Calculus and Analytic Geometry MATHEMATICS 12

(Punjab Textbook Board)

SHORT TERM PREPARATION

IMPORTANT MCQs

IMPORTANT Short Questions

IMPORTANT Long Questions

EXERCISE WISE

M.SALMAN SHERAZI (03337727666/03067856232)

This document contains all the important MCQs, Short Questions and Long Questions of Mathematics HSSC-II (FSc Part 2) from the Calculus and Analytic Geometry, MATHEMATICS 12. It has been done to help the students and teachers at no cost by M Salman Sherazi. This work (pdf) is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0.

EXERCISE 1.1

Tick (✔) the correct answer.

1.	The notation $y = f(x)$) was invented by				
	(a) Lebnitz	(b) 🖌 Euler	(c) Newton	(d) Lagrange		
2.	If $f(x) = x^2 - 2x + 1$, then $f(0) =$				
	(a) -1	(b) 0	(c) 🖌 1	(d) 2		
3.	When we say that f is	function from set X to	set Y, then X is called			
		., . ,	(c) Codomain of f			
4.		as recognized by	_ to describe the depend	dence of one		
	quantity to another.					
	(a) 🖌 Lebnitz	(b) Euler	(c) Newton	(d) Lagrange		
5.	If $f(x) = x^2$ then the					
	(a) ✔ [0,∞)		(c) (0,∞)	(d) None of these		
6.	If $f(x) = \frac{x}{x^2 - 4}$ then do	main of f is				
	(a) <i>R</i>	(b) <i>R</i> − {0}	(c) $\checkmark R - \{\pm 2\}$	(d) <i>Q</i>		
7.	(a) R $Cosh^2 x - Sinh^2 x =$					
	(a) -1	(b) 0	(c) 🖌 1	(d) None of these		
8.	cosechx is equal to		and m	ath		
	(a) $\frac{2}{e^{x}+e^{-x}}$	(b) $\frac{1}{e^{x}-e^{-x}}$	(c) $\checkmark \frac{2}{e^{x}-e^{-x}}$	(d) $\frac{2}{e^{-x}+e^x}$		
9.	The domain and range	of identity function , I:	$X \to X$ is			
	. ,	(b) +iv real numbers		(d) integers		
10.		(x) = ax + b is identity				
		(b) $a = 1, b = 0$		(d) $a = 0$		
11.		(x) = ax + b is constant				
	$a \neq 0, b = 1$ (b) $a =$	= 1, b = 0 (c) $a =$	= 1, b = 1 (d)	a = 0		
	SHORT QUESTIONS					
i.	Define Even and O	dd function				
ii.	Find $f(-2)$ if $f(x)$	$y = \sqrt{x+4}$				
iii.		eter P of square as a fu	nction of its area A.			
iv.	Show that $x = acc$	os heta , $y=bsin heta$ repres	ent the equation of ellip	ose $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$		

- v.
- Determine $f(x) = x^{\frac{2}{3}} + 6$ is even or odd. Express the volume V of a cube as a function of the area A of its base. vi.
- Find $\frac{f(a+h)-f(a)}{h}$ and simplify f(x) = cosxvii.

LONG QUESTIONS

Given $f(x) = x^3 - ax^2 + bx + 1$ If f(2) = -3 and f(-1) = 0. Find a and **b**.

EXERCISE 1.2

Tick (✔) the correct answer.

- 1. If f(x) = 2x + 3, $g(x) = x^2 1$, then (gof)(x) =(a) $2x^2 - 1$ (b) $\checkmark 4x^2 + 4x$ (c) 4x + 3 (d) $x^4 - 2x^2$
- 2. If f(x) = 2x + 3, $g(x) = x^2 1$, then (fof)(x) =(b) $2x^2 - 1$ (b) $4x^2 + 4x$ (c) $\checkmark 4x + 3$ (d) $x^4 - 2x^2$ 3. If f(x) = 2x + 3, $g(x) = x^2 - 1$, then (gog)(x) =
- (c) $2x^2 1$ (b) $4x^2 + 4x$ (c) 4x + 3 (d) $\checkmark x^4 2x^2$

4. The inverse of a function exists only if it is (a) an into function (b) an onto function (c) ✓ (1-1) and into function (d) None of these

5. If $f(x) = 2 + \sqrt{x - 1}$, then domain of $f^{-1} =$ (a) $]2,\infty[$ (b) $\checkmark [2,\infty[$ (c) $[1,\infty[$ (d) $]1,\infty[$ SHORT QUESTIONS

i. Define inverse of a function.

