Multiple Choice Questions For PPSC (Mathematics)

GROUP THEORY

Compiled by: Akhtar Abbas

1. Which of the following are multiplicative tables for groups with four elements?

I.		a	b	с	d	II.	1	a	b	С	d	III.		a	b	с	d
	a	a	b	с	d		a	a	b	С	d		a	a	b	С	d
	b	b	С	d	a					d			b	b	a	d	с
	С	C	d	a	b									c			
	d	d	а	b	с		d	d	С	a	a b			d			

- A. I only
- B. I and II only
- C. II and III only
- D. None of these
- 2. If b and c are elements in a group G and if b $c^3 = e$, where e is the identity of G, then the inverse of $b^2 c b^4 c^2$ must be:
 - A. $cb^2c^2b^4$
 - B. $c^2 b^4 c b^2$
 - C. cbc^2b^3
 - D. $b^4 c^2 b^2 c$
- 3. Let G_n be a cyclic group of order n. Which of the following direct product is not cyclic?
 - A. $G_{22} \times G_{31}$
 - B. $G_{222} \times G_{333}$

 - C. $G_{17} \times G_{11}$ D. $G_{17} \times G_{11} \times G_5$
- 4. Let p and q be distinct primes. There is a proper subgroup J of the additive group of integers which contain s exactly three elements of the set $\{p, p+q, pq, p^q, q^p\}$. Which three elements are in J?
 - A. pq, p^q, q^p B. p, p^q, q^p C. p, pq, p^q D. p, p+q, pq

- 5. Two subgroups H and K of a groups have orders 12 and 30 respectively. Which of the following could not be the order of the subgroup G generated by H and K?
 - A. 30
 - B. 60
 - C. 120
 - D. Could not be determined
- 6. Let \mathbb{Z} be the group of integers under the operation of addition. Which of the following subsets of \mathbb{Z} is not a subgroup of \mathbb{Z} ?
 - A. \mathbb{Z} B. $\{n \in \mathbb{Z} : n \ge 0\}$ C. $\{n \in \mathbb{Z} : n \text{ is even}\}$ D. $\{n \in \mathbb{Z} : 6 | n \text{ and } 9 | n\}$
- 7. A cyclic group of order 15 has an element x such that the set $\{x^3, x^5, x^9\}$ has exactly two elements. The number of elements in the set $\{x^{13n} : n \text{ is a positive integer}\}$ is
 - A. 3
 - B. 5
 - C. 8
 - D. 15
- 8. Let \star be the binary operation on the rational numbers given by $a \star b = a + b + 2ab$. Which of the following are true?
 - I. \star is commutative
 - II. There is a rational number that is a *-identity
 - III. Every rational number has a \star -inverse
 - A. I only
 - B. II only
 - C. I and II only
 - D. I and III only
- 9. For which integers n such that $3 \le n \le 11$ is there only one group of order n (upto isomorphism)?
 - A. For no such integer n
 - B. For 3, 5, 7 and 11 only
 - C. For 4, 6, 8, 9 and 10 only
 - D. For 3, 5, 7, 9 and 11 only

- 10. If a finite group G contains a subgroup of order seven but no element (other than identity) is its own inverse, then the order of G could be
 - A. 27
 - B. 28
 - C. 35
 - D. 37

11. A group G in which $(ab)^2 = a^2b^2$ for all a, b in G, is necessarily

- A. Abelian
- B. Finite
- C. Cyclic
- D. Of order 2

12. The map $x \mapsto axa^2$ of a group G into itself is a homomorphism if and only if

- A. $a^3 = e$
- B. $a^2 = e$
- C. a = e
- D. G is abelian
- 13. Which of the following is not a group
 - A. The integers under addition
 - B. The complex numbers under addition
 - C. The nonzero integers under multiplication
 - D. The nonzero real numbers under multiplication
- 14. What is the largest order of an element in the group of permutations of 5 objects?
 - A. 5
 - B. 6
 - C. 12
 - D. 60
- 15. Let \mathbb{Z}_{17}^{\times} be the group of units of \mathbb{Z}_{17} under multiplication. Which of the following are generators of \mathbb{Z}_{17}^{\times} ?
 - A. 5 B. 8 C. 5 and 8

