + a^{\frac{2}{3}}b^{\frac{2}{3}} - a^{\frac{2}{3}}b^{\frac{2}{3} + a^{\frac{2}{3}}b^{\frac{2}{3}} + a^{\frac{2}{3}}b^{\frac{4}{3}}\right) \\ = \left(a^{\frac{3}{4} - a^{\frac{2}{3}}b^{\frac$$

1. The sum of three consecutive integers is forty-two, find the three integers.

Solution

Consider three consecutive integers are x, (x + 1) and (x + 2)(x) + (x + 1) + (x + 2) = 423x + 3 = 423x = 39x = 13Hence the three consecutive integers are 13, 14, and 15. The diagram shows right angled $\triangle ABC$ in which the 2. length of \overline{AC} is $(\sqrt{3} + \sqrt{5})$ cm. The area of $\triangle ABC$ is $(1+\sqrt{15})$ cm². Find the length \overline{AB} in the form $(a\sqrt{3}+b\sqrt{5})$ cm, where a and b are integers. $(\sqrt{3} + \sqrt{5})cm$ A **Solution** Length of $\overline{AC} = (\sqrt{3} + \sqrt{5})$ cm Area of $\triangle ABC = (1 + \sqrt{15}) \text{ cm}^2$ Area of $\triangle ABC = \frac{1}{2} \times \text{base} \times \text{height}$ (1 + $\sqrt{15}$) = $\frac{1}{2} \times (\sqrt{2} + \sqrt{5}) \times \overline{4P}$

$$(1 + \sqrt{15}) = \frac{1}{2} \times (\sqrt{3} + \sqrt{5}) \times AB$$

$$(2 + 2\sqrt{15}) = (\sqrt{3} + \sqrt{5}) \times \overline{AB}$$

$$\overline{AB} = \frac{2 + 2\sqrt{15}}{\sqrt{3} + \sqrt{5}} = \frac{2 + 2\sqrt{15}}{\sqrt{3} + \sqrt{5}} \times \frac{\sqrt{3} - \sqrt{5}}{\sqrt{3} - \sqrt{5}} = \frac{2\sqrt{3} - 2\sqrt{5} + 2\sqrt{45} - 2\sqrt{75}}{(\sqrt{3})^2 - (\sqrt{5})^2}$$

$$\overline{AB} = \frac{2\sqrt{3} - 2\sqrt{5} + 6\sqrt{5} - 10\sqrt{3}}{3 - 5} = \frac{-8\sqrt{3} + 4\sqrt{5}}{-2} = (4\sqrt{3} - 2\sqrt{5})$$
3. A rectangle has sides of length $2 + \sqrt{18}$ m and $\left(5 - \frac{4}{\sqrt{2}}\right)$ m. Express the area

of the rectangle in the form $a + b\sqrt{2}$, where a and b are integers.

Area =
$$L \times W = (2 + \sqrt{18}) \times (5 - \frac{4}{\sqrt{2}}) = 10 - \frac{8}{\sqrt{2}} + 5\sqrt{18} - \sqrt{18} (\frac{4}{\sqrt{2}})$$

Area = $10 - \frac{4 \times 2}{\sqrt{2}} + 5\sqrt{9 \times 2} - 4\sqrt{\frac{18}{2}} = 10 - 4\sqrt{2} + 5 \times 3\sqrt{2} - 4\sqrt{9}$
Area = $10 - 4\sqrt{2} + 15\sqrt{2} - 12 = (\mathbf{11}\sqrt{2} - \mathbf{2}) \text{ m}^2$

4. Find two numbers whose sum is 68 and difference is 22.

Solution

Let x equal the first number and y equal the second number. Then

According to condition: $x + y =$	x = 68 and $x - y = 22$
x + y = 68	x + y = 68
x - y = 22	$-x \mp y = 22$
adding both	subtracting both
x = 45	y = 23

5. The weather in Lahore was unusually warm during the summer of 2024. The TV news reported temperature as high as 48°C. By using the formula, $(°F = \frac{9}{5} °C + 32)$ find the temperature as Fahrenheit scale.

