Review Exercise 5 (Solutions) Mathematics 9: PCTB (2025) Author: Sheraz Ansari Available at MathCity.org

Linear Equations and Inequalities

Review Exercise # 5

Chapter # 5

Question # 1: Four options are given against each statement. Encircle the correct one.

#	Answer	#	Answer
i	C	vi	В
ii	C	vii	В
iii	С	viii	C
iv	D	ix	В
v	В	x	В

Question # 2: Solve and represent their solution on real line.

Question # 4: Find the maximum value of g(x, y) = x + 4y subject to constraints:

9th | New Math PCTB

(e) Point of Intersection x + 3y = 3(A) x + y = 2(B) (A) - (B) x + 3y = 3 $\pm x \pm y = \pm 2$ 2y = 1 $y = \frac{1}{2}$ Put in equation (B) $x + \frac{1}{2} = 2$ $x = 2 - \frac{1}{2}$ $x = \frac{3}{2}$

(f) Corner Points

$$(3,0), (0,2), \left(\frac{3}{2}, \frac{1}{2}\right)$$

$$\because f(x,y) = 3x + 5y$$

put $x = 3, y = 0$
 $f(0,0) = 3(3) + 5(0) = 9 + 0 = 9$
put $x = 0, y = 2$
 $f(5,0) = 3(0) + 5(2) = 0 + 10 = 10$
put $x = \frac{3}{2}, y = \frac{1}{2}$
 $f(0,7) = 3\left(\frac{3}{2}\right) + 5\left(\frac{1}{2}\right) = \frac{9}{2} + \frac{5}{2} = \frac{14}{2} = 7$
Hence, $f(x, y)$ is minimized at $\left(\frac{3}{2}, \frac{1}{2}\right)$