D. 5, 8 and 16

If opportunity doesn't knock, build a door. Milton Berle

- 16. The subgroup H of a group G is called *characteristic* if for every automorphism $\phi : G \to G$, $\phi(H) \subseteq H$. Which of the following statements is true?
 - A. Every characteristic subgroup is normal.
 - B. Every normal subgroup is characteristic.
 - C. If N is a normal subgroup of G and M a characteristic subgroup of N, then M is a normal subgroup of G
 - D. Both A and C are true
- 17. Which of the following statements is true?
 - A. If G is a non-abelian group with non-trivial center C, then the center of G/C is non-trivial.
 - B. If G is a group of order 2, then the number of subgroups of $G \times G \times G$ is 6.
 - C. A subgroup H of G is normal if and only if every cyclic subgroup of G is normal.
 - D. $\mathbb{Z}_m/n\mathbb{Z}_m \cong \mathbb{Z}_n$
- 18. Let G be a group and H a subgroup of G such that [G : H] = 2. Which of the following statements is true?
 - A. If $a \in H$ and $b \notin H$, then $ab \in H$
 - B. If $a \notin H$ and $b \notin H$, then $ab^{-1} \in H$
 - C. If $a \notin H$ and $b \notin H$, then $ab \in H$
 - D. Both B and C are true
- 19. Which of the following statements is not true? (p is an odd prime number)
 - A. If $|G| = p^n$, then G is cyclic
 - B. If $|G| = p^n$, then |Z(G)| > 1
 - C. If $|G| = p^n$ and G is non-abelian then G contains a subgroup which is not normal
 - D. Both A and C are true

20. The order of the permutation
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 4 & 7 & 1 & 8 & 3 & 6 \end{pmatrix}$$
 is

- A. 4
- B. 5
- C. 6
- D. 8

Available at MathCity.org

21. The set of all generators of a cyclic group $G = \langle a \rangle$ of order 8 is

A. $\{a^2, a^4, a^6\}$ B. $\{a^1, a^3, a^5, a^7\}$ C. $\{a^4, a^8\}$ D. $\{a^3, a^5, a^7\}$

22. The inverse of an element a in the group $G = \{a \in \mathbb{R} : a > 0, a \neq 0\}$ under the operation \star defined by $a \star b = a^{\log b}$ is

> A. $e^{\frac{1}{\log a}}$ B. $\frac{1}{\log a}$ C. $\frac{1}{e^{\log a}}$ D. 1

23. Which of the following statement is not correct?

- A. The Klein four group is abelian
- B. The Klein four group is not cyclic
- C. S_3 is abelian
- D. \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ are nonisomorphic groups
- 24. In the group $(\mathbb{Q} - \{-1\}, \star)$, where \star is defined by $a \star b = a + b + ab$, for all $a, b \in \mathbb{Q} - \{-1\}$, the inverse of 15 is

A.
$$-15$$

B. $\frac{15}{16}$
C. $-\frac{15}{16}$
D. $\frac{1}{15}$

25. Let H be a subgroup of G and

$$N_G(H) = \{g \in G : g^{-1}Hg = H\}.$$

Then which of the following statements is not true?

- A. $N_G(H)$ is not subgroup of G
- B. $N_G(H)$ is a subgroup of G
- C. H is normal in $N_G(H)$
- D. *H* is normal in *G* if and only if $N_G(H) = G$

26. The kernel of the homomorphism $\phi: (\mathbb{Z}, +) \to (\mathbb{C}, \cdot)$ defined by $\phi(x) = e^{\pi i x}$ is

- A. $\{0\}$
- B. 4Z
- C. $2\mathbb{Z}$
- D. \mathbb{Z}
- 27. Consider the following statements
 - I. Every cyclic group is abelian
 - II. Every abelian group is cyclic
 - III. Every group of order less than 4 is cyclic
 - A. Only I is correct
 - B. I and II are correct
 - C. I and III are correct
 - D. II and III are correct
- 28. Let G be a group of order np^k and gcd(n,p) = 1. Then G contains a subgroup H of order p^r only if
 - A. G is abelian and r = k
 - B. r = k
 - C. r less than or equal to k
 - D. G is abelian and r is less than or equal to k
- 29. G has an element of order 7 only if
 - A. $|G| = 7^n$ for some positive integer n
 - B. gcd(7, |G|) = 1
 - C. |G| = 7n for some positive integer n
 - D. |G| = 7

30. How many generators does the group $(\mathbb{Z}_{24}, +)$ have?

- A. 2
- B. 10
- C. 12
- D. 24

- 31. How many subgroups does the group $\mathbb{Z}_3 \times \mathbb{Z}_{16}$ have?
 - A. 6
 - B. 10
 - C. 12
 - D. 20
- 32. Let p and q be distinct primes. How many (mutually nonisomorphic) groups are there of order p^2q^4 ?
 - A. 6
 - B. 8
 - C. 10
 - D. 12
- 33. Let G be the group generated by the elements x and y and subject to the following relations: $x^2 = y^3, y^6 = 1, x^{-1}yx = y^{-1}$. Express in simplest form the inverse of the element $z = x^{-2}yx^3y^3$?
 - A. xy
 - B. yx
 - C. xy^2

