Question # 1 & 2

Do yourself

Question # 3
In which quadrant are the terminal arms of the angle lie when

(i) \(\sin \theta < 0 \) and \(\cos \theta > 0 \)
(ii) \(\cot \theta > 0 \) and \(\csc \theta > 0 \)

Solutions

(i) Since \(\sin \theta < 0 \) so \(\theta \) lies in IIIrd or IVth quadrant.
 Also \(\cos \theta > 0 \) so \(\theta \) lies in Ist or IVth quadrant.
 \(\implies \theta \) lies in IVth quadrant

(ii) Since \(\cot \theta > 0 \) so \(\theta \) lies in Ist or IIIrd quadrant.
 Also \(\csc \theta > 0 \) so \(\theta \) lies in Ist or IIInd quadrant
 \(\implies \theta \) lies in Ist quadrant.

Question # 3 (iii), (iv) and …

Do yourself as above

Question # 4
Find the values of the remaining trigonometric functions:

(i) \(\sin \theta = \frac{12}{13} \) and the terminal arm of the angle is in quad. I.

(ii) \(\cos \theta = \frac{9}{41} \) and the terminal arm of the angle is in quad. IV.

(iv) \(\tan \theta = -\frac{1}{3} \) and the terminal arm of the angle is in quad. II.

Solutions

(i) Since \(\sin^2 \theta + \cos^2 \theta = 1 \)
 \(\implies \cos^2 \theta = 1 - \sin^2 \theta \)
 \(\implies \cos \theta = \pm \sqrt{1 - \sin^2 \theta} \)
 As terminal ray lies in Ist quadrant so \(\cos \theta \) is +ive.
 \(\cos \theta = \sqrt{1 - \sin^2 \theta} \)
 \(\implies \cos \theta = \sqrt{1 - \left(\frac{12}{13}\right)^2} \)
 \(= \sqrt{1 - \frac{144}{169}} = \sqrt{\frac{25}{169}} \)
 \(\implies \cos \theta = \frac{5}{13} \)

Now

\(\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{12/13}{5/13} = \frac{12}{5} \)
\(\implies \tan \theta = \frac{12}{5} \)
\[
\csc \theta = \frac{1}{\sin \theta} = \frac{1}{12/13} = \frac{13}{12} \quad \Rightarrow \quad \csc \theta = \frac{13}{12}
\]

\[
\sec \theta = \frac{1}{\cos \theta} = \frac{1}{5/13} = \frac{13}{5} \quad \Rightarrow \quad \sec \theta = \frac{13}{5}
\]

\[
\cot \theta = \frac{1}{\tan \theta} = \frac{1}{12/5} = \frac{5}{12} \quad \Rightarrow \quad \cot \theta = \frac{5}{12}
\]

(ii) Since \(\sin^2 \theta + \cos^2 \theta = 1\)

\[
\Rightarrow \sin^2 \theta = 1 - \cos^2 \theta
\]

\[
\Rightarrow \sin \theta = \pm \sqrt{1 - \cos^2 \theta}
\]

As terminal ray lies in IVth quadrant so \(\sin \theta\) is –ive.

\[
\sin \theta = -\sqrt{1 - \cos^2 \theta}
\]

\[
\Rightarrow \sin \theta = -\sqrt{1 - \left(\frac{9}{41}\right)^2}
\]

\[
= -\sqrt{1 - \frac{81}{1681}} = -\sqrt{\frac{1600}{1681}} = -\frac{40}{41} \quad \Rightarrow \quad \sin \theta = -\frac{40}{41}
\]

