Matrices and determinant

Book: Algebra and trigonometry Time: No matter Chapter: Matrices and determinant Prepare by *M. Fiaz Hussain*

Q1. If $A = \begin{bmatrix} i & 0 \\ 1 & -i \end{bmatrix}$ then show that, $A^4 = I$. Q2. Find X if, $X\begin{bmatrix} 5 & 2\\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 5\\ 12 & 3 \end{bmatrix}$. Q3. If A and B are the squere matrices of same order then show that, $(A+B)^2 \neq A^2 + 2AB + B^2$ Q4. Show that without expansion. $\begin{vmatrix} a+l & a & a \\ a & a+l & a \\ a & a & a+l \end{vmatrix} = l^2(3a+l).$ Q5. Show that without expansion. $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (a-b)(b-c)(c-a).$ Q6. Show that without expansion. $\begin{vmatrix} -a & 0 & c \\ 0 & a & -b \\ b & -c & 0 \end{vmatrix} = 0.$ Q7. Show that $\begin{vmatrix} x & 1 & 1 & 1 \\ 1 & x & 1 & 1 \\ 1 & 1 & x & 1 \\ 1 & 1 & 1 & x \end{vmatrix} = (x+3)(x-1)^3.$ Q8. Find the value of λ if A is singular matrix. $A = \begin{bmatrix} 4 & \lambda & 3 \\ 7 & 3 & 6 \\ 2 & 3 & 1 \end{bmatrix}$. Q9. Show that $(A^{-1})^t = (A^t)^{-1}$ if $A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$. Q10. if A and B are non-singular matrices. then show that, $(AB)^{-1} = B^{-1}A^{-1}$. Q11. if $A = \begin{bmatrix} 1 & 2 \text{ A0} \\ 3 & 2 & -1 \\ -1 & 3 & 2 \end{bmatrix}$ then show that, $A - A^t$ is skew symmetric. Q12. If $A = \begin{bmatrix} i & 1+i \\ 1 & -i \end{bmatrix}$ then show that, $A - (\bar{A})^t$ is skew hermitian. Q13. If *A* and *B* are symmetric matrix and AB = BA. Show that *AB* is symmetric matrix. Q14. If *A* is symmetric or skew symmetric, show that A^2 is symmetric. Q15. Find the rank of the following matrix $\begin{bmatrix} 1 & -4 & -7 \\ 2 & -5 & 1 \\ 1 & -2 & 3 \\ 3 & -7 & 4 \end{bmatrix}$. Q16. Solve the following equations.

$$\begin{array}{rcrcrcr} x+y &=& 2\\ 2x-z &=& 1\\ 2y-3z &=& -1 \end{array}$$

Q17. Solve the following equations.

$$2x_1 - x_2 + x_3 = 8$$

$$x_1 + 2x_2 + 2x_3 = 6$$

$$x_1 - 2x_2 - x_3 = 1$$
Q18. Find the inverse of the following matrix
$$\begin{bmatrix} 1 & -3 & 2 \\ 2 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$
Q19. If *A* is a square matrix of order 3 then show that, (i) *A*

Q19. If *A* is a square matrix of order 3 then show that, (*i*) $A + A^t$ is symmetric matrix. (*ii*) $A - A^t$ is skew symmetric matrix.

Q20. Show that without expansion
$$\begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} = 4abc.$$

Q21. Show that without expansion $\begin{vmatrix} b & -1 & a \\ a & b & 0 \\ 1 & a & b \end{vmatrix} = a^3 + b^3.$
Q22. Show that without expansion $\begin{vmatrix} b & -1 & a \\ a & b & 0 \\ 1 & a & b \end{vmatrix} = 0.$
Q23. Show that without expansion $\begin{vmatrix} a & b & -1 & a \\ a & b & 0 \\ 1 & a & b \end{vmatrix} = 0.$
Q24. Show that $\begin{vmatrix} mn & l & l^2 \\ nl & m & m^2 \\ lm & n & n^2 \end{vmatrix} = \begin{vmatrix} 1 & l^2 & l^3 \\ 1 & m^2 & m^3 \\ 1 & n^2 & n^3 \end{vmatrix}$.
Q25. Show that the matrix $\begin{bmatrix} 1 & 0 & 3 \\ 3 & 1 & -1 \\ 0 & 2 & 4 \end{bmatrix}$ singular or non-singular.
Q26. If A is a square matrix of order 3 then show that $|kA| = k^3|A|$.
M.Sc, M. Phil. Best of luck d a Analytic Mathematics