D. $y^{-2}x^{-1}$

- 34. Let H be the set of all group homomorphisms from \mathbb{Z}_3 to \mathbb{Z}_6 . How many functions does H contain?
 - A. 1
 - B. 2
 - C. 3 D. 6
- 35. Let G be a group of order 9 and let e denote the identity of G. Which one of the following statements about G cannot be true?
 - A. G is cyclic
 - B. There exists an element $x \in G$ such that $x \neq e$ and $x^{-1} = x$
 - C. There exists an element $x \in G$ such that $x \neq e$ and $x^2 = x^5$
 - D. There exists an element $x \in G$ such that $\langle x \rangle$ has order 3

Available at MathCity.org

- 36. Let p divides the order of a finite group G and let G have k distinct p-sylow subgroups of G. Which one is not a correct statement?
 - A. k is a multiple of p
 - B. k is not a power of p
 - C. k is a divisor of |G|
 - D. k is relatively prime to p
- 37. Let G be the symmetric groups on 5 objects. Then the number of distinct conjugacy classes in G is:-
 - A. 5
 - B. 7
 - C. 25
 - D. 120
- 38. Let H be a finite subset of a group G and has 4 elements. Then H is not a subgroup of G if
 - A. G is an infinite group
 - B. |G| = 26
 - C. |G| = 4
 - D. G is isomorphic to a permutation group $S_n, n \ge 4$
- 39. Let G be a group of order np^r where p does not divide n. Then the number of subgroup of order p^r is of the form
 - A. 1 + kp where p does not divide k
 - B. 1 + kp where p divides k
 - C. kp where p does not divide k
 - D. kp where p divides k
- 40. The binary operation \star is defined on a set of ordered pairs of real numbers as

$$(a,b)\star(c,d)=(ad+bc,bd)$$

and \star is associative. Then $(1,2)\star(3,5)\star(3,4)$ is

A. (32, 40)
B. (23, 11)
C. (74, 30)
D. (7, 11)

- 41. If a finite group G has two elements a, b having orders 6 and 15, then
 - A. 90 divides |G|
 - B. 30 divides |G| but 90 need not divide |G|
 - C. 3 divides |G| but 30 need not divide |G|
 - D. 3 does not divide |G|
- 42. Which of the following statements is true?
 - A. In an infinite group every element is of infinite order
 - B. If in a group every element is of finite order, then the group must be a finite group
 - C. In a finite group every element is of finite order
 - D. If every proper subgroup of a group is cyclic, then the group must be cyclic
- 43. If K is kernel of a group homomorphism $f: G \to H$, then which statement is not true?
 - A. K is an abelian subgroup of G
 - B. K is a normal subgroup of G
 - C. $K = \{e\}$ for some homomorphisms
 - D. K = G for some homomorphisms
- 44. The number of group homomorphisms from S_3 to \mathbb{Z}_6 are
 - A. 1
 - B. 2
 - C. 3
 - D. 6

45. Let G be a group of order 77, then the center of G is iomorphic to

A. \mathbb{Z}_1 B. \mathbb{Z}_7

- C. Z₁₁
- D. Z₇₇
- 46. The total number of non-isomorphic groups of order 122 is
 - A. 1B. 2
 - C. 4
 - D. 61

- 47. The number of cyclic subgroups of K_4 is
 - A. 1
 - B. 2
 - C. 3
 - D. 4

48. Let G be a non-abelian group of order 343. then |Z(G)| =

- A. 1
- B. 7
- C. 49
- D. 343

49. Suppose G is a finite group and H is the only subgroup of G of order |H|, then

- A. H is abelian
- B. H is cyclic
- C. H is normal
- D. H is of prime order
- 50. If for a prime p, p^n divides, but $p^n + 1$ does not divide the order of a finite group G, then
 - A. For every $d \leq p^n$, G has a subgroup of order d
 - B. For every divisor d of |G|, G has a subgroup of order d
 - C. For every positive integer $r \leq n$, G has a subgroup of order p^r
 - D. G has a subgroup of order p^r if r = n, but G need not have subgroups of order p^r if r < n

Akhtar Abbas Lecturer in Mathematics University of Jhang 0332-6297570 https://www.mathcity.org/people/akhtar

Available at MathCity.org