Now

\[
\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{-40/41}{9/41} = -\frac{40}{41} \cdot \frac{41}{9} = -\frac{40}{9} \quad \Rightarrow \quad \tan \theta = -\frac{40}{9}
\]

\[
\csc \theta = \frac{1}{\sin \theta} = \frac{1}{-40/41} = -\frac{41}{40} \quad \Rightarrow \quad \csc \theta = -\frac{41}{40}
\]

\[
\sec \theta = \frac{1}{\cos \theta} = \frac{1}{9/11} = \frac{41}{9} \quad \Rightarrow \quad \sec \theta = \frac{41}{9}
\]

\[
\cot \theta = \frac{1}{\tan \theta} = \frac{1}{-40/9} = -\frac{9}{40} \quad \Rightarrow \quad \cot \theta = -\frac{9}{40}
\]

(iv) Since \(\sec^2 \theta = 1 + \tan^2 \theta\)

\[
\Rightarrow \sec \theta = \pm \sqrt{1 + \tan^2 \theta}
\]

As terminal ray is in IIInd quadrant so \(\sec \theta\) is –ive.

\[
\Rightarrow \sec \theta = -\sqrt{1 + \tan^2 \theta}
\]

\[
\Rightarrow \sec \theta = -\sqrt{1 + \left(-\frac{1}{3}\right)^2} = -\sqrt{1 + \frac{1}{9}} = -\sqrt{\frac{10}{9}}
\]
\[\sec \theta = -\frac{\sqrt{10}}{3} \]

Now \[\cos \theta = \frac{1}{\sec \theta} = \frac{1}{-\frac{\sqrt{10}}{3}} = -\frac{3}{\sqrt{10}} \]

\[\sin \theta = \tan \theta \]

\[\Rightarrow \sin \theta = \left(\tan \theta \right) \left(\cos \theta \right) = \left(-\frac{1}{3} \right) \left(-\frac{3}{\sqrt{10}} \right) \]

\[\csc \theta = \frac{1}{\sin \theta} = \frac{1}{\frac{\sqrt{10}}{3}} \]

\[\cot \theta = \frac{1}{\tan \theta} = \frac{1}{-\frac{1}{3}} \]

\[\Rightarrow \cos \theta = \cot \theta \sin \theta = \left(\frac{15}{8} \right) \left(-\frac{8}{17} \right) \]

Question # 4 (iii) and (v)

Do yourself as above.

Question # 5

If \(\cot \theta = \frac{15}{8} \) and terminal arm of the angle is not in quad. I, find the values of \(\cos \theta \) and \(\csc \theta \).

Solution

As \(\cot \theta \) is +ive and it is not in \(I \)st quadrant, so it is in \(III \)rd quadrant

\[\text{(cot \(\theta \) +ive in \(I \)st and \(III \)rd quadrant)} \]

Now

\[\csc^2 \theta = 1 + \cot^2 \theta \]

\[\Rightarrow \csc \theta = \pm \sqrt{1 + \cot^2 \theta} \]

As terminal ray is in \(III \)rd quadrant so \(\csc \theta \) is –ive.

\[\csc \theta = -\sqrt{1 + \cot^2 \theta} \]

\[\Rightarrow \csc \theta = -\sqrt{1 + \left(\frac{15}{8} \right)^2} = -\sqrt{1 + \frac{225}{64}} \]

\[= -\sqrt{1 + \frac{289}{64}} \]

\[= -\sqrt{\frac{289}{64}} \]

\[\Rightarrow \csc \theta = -\frac{17}{8} \]

\[\sin \theta = \frac{1}{\csc \theta} = \frac{1}{-\frac{17}{8}} \]

\[\Rightarrow \sin \theta = -\frac{8}{17} \]

Now

\[\frac{\cos \theta}{\sin \theta} = \cot \theta \]

\[\Rightarrow \cos \theta = \cot \theta \sin \theta = \left(\frac{15}{8} \right) \left(-\frac{8}{17} \right) \]

\[\Rightarrow \cos \theta = -\frac{15}{17} \]
Question # 6
If \(\csc \theta = \frac{m^2 + 1}{2m} \) and \(0 < \theta < \frac{\pi}{2} \), find the values of the remaining trigonometric function.

Solution

Since \(0 < \theta < \frac{\pi}{2} \), therefore terminal ray lies in 1st quadrant.