- ii. Find fof(x) and gog(x) if $f(x) = \sqrt{x+1}$ and $g(x) = \frac{1}{x^2}$, $x \neq 0$
- iii. Without finding the inverse , state the domain and range of $f(x) = (x-5)^2, x \ge 5$
- iv. Let $f: R \to R$ be the function defined by f(x) = 2x + 1. Find $f^{-1}(x)$

LONG QUESTIONS

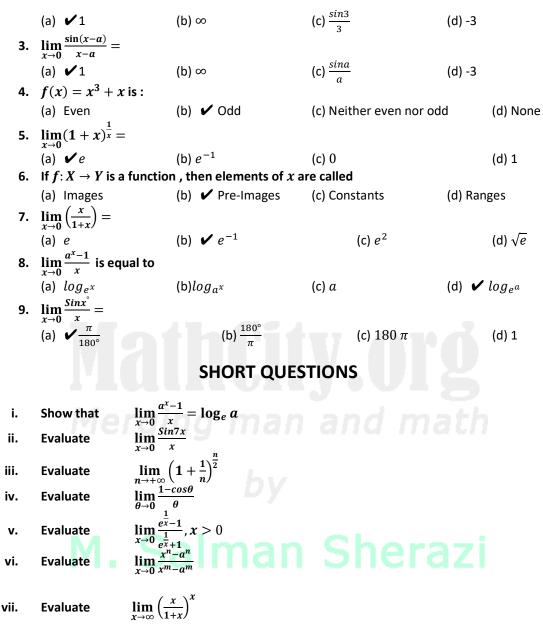
For the real valued function , f defined below , find $f^{-1}(x)$ and verify

$$f(f^{-1}(x)) = (f^{-1}(f(x))) = x \text{ if } f(x) = -2x + 8$$

EXERCISE 1.3

Tick (✔) the correct answer.

1. $\lim_{x \to \infty} e^x =$ (a) 1 (b) ∞ (c) $\checkmark 0$ (d) -1 2. $\lim_{x \to 0} \frac{\sin(x-3)}{x-3} =$



LONG QUESTIONS

Prove that if θ is measured in radian , then $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$

Evaluate $\lim_{\theta \to 0} \frac{tan\theta - sin\theta}{sin^3\theta}$.

EXERCISE 1.4

Tick (✔) the correct answer.

1. A function is said to be continuous at x = c if (a) $\lim_{x \to c} f(x)$ exists (b) f(c) is defined (c) $\lim_{x \to c} f(x) = f(c)$ (d) \checkmark All of these 2. The function $f(x) = \frac{x^2 - 1}{x - 1}$ is discontinuous at (a) $\checkmark 1$ (b) 2 (c) 3 (d) 4 3. L.H.L of f(x) = |x - 5| at x = 5 is (a) 5 (b) $\checkmark 0$ (c) 2 (d) 4

SHORT QUESTIONS

i. Define the continuous function.

ii. Find L.H.L and R.H.L when $x \to c$ if $f(x) = 2x^2 + x - 5$, c = 1iii. Discuss the continuity of the function at x = 3 $g(x) = \frac{x^{2-9}}{x-3}$ if $x \neq 3$ iv. Discuss the continuity of f(x) at x = c: $f(x) = \begin{cases} 2x + 5 & \text{if } x \leq 2 \\ 4x + 1 & \text{if } x > 2 \end{cases}$, c = 2v. Discuss the continuity of f(x) at 3, when $f(x) = \begin{cases} x - 1, & \text{if } x \leq 3 \\ 2x + 1 & \text{if } 3 \leq x \end{cases}$

LONG QUESTIONS

Find the values of m and n, so that given function f is continuous at x = 3

$$M = \begin{cases} mx & if \quad x < 3 \\ n & if \quad x = 3 \\ -2x + 9 & if \quad x > 3 \end{cases}$$

If
$$f(x) = egin{cases} rac{\sqrt{2x+5}-\sqrt{x+7}}{x-2} \ , \ x \neq 2 \ k \ , \ x = 2 \end{cases}$$

Find the value of k so that f is

continuous at x = 2.

