Govt. Ghazali Degree College, Jhang

(Important Short Questions)
Course: Algebra and Trigonometry
Fundamentals of Trigonometry

Following short questions are selected from previous 5 years papers of different boards. Solve these at your own to perform well in annual exams.

1. Define a radian.
2. Convert $\frac{25}{36} \pi$ radian into the measure of sexagesimal system.
3. Convert $120^{\prime} 40^{\prime \prime}$ into the radian measure.
4. Find r, when $l=56 \mathrm{~cm}$ and $\theta=45^{\circ}$.
5. Find l, when $\theta=65^{\circ} 20^{\prime}$ and $r=18 \mathrm{~mm}$.
6. Verify $\sin 2 \theta=2 \sin \theta \cos \theta$ for $\theta=45^{\circ}$.
7. If $\sin \theta=-\frac{1}{\sqrt{2}}$, then find the value of $\cos \theta$ if θ does not lie in third quadrant.
8. Find x, if $\tan ^{2} 45^{\circ}-\cos ^{2} 60^{\circ}=x \sin 45^{\circ} \cos 45^{\circ} \tan 60^{\circ}$.
9. Prove that $\operatorname{cosec} \theta+\tan \theta \sec \theta=\operatorname{cosec} \theta \sec ^{2} \theta$.
10. Prove that $\cos ^{2} \theta-\sin ^{2} \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}$, where θ is not an integral multiple of $\frac{\pi}{2}$.
11. Prove that $\sec ^{2} \theta-\operatorname{cosec}^{2} \theta=\tan ^{2} \theta-\cot ^{2} \theta$.
12. Prove that $\frac{1-\sin \theta}{\cos \theta}=\frac{\cos \theta}{1+\sin \theta}$.
13. Prove that $\cos ^{4} \theta-\sin ^{4} \theta=\cos ^{2} \theta-\sin ^{2} \theta$.
14. Prove that $(\sec \theta-\tan \theta)^{2}=\frac{1-\sin \theta}{1+\sin \theta}$.
15. Prove that $\sin ^{2} \frac{\pi}{6}+\sin ^{2} \frac{\pi}{3}+\tan ^{2} \frac{\pi}{4}=2$.
16. Prove that $2 \cos ^{2} \theta-1=1-2 \sin ^{2} \theta$.

Best of Luck