Now \(1 + \cot^2 \theta = \csc^2 \theta \)

\(\Rightarrow \cot^2 \theta = \csc^2 \theta - 1 \)

\(\Rightarrow \cot \theta = \pm \sqrt{\csc^2 \theta - 1} \)

As terminal ray of \(\theta \) is in 1st quadrant so \(\cot \theta \) is +ive.

\(\cot \theta = \sqrt{\csc^2 \theta - 1} \)

\(\Rightarrow \cot \theta = \sqrt{\left(\frac{m^2 + 1}{2m}\right)^2 - 1} = \sqrt{\left(\frac{m^2 + 1}{2m}\right)^2 - 1} \)

\(= \sqrt{\frac{m^4 + 2m^2 + 1}{4m^2} - 1} = \sqrt{\frac{m^4 + 2m^2 + 1 - 4m^2}{4m^2}} = \sqrt{\frac{m^4 - 2m^2 + 1}{4m^2}} \)

\(= \sqrt{\frac{(m^2 - 1)^2}{(2m)^2}} = \frac{m^2 - 1}{2m} \)

\(\Rightarrow \cot \theta = \frac{m^2 - 1}{2m} \)

\(\sin \theta = \frac{1}{\csc \theta} = \frac{1}{\left(\frac{m^2 + 1}{2m}\right)} = \frac{2m}{m^2 + 1} \)

\(\Rightarrow \sin \theta = \frac{2m}{m^2 + 1} \)

Now \(\frac{\cos \theta}{\sin \theta} = \cot \theta \quad \Rightarrow \cos \theta = (\cot \theta)(\sin \theta) \)

\(\Rightarrow \cos \theta = \left(\frac{m^2 - 1}{2m}\right)\left(\frac{2m}{m^2 + 1}\right) \quad \Rightarrow \cos \theta = \left(\frac{m^2 - 1}{m^2 + 1}\right) \)

\(\sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{m^2 - 1}{m^2 + 1}} \quad \Rightarrow \sec \theta = \left(\frac{m^2 + 1}{m^2 - 1}\right) \)

\(\tan \theta = \frac{1}{\cot \theta} = \frac{1}{\frac{m^2 - 1}{2m}} \quad \Rightarrow \tan \theta = \left(\frac{2m}{m^2 - 1}\right) \)

Question # 7
If \(\tan \theta = \frac{1}{\sqrt{7}} \) and the terminal arm of the angle is not in the II quad. Find the value of \(\frac{\csc^2 \theta - \sec^2 \theta}{\csc^2 \theta + \sec^2 \theta} \).

Solution

http://www.mathcity.org
Since \(\tan \theta \) is +ive and terminal arm is not in the 3rd quadrant, therefore terminal arm lies in 1st quadrant.

Now \(\sec^2 \theta = 1 + \tan^2 \theta \)
\[
\Rightarrow \sec \theta = \pm \sqrt{1 + \tan^2 \theta}
\]
as terminal arm is in the first quadrant so \(\sec \theta \) is +ive.

\[
\sec \theta = \sqrt{1 + \left(\frac{1}{\sqrt{7}} \right)^2} = \sqrt{1 + \frac{1}{7}} = \sqrt{\frac{8}{7}} \quad \Rightarrow \quad \sec \theta = \frac{2\sqrt{2}}{\sqrt{7}}
\]

Now \(\cos \theta = \frac{1}{\sec \theta} = \frac{1}{\frac{2\sqrt{2}}{\sqrt{7}}} \quad \Rightarrow \quad \cos \theta = \frac{\sqrt{7}}{2\sqrt{2}}
\]

Now \(\frac{\sin \theta}{\cos \theta} = \tan \theta \quad \Rightarrow \quad \sin \theta = (\tan \theta)(\cos \theta) \)
\[
\Rightarrow \sin \theta = \left(\frac{1}{\sqrt{7}} \right) \left(\frac{\sqrt{7}}{2\sqrt{2}} \right) \quad \Rightarrow \quad \sin \theta = \frac{1}{2\sqrt{2}}
\]

\[
\csc \theta = \frac{1}{\sin \theta} = \frac{1}{\frac{1}{2\sqrt{2}}} \quad \Rightarrow \quad \csc \theta = 2\sqrt{2}
\]

