> Following short questions are selected from previous 5 years papers of different boards. Solve these at your own to perform well in annual exams.

1. Define a radian.
2. Convert $\frac{25}{36} \pi$ radian into the degree.
3. Prove that $\operatorname{cosec} \theta+\tan \theta \sec \theta=\operatorname{cosec} \theta \sec ^{2} \theta$.
4. Prove that $\cos ^{2} \theta-\sin ^{2} \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}$, where θ is not an integral multiple of $\frac{\pi}{2}$.
5. Find r, when $l=56 \mathrm{~cm}$ and $\theta=45^{\circ}$.
6. Convert $\frac{5 \pi}{6}$ radian into measure of sexagesimal system.
7. If $\sin \theta=-\frac{1}{\sqrt{2}}$, then find the value of $\cos \theta$ if θ does not lie in third quadrant.
8. Prove that $\sec ^{2} \theta-\operatorname{cosec}^{2} \theta=\tan ^{2} \theta-\cot ^{2} \theta$.
9. Prove that $\frac{1-\sin \theta}{\cos \theta}=\frac{\cos \theta}{1+\sin \theta}$.
10. Prove that $\sin \left(180^{\circ}+\alpha\right) \sin \left(90^{\circ}-\alpha\right)=\sin \alpha \cos \alpha$.
11. Prove that $\frac{1-\cos \alpha}{\sin \alpha}=\tan \frac{\alpha}{2}$.
12. Express the product $2 \cos 5 \theta \sin 3 \theta$ as a sum or difference.
13. Prove that $\frac{\cos 11^{\circ}+\sin 11^{\circ}}{\cos 11^{\circ}-\sin 11^{\circ}}=\tan \left(56^{\circ}\right)$.
14. Express $\sin 7 x+\sin 5 x$ as a product.
15. Verify $\sin ^{2} \frac{\pi}{6}+\sin ^{2} \frac{\pi}{3}+\tan ^{2} \frac{\pi}{4}=2$.
16. Express $\sin 2 x+\sin 7 x$ as a product.
17. Express $\sin 120^{\circ} \sin 46^{\circ}$ as sum or difference.
18. Verify $\sin 2 \theta=2 \sin \theta \cos \theta$ for $\theta=45^{\circ}$.
19. Show that $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$.
20. Prove that $\sin \left(45^{\circ}+\alpha\right)=\frac{1}{\sqrt{2}}(\sin \alpha+\cos \alpha)$.
21. Show that $\cos \left(\alpha+45^{\circ}\right)=\frac{1}{\sqrt{2}}(\cos \alpha-\sin \alpha)$.
22. Show that $\cos (\alpha+\beta) \cos (\alpha-\beta)=\cos ^{\beta}-\sin ^{2} \alpha$.
23. Prove that $\cot \alpha-\tan \alpha=2 \cot 2 \alpha$.
24. Prove that $\tan \left(270^{\circ}-\theta\right)=\cot \theta$.
25. Prove that $\frac{\cos 8^{\circ}-\sin 8^{\circ}}{\cos 8^{\circ}+\sin 8^{\circ}}=\tan 37^{\circ}$.
26. Draw the graph of $y=\cos x$ from 0° to 90°.
27. Find the domain of $\tan \theta$.
28. Find the period of $\sin 3 x$.
29. Find the period of $\operatorname{cosec} 10 x$.
30. Find the period of $3 \cos \frac{x}{5}$.
31. Find the period of $\cos 2 \theta$.
32. Write down domain and range of $\sec 9 x$.
33. Find the smallest angle of the triangle ABC when $a=37.34, b=3.24, c=35.06$.
34. Find the area of the triangle ABC when $a=200, b=120, \gamma=150^{\circ}$.
35. Find r_{2} of the triangle ABC , when $a=34, b=20, c=42$.
36. What do you mean by solution of a triangle?
37. State any two laws of cosines in a triangle.
38. Write down laws of sines.
39. Prove that $r_{1}=\frac{\Delta}{s-a}$.
40. Find the area of a triangle ABC in which $b=21.6 \mathrm{~m}, c=30.2 \mathrm{~m}$ and $\alpha=52^{\circ} 40^{\prime}$.
41. Find the area of the triangle ABC , where $a=13, b=14, c=15$.
42. Solve the right triangle ABC in which $\gamma=90^{\circ}, \alpha=37^{\circ} 20^{\prime}$ and $a=243$.
43. If α, β, γ are the angles of a triangle ABC , then prove that $\cos \left(\frac{\alpha+\beta}{2}\right)=\sin \frac{\gamma}{2}$.
44. Find the smallest angle of the triangle ABC, where $a=37.34, b=3.24, c=35.06$.
45. Solve the triangle ABC in which $b=125, \gamma=53^{\circ}$ and $\alpha=47^{\circ}$.
46. Solve the trigonometric equation, $\tan ^{2} \theta=\frac{1}{3}$.
47. Show that $r_{2}=\operatorname{stan} \frac{\beta}{2}$.
48. If α, β, γ are angles of a triangle ABC , then prove that $\tan (\alpha+\beta)+\tan \gamma=0$.
49. Prove that $R=\frac{a b c}{4 \Delta}$.
50. Show that $r_{1}=\operatorname{stan} \frac{\alpha}{2}$.
51. A vertical pole is 8 m high and length of its shadow is 6 m . What is the angle of elevation of sun at that moment?
52. Solve the triangle ABC in which $a=7, b=3, \gamma=38^{\circ} 13^{\prime}$.
53. Without using calculator, show that $\operatorname{Cos}^{-1} \frac{4}{5}=\operatorname{Cot}^{-1} \frac{4}{3}$.
54. Find the value of $\operatorname{Cos}^{-1}(1)$ and $\operatorname{Cos}^{-1}\left(\frac{-1}{2}\right)$.
55. Prove that $\operatorname{Tan}^{-1} \frac{1}{4}+\operatorname{Tan}^{-1} \frac{1}{5}=\operatorname{Tan}^{-1} \frac{9}{19}$.
56. Complete the formula $\operatorname{Tan}^{-1} A+\operatorname{Tan}^{-1} B=$:
57. Evaluate $\operatorname{Cos}^{-1}\left(\frac{\sqrt{3}}{2}\right)$ without using table OR calculator.
58. Solve the equation $\sin x=\frac{1}{2}$, where $x \in[0,2 \pi]$.
59. Solve the equation $1+\cos x=0$.
60. Solve the trigonometric equation $\tan \theta=\frac{1}{\sqrt{3}}$.
61. Find the solution of $\sec x=-2$ which lie in $[0,2 \pi]$.
62. Find the solution of $\sin x=-\frac{\sqrt{3}}{2}$ which lie in $[0,2 \pi]$.
63. Find the solution set of the equation $\sin x=\frac{1}{2}$.
64. Solve $\sec ^{2} \theta=\frac{4}{3}$ in $[0,2 \pi]$.

Best of Luck