EXERCISE 2.1

- 1. The change in variable x is called increment of x. It is denoted by δx which is
 - (a) +iv only (b) -iv only (c) \checkmark +iv or -iv (d) none of these

2.	The notation $\frac{dy}{dx}$ or $\frac{df}{dx}$	is used by		
	(a) 🖌 Leibnitz		(c)Lagrange	(d) Cauchy
3.	The notation $\dot{f}(x)$ is u	ised by		
	(a) Leibnitz	(b) 🖌 Newton	(c) Lagrange	(d) Cauchy
4.	The notation $f'(x)$ or	$m{y}'$ is used by		
	(a) Leibnitz	(b) Newton	(c) 🖌 Lagrange	(d) Cauchy
5.	The notation $Df(x)$ o	r <i>Dy</i> is used by		
		(b) Newton	(c) Lagrange	(d) 🖌 Cauchy
6.	$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} =$			
	(a) $\checkmark f'(x)$	(b) $f'(a)$	(c) <i>f</i> (0	(d) $f(x - a)$
7.	$\frac{d}{dx}(x^n) = nx^{n-1}$ is cal	lled		
	(a) 🖌 Power rule	(b) Product rule	(c) Quotient rule	(d) Constant
8.	The derivative of a co	nstant function is		
	(a) one	(b) 🖌 zero	(c) undefined	(d) None of these
9.	The process of finding	derivatives is called		
	(a) 🖌 Differentiation	(b) differential	(c) Increment	(d) Integration
10	. The increment of y is	denoted by		
	(a) ν δy	(b) <i>dy</i>	(c) $f'(y)$	(d) None of these
		ing man	and m	

i. Find the derivative of the given function by definition $f(x) = x^2$

ii. Find the derivative of the given function by definition $f(x) = \frac{1}{\sqrt{x}}$

LONG QUESTIONS

(d) $\frac{-na}{(ax+b)^{n-1}}$

Find by definition , the derivative $w.r.t'x' f(x) = x^n$ where $n \in Z$

EXERCISE 2.2

Tick (✔) the correct answer.

The derivative of $\frac{1}{(ax+b)^n}$ is

(a)
$$-n(ax+b)^{n-1}$$
 (b) $na(ax+b)^{-n+1}$ (c) $\checkmark \frac{-na}{(ax+b)^{n+1}}$

LONG QUESTIONS

Find from first Principles , the derivative $w.r.t'x'(ax+b)^3$

Find from first principles the derivative of $\frac{1}{(az-b)^7}$.

EXERCISE 2.3

Tick (✔) the correct answer.

 $1. \quad \frac{d}{dx}[f(x) + g(x)] =$ (a) $\checkmark f'(x) + g'(x)$ (b) f'(x) - g'(x) (c) f(x)g'(x) + g(x)f'(x) (d) f(x)g'(x) - g'(x)g(x)f'(x)Remember that $[f(x)g(x)]' = \frac{d}{dx}[f(x)g(x)]$ 2. [f(x)g(x)]'=(a) f'(x) + g'(x) (b) f'(x) - g'(x) (c) $\checkmark f(x)g'(x) + g(x)f'(x)$ (d) f(x)g'(x) - g'(x)g'(x) + g(x)g'(x) + g(x)g'(x)g'(x) + g(x)g'(x)g'(x) + g(x)g'(x)g'(x) + g(x)g'(x)g'(x) + g(x)g'(x)g'(x)g'(x) + g(x)g'(x)g'(x)g'(x) + g(x)g'(x)g'(x)g'(x)g'(x)g'(x)g'(xg(x)f'(x) $\frac{d}{dx}\left(\frac{1}{g(x)}\right) =$ (a) $\frac{1}{[g(x)]^2}$ (b) $\frac{1}{g'(x)}$ (c) $\frac{g'(x)}{[g(x)]^2}$ (d) $\checkmark \frac{-g'(x)}{[g(x)]^2}$ (a) $\frac{[g(x)]^2}{[g(x)]^2}$ (b) $\frac{1}{a^2}$ (c) $\frac{1}{a^2}$ (d) $\checkmark \frac{2}{a^3}$ 5. (fog)'(x) =(a) f'g' (b) f'g(x) (c) $\checkmark f'(g(x))g'(x)$ (d) cannot be calculated $6. \quad \frac{d}{dx} (g(x))^n =$ (a) $n[g(x)]^{n-1}$ (b) $n[(g(x)]^{n-1}g(x)$ (c) $\checkmark n[(g(x)]^{n-1}g'(x)$ (d) (a) $n[g(x)]^{n-1}g'(x)$ 11. $\frac{d}{dx}(3x^{\frac{4}{3}}) =$ (a) $4x^{\frac{2}{3}}$ 12. If $\sqrt{x} - \frac{1}{\sqrt{x}}$ then $2x\frac{dy}{dx} + y =$ (b) 2*x*³ (c) $\checkmark 2\sqrt{x}$ (a) 2x (d) $2x^2$ SHORT QUESTIONS Find the derivative of $y = (2\sqrt{x} + 2)(x - \sqrt{x}) w. r. t'x'$ i. Differentiate $\frac{2x^3-3x^2+5}{x^2+1}$ w. r. t'x' If $x^4 + 2x^2 + 2$, Prove that $\frac{dy}{dx} = 4x\sqrt{y-1}$ ii. iii. Differentiate $\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 w. r. t' x'.$ iv. Differentiate (x - 5)(3 - x)v. LONG QUESTIONS Differentiate $\sqrt{\frac{a-x}{a+x}} w. r. t' x'.$

