Govt. Ghazali Degree College, Jhang

(Important Short Questions) Course: Algebra and Trigonometry

Chapter # 04

Quadratic Equations

Following short questions are selected from previous 5 years papers of different boards. Solve these at your own to perform well in annual exams.

- 1. Define a quadratic equation.
- 2. Define a polynomial function and degree of a polynomial.
- 3. Define a reciprocal equation and give an example.
- 4. Define a radical equation and give an example.
- 5. Solve the equation: x(x+7) = (2x-1)(x+4) by factorization.
- 6. The sum of a positive number and its square is 380. Find the number.
- 7. Reduce $x^{-2} 10 = 3x^{-1}$ to quadratic form.
- 8. When polynomial $x^3 + 2x^2 + kx + 4$ is divided by x 2, the remainder is 14. Find the value of k.
- 9. Use factor theorem to determine that x + a is a factor of $x^n + a^n$, where n is an odd integer.
- 10. Show that x 2 is a factor of $x^4 13x^2 + 36$.
- 11. When $x^4 + 2x^3 + kx^2 + 3$ is divided by x 2, the remainder is 1. Find the value of k.
- 12. By remainder theorem find remainder when $x^2 + 3x + 7$ is divided by x + 1.
- 13. Show that x 1 is a factor of $x^2 + 4x 5$.
- 14. If α , β are roots of $5x^2 x 2 = 0$, form an equation whose roots are $\frac{3}{\alpha}$ and $\frac{3}{\beta}$.
- 15. Evaluate $(1 + \omega \omega^2)^8 (1 \omega + \omega^2)$.
- 16. Prove that $(-1 + \sqrt{-3})^4 + (-1 \sqrt{-3})^4 = -16$.
- 17. Show that $x^3 y^3 = (x y)(x \omega y)(x \omega^2 y)$.
- 18. Show that $1 + \omega^{37} + \omega^{38} = 0$.
- 19. If α , β are the roots of $x^2 px p c = 0$, then prove that $(1 + \alpha)(1 + \beta) = 1 c$.
- 20. If α , β are the roots of $3x^2 2x + 4 = 0$, then find the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$.
- 21. If α , β are the roots of $3x^2 2x + 4 = 0$. Find the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$.
- 22. Discuss the nature of the roots of $x^2 + 2x + 3 = 0$.

- 23. Discuss the nature of the roots of $4x^2 + 6x + 1 = 0$.
- 24. Discuss the nature of the roots of $x^2 5x + 6 = 0$.
- 25. Show that the roots of $px^2 (p-q)x q = 0$ are rational.
- 26. For what value(s) of m, will the roots of the equation $(m+1)x^2 + 2(m+3)x + m + 8 = 0$ be equal?

Best of Luck

MathCity.org

by Akhtar Abbas