Course: Algebra and Trigonometry

Chapter # 09 - 14

Trigonometry

Following short questions are selected from previous 5 years papers of different boards. Solve these at your own to perform well in annual exams.

1. Define a radian.

2. Convert $\frac{25}{36}\pi$ radian into the degree.

- 3. Prove that $cosec\theta + tan\theta sec\theta = cosec\theta sec^2\theta$.
- 4. Prove that $\cos^2\theta \sin^2\theta = \frac{1-\tan^2\theta}{1+\tan^2\theta}$, where θ is not an integral multiple of $\frac{\pi}{2}$.
- 5. Find r, when l = 56cm and $\theta = 45^{\circ}$.
- 6. Convert $\frac{5\pi}{6}$ radian into measure of sexagesimal system.
- 16. If $\sin\theta = -\frac{1}{\sqrt{2}}$, then find the value of $\cos\theta$ if θ does not lie in third quadrant.
- 21. Prove that $sec^2\theta cosec^2\theta = tan^2\theta cot^2\theta$.
- 20. Prove that $\frac{1-\sin\theta}{\cos\theta} = \frac{\cos\theta}{1+\sin\theta}$.
- 7. Prove that $sin(180^\circ + \alpha)sin(90^\circ \alpha) = sin\alpha cos\alpha$.
- 8. Prove that $\frac{1-\cos\alpha}{\sin\alpha} = \tan\frac{\alpha}{2}$.
- 9. Express the product $2\cos 5\theta \sin 3\theta$ as a sum or difference.
- 10. Prove that $\frac{\cos 11^\circ + \sin 11^\circ}{\cos 11^\circ \sin 11^\circ} = \tan(56^\circ).$
- 11. Express sin7x + sin5x as a product.
- 12. Verify $\sin^2 \frac{\pi}{6} + \sin^2 \frac{\pi}{3} + \tan^2 \frac{\pi}{4} = 2$.
- 13. Express sin2x + sin7x as a product.
- 14. Express $sin120^{\circ}sin46^{\circ}$ as sum or difference.
- 15. Verify $sin2\theta = 2sin\theta cos\theta$ for $\theta = 45^{\circ}$.
- 17. Show that $tan(\alpha + \beta) = \frac{tan\alpha + tan\beta}{1 tan\alpha tan\beta}$
- 18. Prove that $sin(45^\circ + \alpha) = \frac{1}{\sqrt{2}}(sin\alpha + cos\alpha)$.
- 19. Show that $\cos(\alpha + 45^{\circ}) = \frac{1}{\sqrt{2}}(\cos\alpha \sin\alpha).$
- 22. Show that $\cos(\alpha + \beta)\cos(\alpha \beta) = \cos^{\beta} \sin^{2}\alpha$.
- 23. Prove that $cot\alpha tan\alpha = 2cot2\alpha$.

- 24. Prove that $tan(270^{\circ} \theta) = cot\theta$.
- 25. Prove that $\frac{\cos 8^{\circ} \sin 8^{\circ}}{\cos 8^{\circ} + \sin 8^{\circ}} = \tan 37^{\circ}$.
- 26. Draw the graph of $y = \cos x$ from 0° to 90° .
- 27. Find the domain of $tan\theta$.
- 28. Find the period of sin 3x.
- 29. Find the period of cosec10x.
- 30. Find the period of $3\cos\frac{x}{5}$.
- 31. Find the period of $cos2\theta$.
- 32. Write down domain and range of sec9x.
- 33. Find the smallest angle of the triangle ABC when a = 37.34, b = 3.24, c = 35.06.
- 34. Find the area of the triangle ABC when $a = 200, b = 120, \gamma = 150^{\circ}$.
- 35. Find r_2 of the triangle ABC, when a = 34, b = 20, c = 42.
- 36. What do you mean by solution of a triangle?
- 37. State any two laws of cosines in a triangle.
- 38. Write down laws of sines.
- 39. Prove that $r_1 = \frac{\Delta}{s-a}$.
- 40. Find the area of a triangle ABC in which b = 21.6m, c = 30.2m and $\alpha = 52^{\circ}40'$.
- 41. Find the area of the triangle ABC, where a = 13, b = 14, c = 15.
- 42. Solve the right triangle ABC in which $\gamma = 90^{\circ}$, $\alpha = 37^{\circ}20'$ and a = 243.
- 43. If α , β , γ are the angles of a triangle ABC, then prove that $\cos(\frac{\alpha+\beta}{2}) = \sin\frac{\gamma}{2}$.
- 44. Find the smallest angle of the triangle ABC, where a = 37.34, b = 3.24, c = 35.06.
- 45. Solve the triangle ABC in which b = 125, $\gamma = 53^{\circ}$ and $\alpha = 47^{\circ}$.
- 46. Solve the trigonometric equation, $tan^2\theta = \frac{1}{3}$.
- 47. Show that $r_2 = stan \frac{\beta}{2}$.
- 48. If α , β , γ are angles of a triangle ABC, then prove that $tan(\alpha + \beta) + tan\gamma = 0$.
- 49. Prove that $R = \frac{abc}{4\Delta}$.
- 50. Show that $r_1 = stan \frac{\alpha}{2}$.
- 51. A vertical pole is 8m high and length of its shadow is 6m. What is the angle of elevation of sun at that moment?

- 52. Solve the triangle ABC in which $a = 7, b = 3, \gamma = 38^{\circ}13'$.
- 53. Without using calculator, show that $Cos^{-1}\frac{4}{5} = Cot^{-1}\frac{4}{3}$.
- 54. Find the value of $Cos^{-1}(1)$ and $Cos^{-1}(\frac{-1}{2})$.
- 55. Prove that $Tan^{-1}\frac{1}{4} + Tan^{-1}\frac{1}{5} = Tan^{-1}\frac{9}{19}$.
- 56. Complete the formula $Tan^{-1}A + Tan^{-1}B =$:
- 57. Evaluate $Cos^{-1}(\frac{\sqrt{3}}{2})$ without using table OR calculator.
- 58. Solve the equation $sinx = \frac{1}{2}$, where $x \in [0, 2\pi]$.
- 59. Solve the equation $1 + \cos x = 0$.
- 60. Solve the trigonometric equation $tan\theta = \frac{1}{\sqrt{3}}$.
- 61. Find the solution of secx = -2 which lie in $[0, 2\pi]$.
- 62. Find the solution of $sinx = -\frac{\sqrt{3}}{2}$ which lie in $[0, 2\pi]$.
- 63. Find the solution set of the equation $sinx = \frac{1}{2}$.
- 64. Solve $sec^2\theta = \frac{4}{3}$ in $[0, 2\pi]$.

Best of Luck