Find
$$\frac{dy}{dx}$$
 if $y = \frac{(1+\sqrt{x})(x-x^2)}{\sqrt{x}}$
EXERCISE 2.4
Tick (*) the correct answer.
1. The derivative of $(x^3 + 1)^9$ w.r.t'x' is
(a) $\sqrt{2}7x^2(x^3 + 1)^6$ (b) $27x(x^3 + 1)^6$ (c) $27(x^3 + 1)^8$ (d) $(x + 1)^6$
2. If $x = at^2$ and $y = 2at$ then $\frac{dy}{dx} =$
(a) $\frac{2}{ya}$ (b) $\frac{y}{2a}$ (c) $\sqrt{\frac{2a}{y}}$ (d) $\frac{2}{y}$
SHORT QUESTIONS
i. Find $\frac{dy}{dx}$ if $x = \theta + \frac{1}{\theta}$, $y = \theta + 1$
ii. Find $\frac{dy}{dx}$ if $x^2 = \theta + \frac{1}{x^2}$ w.r.t $x - \frac{1}{x}$
iv. Find $\frac{dy}{dx}$ if $y^2 - xy - x^2 + 4 = 0$
v. Find $\frac{dy}{dx}$ if $y = x^n$ where $n = \frac{p}{q}$, $q \neq 0$
vii. If $y = (ax + b)^n$ where n is negative integer, find $\frac{dy}{dx}$ using quotient theorem.
viii. Find $\frac{dy}{dx}$ if $xy + y^2 = 2$
ix. Differentiate $(1 + x^2)$ w.r.t x^2
x. Find $\frac{dy}{dx}$ if $3x + 4y + 7 = 0$
Prove that $y\frac{dy}{dx} + x = 0$ if $x = \frac{1-t^2}{1+t^2}$, $y = \frac{2t}{1+t^2}$
Differentiate $\frac{ax+b}{cx+d}$ W.r.t $\frac{ax^2+b}{ax^2+d}$
EXERCISE 2.5

1.
$$\frac{d}{dx}(tan^{-1}x - cot^{-1}x) =$$

(a) $\frac{2}{\sqrt{1+x^2}}$ (b) $\checkmark \frac{2}{1+x^2}$ (c) 0 (d) $\frac{-2}{1+x^2}$

2. If
$$Sin \sqrt{x}$$
, then $\frac{dy}{dx}$ is equal to
(a) $\sqrt{\frac{\cos\sqrt{x}}{2\sqrt{x}}}$ (b) $\frac{\cos\sqrt{x}}{\sqrt{x}}$ (c) $\cos\sqrt{x}$ (d) $\frac{\cos x}{\sqrt{x}}$
3. $\frac{d}{dx} \sec^{-1}x =$
(a) $\sqrt{\frac{1}{|x|\sqrt{x^2-1}}}$ (b) $\frac{-1}{|x|\sqrt{x^2-1}}$ (c) $\frac{1}{|x|\sqrt{1+x^2}}$ (d) $\frac{-1}{|x|\sqrt{1+x^2}}$
4. $\frac{d}{dx} \csc^{-1}x =$
(a) $\frac{1}{|x|\sqrt{x^2-1}}$ (b) $\sqrt{\frac{-1}{|x|\sqrt{x^2-1}}}$ (c) $\frac{1}{|x|\sqrt{1+x^2}}$ (d) $\frac{-1}{|x|\sqrt{1+x^2}}$
5. Differentiating $\sin^3 x$ w.r.t $\cos^2 x$ is
(a) $\sqrt{-\frac{3}{2}} \sin x$ (b) $\frac{3}{2} \sin x$ (c) $\frac{2}{3} \cos x$ (d) $-\frac{2}{3} \cos x$
6. If $\frac{y}{x} = Tan^{-1}\frac{x}{y}$ then $\frac{dy}{dx} =$
(a) $\frac{x}{y}$ (b) $\frac{x}{y}$ (c) $\sqrt{\frac{y}{x}}$ (c) $\sqrt{\frac{y}{x}}$ (d) $-\frac{y}{x}$
7. If $tany(1 + tanx) = 1 - tanx$, show that $\frac{dy}{dx} =$
(a) 0 (b) 1 (c) $\sqrt{-1}$ (d) 2
8. $\frac{d}{dx}(Stn^{-1}x) = \frac{1}{\sqrt{1-x^2}}$ is valid for
(a) $0 < x < 1$ (b) $-1 < x < 0$ (c) $\sqrt{-1} < x < 1$ (d) None of these
9. If $y = xsin^{-1}(\frac{x}{a}) + \sqrt{a^2 - x^2}$ then $\frac{dy}{dx} =$
(a) $\cos^{-1}\frac{x}{a}$ (b) $Sec^{-1}\frac{x}{a}$ (c) $\sqrt{sin^{-1}\frac{x}{a}}$ (d) $Tan^{-1}\frac{x}{a}$
SHORT QUESTIONS
i. Find $\frac{dy}{dx}$ if $y = xcosy$
ii. Differentiate $\sin^2 x$ w.r.t $\cos^2 x$
iii. If $tany(1 + tanx) = 1 - tanx, show that $\frac{dy}{dx} = -1$
iv. If $y = \sqrt{tanx + \sqrt{tanx} + \sqrt{tanx}} + \dots \infty$, prove that $(2y - 1)\frac{dy}{dx} = \sec^2 x$
v. Differentiate $\sin^3 x$ w.r.t $\cos^2 x$
vii. If $y = tan(pTan^{-1}x)$, show that $(1 + x^2)y_1 - p(1 + y^2) = 0$
LONG QUESTIONS
Show that $\frac{dy}{dx} = \frac{y}{x}$ if $\frac{y}{x} = Tan^{-1}\frac{x}{y}$
Differentiate $\cos^{-1}(\frac{1-x^2}{1+x^2})$
Differentiate \sqrt{tanx} from first principles.$