Solution

 $^{\circ}\mathbf{F} = 9/5^{\circ}\mathbf{C} + 32$ $^{\circ}\mathbf{F} = 9/5 \times 48^{\circ}\mathbf{C} + 32 = \mathbf{118.4}^{\circ}\mathbf{F}$

6. The sum of the ages of the father and son is 72 years. Six years ago, the father's age was 2 times the age of the son. What was son's age six years ago?

Solution

Son's current age = x year Father's current age = 72 - x year Six years ago, Son's age = x - 6 year Six years ago, Father's age = (72 - x) - 6 = 66 - x year Six years ago, according to condition: 66 - x = 2(x - 6)Simplifying we get: x = 26Six years ago, Son's age = 26 - 6 = 20 year

7. Mirha bought a toy for Rs. 1500 and sold for Rs. 1520. What was her profit percentage?

Solution

CP = Rs. 1500 SP = Rs. 1520 Profit = SP - CP = 1520 - 1500 = Rs. 20 $Profit Percentage = \frac{Profit}{CP} \times 100\%$ $Profit Percentage = \frac{20}{1500} \times 100\%$ Profit Percentage = 1.33% 8. The annual income of Tayyab is Rs. 9,60,000, while the exempted amount is Rs. 1,30,000. How much tax would he have to pay at the rate of 0.75%?

Solution

Taxable Income = Total Income – Exempted Amount Taxable Income = Rs. 960000 - Rs. 130000Taxable Income = Rs. 830000Tax Rate = 0.75% = 0.0075Tax Amount = Taxable Income × Tax Rate Tax Amount = Rs. 830000×0.0075 **Tax Amount = Rs. 6225**

9. Find the compound markup on Rs. 3,75,000 for one year at the rate of 14% compounded annually.

Solution

Principal Amount (P) = Rs. 375000 Rate of Interest (R) = 14% = 0.14Time (T) = 1 year Compound Interest (CI) = P × R × T Compound Interest (CI) = Rs. 375000 × 0.14 × 1 **Compound Interest (CI) = Rs. 52500**

2nd Method Principal Amount (P) = Rs. 375000 Rate of Interest (R) = 14% = 0.14 Time (T) = 1 year Compound Interest (CI) = P × $(1 + R)^{T} - P$ Compound Interest (CI) = Rs. 375000 × $(1 + 0.14)^{1} - Rs. 375000$ Compound Interest (CI) = Rs. 52500

REVIEW EXERCISE 1

1. Four options are given against each statement. Encircle the correct option.

(i)	$\sqrt{7}$ is:					
	(a) integer	(b) rat	ional numbe	er	
	(c) irrational nu	mber (d) na	tural number	r	
(ii)	π and <i>e</i> are:					
	(a) natural num	bers (b) int	egers		
	(c) rational num	ibers (d) V irr	ational num	bers	
(iii)	If <i>n</i> is not a perfect	square, then 🗸	\overline{n} is:			
	(a) rational num	ıber (b) na	tural number	r	
	(c) integer	(d) V irr	ational num	ber	
(iv)	$\sqrt{3} + \sqrt{5}$ is:					
	(a) whole numb	er (b) int	æger		
	(c) rational num	ıber (d) 🗸 irr	ational num	ber	
(v)	For all $x \in R$, $x = x$ is c	alled:				
	(a) \checkmark reflexive properties	erty (b)	transit	ive number		
	(c) symmetric prop	perty (d)	trichot	tomy property	у	
(vi)	Let $a, b, c \in R$, then a	> b and $b > c =$	a > c is c	called	prop	erty.
	(a) trichotomy	(b) l	transit	ive		
	(c) additive	(d)	multip	olicative		
(vii)	$2^{x} \times 8^{x} = 64$ then $x =$					
	(a) $\sqrt{\frac{3}{2}}$	(b) $\frac{3}{2}$	(c)	<u>5</u>	(d)	2
	2	4		6		3
(viii)	Let $a, b \in R$, then $a =$	= b and $b = a$ is	s called _	pr	operty.	
	(a) reflexive		(b)	v symmetr	ric	
	(c) transitive		(d)	additive		

