Matrices and determinant

Book: Algebra and trigonometry

Chapter: Matrices and determinant
Prepare by M. Fiaz Hussain

Q1. If $A=\left[\begin{array}{cc}i & 0 \\ 1 & -i\end{array}\right]$ then show that, $A^{4}=I$.
Q2. Find X if, $X\left[\begin{array}{cc}5 & 2 \\ -2 & 1\end{array}\right]=\left[\begin{array}{cc}-1 & 5 \\ 12 & 3\end{array}\right]$.
Q3. If A and B are the squere matrices of same order then show that,

$$
(A+B)^{2} \neq A^{2}+2 A B+B^{2}
$$

Q4. Show that without expansion. $\left|\begin{array}{ccc}a+l & a & a \\ a & a+l & a \\ a & a & a+l\end{array}\right|=l^{2}(3 a+l)$.
$\left.1 \begin{array}{lll}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array} \right\rvert\,=(a-b)(b-c)(c-a)$.
Q5. Show that without expansion
$-a$ 0
Q7. Show that $\left|\begin{array}{llll}x & 1 & 1 & 1 \\ 1 & x & 1 & 1 \\ 1 & 1 & x & 1 \\ 1 & 1 & 1 & x\end{array}\right|=(x+3)(x-1)^{3}$.
Q8. Find the value of λ if A is singular matrix. $A=\left[\begin{array}{lll}4 & \lambda & 3 \\ 7 & 3 & 6 \\ 2 & 3 & 1\end{array}\right]$.
Q9. Show that $\left(A^{-1}\right)^{t}=\left(A^{t}\right)^{-1}$ if $A=\left[\begin{array}{cc}2 & -1 \\ 3 & 1\end{array}\right]$.
Q10. if A and B are non-singular matrices. then show that, $(A B)^{-1}=B^{-1} A^{-1}$.
Q11. if $A=\left[\begin{array}{ccc}1 & 2 & A \\ 3 & 2 & -1 \\ -1 & 3 & 2\end{array}\right]$ then show that, $A-A^{t}$ is skew symmetric.
Q12. If $A=\left[\begin{array}{cc}i & 1+i \\ 1 & -i\end{array}\right]$ then show that, $A-(\bar{A})^{t}$ is skew hermitian.
Q13. If A and B are symmetric matrix and $A B=B A$. Show that $A B$ is symmetric matrix.
Q14. If A is symmetric or skew symmetric, show that A^{2} is symmetric.
Q15. Find the rank of the following matrix $\left[\begin{array}{ccc}1 & -4 & -7 \\ 2 & -5 & 1 \\ 1 & -2 & 3 \\ 3 & -7 & 4\end{array}\right]$
Q16. Solve the following equations.

$$
\begin{aligned}
x+y & =2 \\
2 x-z & =1 \\
2 y-3 z & =-1
\end{aligned}
$$

Q17. Solve the following equations.

$$
\begin{array}{r}
2 x_{1}-x_{2}+x_{3}=8 \\
x_{1}+2 x_{2}+2 x_{3}=6 \\
x_{1}-2 x_{2}-x_{3}=1
\end{array}
$$

Q18. Find the inverse of the following matrix $\left[\begin{array}{ccc}1 & -3 & 2 \\ 2 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$.
Q19. If A is a square matrix of order 3 then show that, (i) $A+A^{t}$ is symmetric matrix. (ii) $A-A^{t}$ is skew symmetric matrix.
Q20. Show that without expansion $\left|\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & a+b\end{array}\right|=4 a b c$.
Q21. Show that without expansion $\left|\begin{array}{ccc}b & -1 & a \\ a & b & 0 \\ 1 & a & b\end{array}\right|=a^{3}+b^{3}$.
Q22. Show that without expansion
$\left|\begin{array}{lll}\alpha & \beta+\gamma & 1 \\ \beta & \gamma+\alpha & 1 \\ \gamma & \alpha+\beta & 1\end{array}\right|=0$.

Q23. Show that without expansion
Q24. Show that $\left|\begin{array}{ccc}m n & l & l^{2} \\ n l & m & m^{2} \\ l m & n & n^{2}\end{array}\right|=\left|\begin{array}{ccc}1 & l^{2} & l^{3} \\ 1 & m^{2} & m^{3} \\ 1 & n^{2} & n^{3}\end{array}\right|$.
Q25. Show that the matrix $\left[\begin{array}{ccc}1 & 0 & 3 \\ 3 & 1 & -1 \\ 0 & 2 & 4\end{array}\right]$ singular or non-singular.
Q26. If A is a square matrix of order 3 then show that $|k A|=k^{3}|A|$.

M.Sc, M. PhII. Best of luck Analytic Mathematics