If
$$x = acos^3\theta$$
, $y = bsin^3\theta$, show that $a\frac{dy}{dx} + btan\theta = 0$

EXERCISE 2.6

Tick (✔) the correct answer.

1. If $y = e^{-ax}$, then $y \frac{dy}{dx} =$ (a) $\checkmark -ae^{-2ax}$ (b) $-a^2e^{ax}$ (c) $a^2 e^{-2ax}$ (d) $-a^2 e^{-2ax}$ $2. \quad \frac{d}{dx}(10^{sinx}) =$ (b) $\checkmark 10^{sinx}.cosx.ln10$ (c) $10^{sinx}.ln10$ (d) $10^{cosx}.ln10$ (a) 10^{cosx} 3. If $y = e^{ax}$ then $\frac{dy}{dx} =$ (b) $\checkmark a e^{ax}$ (c) e^{ax} (d) $\frac{1}{a}e^{ax}$ (a) $\frac{1}{e^x}$ 4. $\frac{d}{dx}(a^x) =$ (a) a^x (b) $e^x lna$ (c) $\checkmark a^x . lna$ (d) x^a . lna 5. The function $f(x) = a^x$, a > 0, $a \neq 0$, and x is any real number is called (a) (a) (c) Exponential function (b) logarithmic function (c) algebraic function (d) composite function 6. If a > 0, $a \neq 1$, and $x = a^y$ then the function defined by $y = loga^x$ (x > 0) is called a logarithmic function with base (c) $\checkmark a$ (d) x (a) 10 (b) e 7. $log_{a^{a}} =$ 7. $\log_{a^{u}} -$ (a) $\checkmark 1$ (b) e (c) a^{2} (d) not c8. $\frac{d}{dx} \log_{a^{x}} =$ (a) $\frac{1}{x} \log a$ (b) $\checkmark \frac{1}{x \ln a}$ (c) $\frac{\ln x}{x \ln x}$ (d) $\frac{\ln a}{x \ln x}$ (d) not defined 9. $\frac{d}{dx} ln[f(x)] =$ (a) f'(x)(b) lnf'(x)(c) $\frac{f'(x)}{f(x)}$ (d) $f(x) \cdot f'(x)$ 10. If $y = log \ 10^{(ax^2+bx+c)}$ then $\frac{dy}{dx} =$ (a) $\checkmark \frac{1}{(ax^2+bx+c)\ln 10}$ (b) $\frac{2ax+b}{(ax^2+bx+c)}$ (c) $10^{ax^2+bx+c} \ln 10$ (d) $\frac{2ax+b}{(ax^2+bx+c)\ln a}$ **11.** $ln a^e =$ (b) $\checkmark \frac{1}{lma}$ (c) $\frac{1}{\ln e}$ (d) $\ln e^e$ (a) lna