(ix)
$$\sqrt{75} + \sqrt{27} =$$

(a) $\sqrt{102}$ (b) $9\sqrt{3}$ (c) $5\sqrt{3}$ (d) $\sqrt[8]{3}$ $8\sqrt{3}$
(x) The product of $(3 + \sqrt{5})(3 - \sqrt{5})$ is:
(a) prime number (b) odd number
(c) irrational number (d) $\sqrt[7]{7}$ rational number
2. If $a = \frac{3}{2}$, $b = \frac{5}{3}$ and $c = \frac{7}{5}$, then verify that
(i) $a(b + c) = ab + ac$ (ii) $(a + b)c = ac + bc$
Solution
i. $a(b + c) = ab + ac$
L. H. S = $a(b + c) = \frac{3}{2}(\frac{5}{3} + \frac{7}{5}) = \frac{3}{2}(\frac{25+21}{15}) = \frac{3}{2}(\frac{46}{15}) = \frac{138}{30} = \frac{23}{5}$
R. H. S = $ab + ac = \frac{3}{2}(\frac{5}{3}) + \frac{3}{2}(\frac{7}{5}) = \frac{15}{6} + \frac{21}{10} = \frac{5}{2} + \frac{21}{10} = \frac{46}{10} = \frac{23}{5}$
Hence $a(b + c) = ab + ac$
i. $(a + b)c = ac + bc$
L. H. S = $(a + b)c = (\frac{3}{2} + \frac{5}{3})\frac{7}{5} = (\frac{9+10}{6})\frac{7}{5} = (\frac{19}{6})\frac{7}{5} = \frac{133}{30}$
R. H. S = $ac + bc = (\frac{3}{2})\frac{7}{5} + (\frac{5}{3})\frac{7}{5} = \frac{21}{10} + \frac{35}{15} = \frac{21}{10} + \frac{7}{3} = \frac{133}{30}$
Hence $(a + b)c = ac + bc$
3. If $a = \frac{4}{3}$, $b = \frac{5}{2}$, $c = \frac{7}{4}$, then verify the associative property of real numbers

w.r.t addition and multiplication.

We have to verify

$$(a + b) + c = a + (b + c)$$
 and $(a \times b) \times c = a \times (b \times c)$
i. $(a + b) + c = a + (b + c)$
L. H. S = $(a + b) + c = (\frac{4}{3} + \frac{5}{2}) + \frac{7}{4} = (\frac{8+15}{6}) + \frac{7}{4} = \frac{23}{6} + \frac{7}{4} = \frac{67}{12}$
R. H. S = $a + (b + c) = \frac{4}{3} + (\frac{5}{2} + \frac{7}{4}) = \frac{4}{3} + (\frac{10+7}{4}) = \frac{4}{3} + \frac{17}{4} = \frac{67}{12}$
Hence $(a + b) + c = a + (b + c)$
ii. $(a \times b) \times c = a \times (b \times c)$
L. H. S = $(a \times b) \times c = (\frac{4}{3} \times \frac{5}{2}) \times \frac{7}{4} = \frac{20}{6} \times \frac{7}{4} = \frac{10}{3} \times \frac{7}{4} = \frac{70}{12} = \frac{35}{6}$
R. H. S = $a \times (b \times c) = \frac{4}{3} \times (\frac{5}{2} \times \frac{7}{4}) = \frac{4}{3} \times \frac{35}{8} = \frac{140}{24} = \frac{35}{6}$
Hence $(a \times b) \times c = a \times (b \times c)$

4. Is 0 a rational number? Explain.

Solution

Yes, zero is a rational number. A rational number is defined as a number that can be expressed as the ratio of two integers, i.e., $\frac{a}{b}$, where a and b are integers and b is non-zero. Zero can be expressed as a ratio of two integers, such as: 0 = 0/1 In this case, both 0 and 1 are integers, and 1 is non-zero. Therefore, zero meets the definition of a rational number.