Now \[\frac{\csc^2 \theta - \sec^2 \theta}{\csc^2 \theta + \sec^2 \theta} = \frac{(2\sqrt{2})^2 - \left(\frac{2\sqrt{2}}{\sqrt{7}} \right)^2}{(2\sqrt{2})^2 + \left(\frac{2\sqrt{2}}{\sqrt{7}} \right)^2} = \frac{8 - \frac{8}{7}}{8 + \frac{8}{7}} = \frac{\frac{48}{7}}{\frac{64}{7}} = \frac{48}{7} \cdot \frac{7}{64} = \frac{3}{4} \quad \text{Answer}
\]

Question # 8

If \(\cot \theta = \frac{5}{2} \) and the terminal arm of the angle is in the 1st quadrant, find the value of \(\frac{3\sin \theta + 4\cos \theta}{\cos \theta - \sin \theta} \)

Solution

Since \(\csc^2 \theta = 1 + \cot^2 \theta \)
\[
\Rightarrow \csc \theta = \pm \sqrt{1 + \cot^2 \theta}
\]

As terminal ray is in 1st quadrant so \(\csc \theta \) is +ive.

\[
csc \theta = \sqrt{1 + \cot^2 \theta} = \sqrt{1 + \left(\frac{5}{2} \right)^2} = \sqrt{1 + \frac{25}{4}} = \sqrt{\frac{29}{4}} = \frac{\sqrt{29}}{2}
\]
Now \[\sin \theta = \frac{1}{\csc \theta} = \frac{1}{\sqrt{29}/2} \quad \Rightarrow \quad \sin \theta = \frac{2}{\sqrt{29}} \]

Now \[\frac{\cos \theta}{\sin \theta} = \cot \theta \quad \Rightarrow \quad \cos \theta = (\cot \theta)(\sin \theta) \]
\[\Rightarrow \quad \cos \theta = \left(\frac{5}{2} \right) \left(\frac{2}{\sqrt{29}} \right) \quad \Rightarrow \quad \cos \theta = \frac{5}{\sqrt{29}} \]

Now \[\frac{3\sin \theta + 4\cos \theta}{\cos \theta - \sin \theta} = \frac{3 \left(\frac{2}{\sqrt{29}} \right) + 4 \left(\frac{5}{\sqrt{29}} \right)}{\sqrt{29} - \frac{2}{\sqrt{29}}} = \frac{6\sqrt{29} + 20}{\sqrt{29} - 2\sqrt{29}} \]
\[= \frac{6 + 20}{\frac{5 - 2}{\sqrt{29}}} = \frac{26}{\frac{3}{\sqrt{29}}} = \frac{26}{3} \cdot \frac{\sqrt{2}}{3} = \frac{26}{3} \quad \text{Answer} \]

<table>
<thead>
<tr>
<th>Error Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haroon Hassan Khan</td>
</tr>
<tr>
<td>Irfan Mehmood (2007)</td>
</tr>
<tr>
<td>Mubeen (2018)</td>
</tr>
</tbody>
</table>

Please report us error at www.mathcity.org/error

Book:
Exercise 9.2 (Page 301)
Text Book of Algebra and Trigonometry Class XI
Punjab Textbook Board, Lahore.

Available online at http://www.MathCity.org in PDF Format
(Picture format to view online).
Page setup: A4 (8.27 in × 11.02 in).
Updated: January 27, 2018.

These resources are shared under the licence Attribution-NonCommercial-NoDerivatives 4.0 International
https://creativecommons.org/licenses/by-nc-nd/4.0/
Under this licence if you remix, transform, or build upon the material, you may not distribute the modified material.