SHORT QUESTIONS

i. Find f'(x) if $f(x) = ln(e^x + e^{-x})$ ii. Find f'(x) if $f(x) = e^x (1 + lnx)$ iii. Differentiate $(lnx)^x w.r.t'x'$ iv. Find $\frac{dy}{dx}$ if $y = a^{\sqrt{x}}$ v. Find $\frac{dy}{dx}$ if $y = 5e^{3x-4}$ vi. Find $\frac{dy}{dx}$ if $y = (x + 1)^x$ vii. Find $\frac{dy}{dx}$ if $y = xe^{sinx}$

viii. Find
$$\frac{dy}{dx}$$
 if $y = (ln tanhx)$
ix. Find $\frac{dy}{dx}$ if $y = sinh^{-1}(\frac{x}{2})$
x. Find $\frac{dy}{dx}$ if $y = tanh^{-1}(sinx)$, $-\frac{\pi}{2} < x < \frac{\pi}{2}$
LONG QUESTIONS
Find $f'(x)$ if $f(x) = \sqrt{ln(e^{2x} + e^{-2x})}$
Find $\frac{dy}{dx}$ if $y = ln(x + \sqrt{x^2 + 1})$
Find $f'(x)$ if $f(x) = \frac{e^{ax} - e^{-ax}}{e^{ax} + e^{-ax}}$

Tick (✔) the correct answer. 1. If $y = e^{2x}$, then $y_4 =$ (a) $\checkmark 16e^{2x}$ (b) $8e^{2x}$ (c) $4e^{2x}$ (d) $2e^{2x}$ 2. If $f(x) = e^{2x}$, then f'''(x) =(b) $\frac{1}{6}e^{2x}$ (a) $6e^{2x}$ (d) $\frac{1}{8}e^{2x}$ (c) $\checkmark 8e^{2x}$ 3. If $f(x) = x^3 + 2x + 9$ then f''(x) =(a) $3x^2 + 2$ (b) $3x^2$ (c) **✓** 6*x* (d) 2*x* 4. If cos(ax + b), then $y_2 =$ (c) $\checkmark -a^2 \cos(ax + b)$ (d) $a^2 \cos(ax + b)$ (a) $a^2 \sin(ax + b)$ (b) $-a^2 \sin(ax + b)$ 5. Fifth order derivative of $x^3 + 2x + 6$ is (a) 3x + 2 (b) 3x(c) 🗸 0 (d) 6 6. If $y = x^7 + x^6 + x^5$ then $D^8(y) =$

EXERCISE 2.7

SHORT QUESTIONS

(c) 7! + 6!

(d) 🗸 0

i. If
$$y = Sin^{-1}\frac{x}{a}$$
, then show that $y_2 = x(a^2 - x^2)^{-\frac{3}{2}}$

(b) 7! x

ii. Find
$$y_2$$
 if $y = x^2 \cdot e^{-x}$

(a) 7!

iii. Find
$$y_2$$
 if $x = a\cos\theta$, $y = \sin\theta$
iv. Find y_2 if $x^3 = y^3 = a^3$

iv. Find
$$y_2$$
 if $x^3 - y^3 = a$

v. Find the first four derivatives of
$$cos(ax + b)$$

LONG QUESTIONS

If
$$y = acos(lnx) + bsin(lnx)$$
, prove that $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = 0$
If $y = e^x sinx$, show that $\frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + 2y = 0$

If
$$y = (cos^{-1}x)^2$$
, prove that $(1 - x^2)y_2 - xy_1 - 2 = 0$
EXERCISE 2.8

Tick (✔) the correct answer.

1.
$$1 - x + x^2 - x^3 + x^4 + \dots + (-1)^n x^n + \dots$$
 is the expansion of
(a) $\frac{1}{1-x}$ (b) $\checkmark \frac{1}{1+x}$ (c) $\frac{1}{\sqrt{1-x}}$ (d) $\frac{1}{\sqrt{1+x}}$
2. $f(x) = f(0) + xf'(x) + \frac{x^2}{2!}f''(x) + \frac{x^3}{3!}f'''(x) + \dots + \frac{x^n}{n!}f^n(x) \dots$ is called series.
(a) \checkmark Machlaurin's (b) Taylor's (c) Convergent (d)
Divergent
3. $1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$ is an expression of
(a) e^x (b) Sinx (c) \checkmark Cosx (d) e^{-x}
4. $a_0 + a_1x + a_2x^2 + \dots + a_nx^n + \dots$ is
(a) Maclaurin's series (b) Taylor Series (c) \checkmark Power Series (d) Bionomial Series

SHORT QUESTIONS

i. Apply Maclaurin's Series expansion to prove that $e^{2x} = 1 + 2x + \frac{4x^2}{2!} + \frac{8x^3}{3!} + \dots$

ii. Apply Maclaurin's Series expansion to prove that $e^x = 1 + x + \frac{x^2}{2!} + \cdots$

- iii. State Taylor's series expansion.
- iv. Expand *cosx* by Maclaurin's series expansion.