5. State trichotomy property of real numbers.

Solution

For any two real numbers a and b, exactly one of the following is true:

1. a < b 2. a = b 3. a > b

6. Find two rational numbers between 4 and 5.

Solution

$$q_1 = \frac{1}{2}(4+5) = \frac{9}{2}$$
 and $q_2 = \frac{1}{2}\left(\frac{9}{2}+5\right) = \frac{1}{2}\left(\frac{19}{2}\right) = \frac{19}{4}$

Hence required rational are $\frac{9}{2}, \frac{19}{4}$

7. Simplify the following:

(i)
$$\sqrt[5]{\frac{x^{15}y^{35}}{z^{20}}}$$
 (ii) $\sqrt[3]{(27)^{2x}}$ (iii) $\frac{6(3)^{n+2}}{3^{n+1}-3^n}$

Solution

i.
$$\sqrt[5]{\frac{x^{15}y^{35}}{z^{20}}} = \left(\frac{x^{15}y^{35}}{z^{20}}\right)^{\frac{1}{5}} = \frac{x^{15\times\frac{1}{5}}y^{35\times\frac{1}{5}}}{z^{20\times\frac{1}{5}}} = \frac{x^{3}y^{7}}{z^{4}}$$

ii. $\sqrt[3]{(27)^{2x}} = (27)^{\frac{2x}{3}} = (3^{3})^{\frac{2x}{3}} = 3^{2x}$
iii. $\frac{6(3)^{n+2}}{(3)^{n+1}-3^{n}} = \frac{3^{n}(6\times3^{2})}{3^{n}(3-1)} = \frac{6\times9}{2} = 27$

15

8. The sum of three consecutive odd integers is 51. Find the three integers.

Solution

Let the three consecutive odd integers be x, x+2, and x+4.

$$x + (x+2) + (x+4) = 51$$

 $3x + 6 = 51$

3x = 45

x = 15

Now that we know x, we can find the other two integers:

$$x + 2 = 17$$

x + 4 = 19

So, the three consecutive integers are 15, 17, and 19.

9. Abdullah picked up 96 balls and placed them into two buckets. One bucket has twenty-eight more balls than the other bucket. How many balls were in each bucket?

Solution

Let's say the number of balls in the smaller bucket is x. Since the other bucket has 28 more balls, the number of balls in the larger bucket is x + 28.

We know that the total number of balls is 96, so we can set up the equation:

$$x + (x + 28) = 96$$

 $2x + 28 = 96$
 $2x = 68$
 $x = 34$

So, the smaller bucket has 34 balls.

The larger bucket has 34 + 28 = 62 balls.

Therefore, the two buckets have **34** and **62** balls, respectively.

10. Salma invested Rs. 3,50,000 in a bank, which paid simple profit at the rate of $7\frac{1}{4}\%$ per annum. After 2 years, the rate was increased to 8% per annum. Find the amount she had at the end of 7 years.

Solution

Initial Investment = Rs. 3,50,000 Rate of interest for the first 2 years = $7\frac{1}{4}$ % = 7.25% per annum Interest for the first 2 years = $(3,50,000 \times 7.25\% \times 2)$ = Rs. 50,750 Rate of interest for the next 5 years = 8% per annum Interest for the next 5 years = $(3,50,000 \times 8\% \times 5)$ = Rs. 1,40,000 Amount after 7 years = 3,50,000 + 50,750+ 1,40,000 = Rs. 5,40,750 Therefore, Salma had **Rs. 5,40,750** at the end of 7 years.