M. Salman Sherazi

Show that $2^{x+h} = 2x[1 + (ln2)h + (ln2)^2\frac{h^2}{2!} + (ln2)^3\frac{h^3}{3!} + \cdots$

Show that $cos(x + h) = cosx - hsinx + \frac{h^2}{2!} cosx + \frac{h^3}{3!} sinx + \cdots$ and evaluate $cos61^\circ$

EXERCISE 2.9

- 1. A function f(x) is such that , at a point x = c , f'(x) > 0 at x = c , then f is said to be
- (a) ✔Increasing (b) decreasing (c) constant (d) 1-1 function
- 2. A function f(x) is such that , at a point x = c , f'(x) < 0 at x = c , then f is said to be

(a) Increasing (b) ✓ decreasing (c) constant (d) 1-1 function (b) A function f(x) is such that , at a point x = c , f'(x) = 0 at x = c , then f is said to be (a) Increasing (b) decreasing (c) 🗸 constant (d) 1-1 function 3. A stationary point is called ______ if it is either a maximum point or a minimum point (b) **V** turning point (a) Stationary point (c) critical point (d) point of inflexion 4. If f'(c) = 0 or f'(c) is undefined, then the number c is called critical value and the corresponding point is called (a) Stationary point (c) **v** critical point (d) point of inflexion (b) turning point 5. If f'(c) does not change before and after x = c, then this point is called_ (a) Stationary point (b) turning point (c) critical point (d) V point of inflexion 6. Let f be a differentiable function such that f'(c) = 0 then if f'(x) changes sign from +iv to -iv i.e., before and after x = c, then it occurs relative _____ at x = c(a) **V** Maximum (b) minimum (c) point of inflexion (d) none 7. Let f be a differentiable function such that f'(c) = 0 then if f'(x) changes sign from -iv to +iv i.e., before and after x = c, then it occurs relative _____ at x = c(b) ✔ minimum (c) point of inflexion (b) Maximum (d) none 8. Let f be a differentiable function such that f'(c) = 0 then if f'(x) does not change sign i.e., before and after x = c, then it occurs _____ at x = c(c) ✓ point of inflexion (d) none (c) Maximum (b) minimum 9. Let f be differentiable function in neighborhood of c and f'(c) = 0 then f(x) has relative maxima at c if (d) $f''(c) \neq 0$ (a) f''(c) > 0(b) $\checkmark f''(c) < 0$ (c) f''(c) = 0(-,) (-,) = 0**10.** $y = x^x$ has the value (a) Minimum at x = e (b) Maximum at x = e (c) \checkmark Minimum at $x = \frac{1}{e}$ (d) Maximum at $x = \frac{1}{2}$ SHORT QUESTIONS i. Define Increasing and decreasing functions. Determine the interval in which $f(x) = x^2 + 3x + 2$; $x \in [-4, 1]$ ii.

iii. Determine the interval in which
$$f(x) = Cosx$$
; $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

- iv. Find the extreme values of the function $f(x) = 3x^2 4x + 5$
- v. Find the extreme values of the function $f(x) = 1 + x^3$

LONG QUESTIONS

Show that $y = \frac{\ln x}{x}$ has maximum value at x = e.

Show that $y = x^x$ has minimum value at $x = \frac{1}{e}$.

EXERCISE 2.10

LONG QUESTIONS

Divide 20 into two parts so that the sum of their squares will be minimum.

Find the dimensions of a rectangle of largest area having parimeter 120 centimeters.

Find the point on the curve $y = x^3 + 1$ that is closest to the point (18, 1)

EXERCISE 3.1

Tick (✔) the correct answer.

1.	If $y = f(x)$, then different	rential of y is		
(a)	dy = f'(x)	(b) $\checkmark dy = f'(x)dx$	(c) $dy = f(x)dx$	(d) $\frac{dy}{dx}$
2.	If $\int f(x)dx = \varphi(x) + \varphi(x)$	$m{c}$,then $m{f}(x)$ is called		
(a)	Integral	(b) differential	(c) derivative	(d) 🖌 integrand
	Inverse of $\int \dots dx$ is:		апа та	aun -
(a)	$\checkmark \frac{d}{dx}$	(b) $\frac{dy}{dx}$	(c) $\frac{d}{dy}$	(d) $\frac{dx}{dy}$
4.	Differentials are used t	o find:	2	2
(a)	Approximate value	(b) exact value	(c) Both (a) and (b)	(d) None of these
	xdy + ydx =			
(a)	d(x+y)	(b) $\checkmark d\left(\frac{x}{y}\right)$	(c) $d(x - y)$	(d) $d(xy)$
6.	d(x + y) If $dy = cosxdx$ then	$\frac{dx}{dy} = $ Man		
(a)	sinx	(b) <i>cosx</i>	(c) <i>cscx</i>	(d) 🖌 secx
7.	If $\int f(x)dx = \varphi(x) + \varphi(x)$	$m{c}$,then $m{f}(m{x})$ is called		
• • •	Integral	(0) 0	(c) derivative	(d) 🖌 integrand
8.	If $y = f(x)$, then different $f(x)$	rential of y is		,
(b)	dy = f'(x)	(b) $\checkmark dy = f'(x)dx$	(c) $dy = f(x)dx$	(d) $\frac{dy}{dx}$
9.	The inverse process of	derivative is called:		
(a)	Anti-derivative	(b) 🖌 Integration	(c) Both (a) and (b)	(d) None of these

SHORT QUESTIONS

i. Find
$$\delta y$$
 and dy if $y = x^2 + 2x$ when x changes from 2 to 1.8

ii. Use differentials find $\frac{dy}{dx}$ and $\frac{dx}{dy}$ in the following equations.

(a)
$$xy + x = 4$$
 (b) $xy - \ln x = c$

- iii. Find the approximate increase in the volume of a cube if the length of its each edge changes from 5 to 5.02
- iv. Find the approximate increase in the area of a circular disc if its diameter is increased form 44cm to 44.4cm.

v. Define integration.

LONG QUESTIONS

Use differentials, find the approximate value of $sin 46^\circ$.

Use differentials to approximate the values of $\sqrt[4]{17}$.

1. If <i>n</i> (a) $\frac{n(a)}{a}$	$a \neq 1$, then $\int (ax + b)^{n-1} \frac{1}{a} + c$	b) ^{<i>n</i>} dx = (b) $\frac{n(ax+b)^{n+1}}{n} + c$	(c) $\frac{(ax+b)^{n-1}}{n+1} + c$	(d) $\checkmark \frac{(ax+b)^{n+1}}{a(n+1)} +$
(a) ✓	$\frac{\sin(ax+b) dx}{a} = \frac{-1}{a} \cos(ax+b) + c$ $+ c$ $= -\frac{1}{a} x + c$ $= -\frac{1}{a} x + c$	(b) $\frac{1}{a}\cos(ax+b) + c$	(c) $a \cos(ax + b) +$	c (d) $-a\cos(ax +$
(a) λe ⁻		(b) $-\lambda e^{-\lambda x} + c$	(c) $\frac{e^{-\lambda x}}{\lambda} + c$	(d) $\checkmark \frac{e^{-\lambda}}{-\lambda} + c$
(a) $\frac{a^{\lambda x}}{\lambda}$	$f(x)]^n f'(x) dx =$	(b) $\frac{a^{\lambda x}}{lna}$	(c) $\checkmark \frac{a^{\lambda x}}{alna}$	(d) $a^{\lambda x} \lambda$. lna
(a) $\frac{f^{n}(n)}{n}$	$\frac{(x)}{(x)} + c$ $\frac{(x)}{f(x)} dx =$	(b) $f(x) + c$	(c) $\checkmark \frac{f^{n+1}(x)}{n+1} + c$	(d) $nf^{n+1}(x) + c$
(a) f(2		(b) $f'(x) + c$	(c) $\checkmark \ln x + c$	$(nd)\ln f'(x) +c$
(a) 🗸	x i u i y x		(c) $x < 0, a < 0$	(d) $x > 0, a < 0$
v	$\frac{x^2+3}{\sqrt{x^2+3}+c}$	(b) $-\sqrt{x^2 + 3} + c$	-	(d) $-\frac{1}{2}\sqrt{x^2+3}+c$
		SHORT QL	JESTIONS	
i.	Evaluate	$\int \left(\sqrt{x}+1\right)^2 dx$		
ii.	Evaluate	$\int \frac{\sqrt{y(y+1)}}{y} dx$		
iii.	Evaluate	$\int \frac{3-\cos 2x}{1+\cos 2x} dx$		
iv.	Evaluate	$\int x\sqrt{x^2-1}dx$		
v.	Prove that	$\int [f(x)^n f'(x) dx = \frac{1}{2}$	$\frac{f(x)]^{n+1}}{1} + c$, $n \neq -1$	
vi.	Evaluate	$\int \frac{(1+e^x)^3}{e^x} dx$	<i>n</i> +1	
vii.	Evaluate	$\int \frac{dx}{dx} dx = \int (lnx) \times \frac{1}{x} dx$		

viii.	Evaluate	$\int \frac{\sin x + \cos^3 x}{\cos^2 x \sin x} dx$
ix.	Evaluate	$\int \frac{1-x^2}{1+x^2} dx$ $\int \frac{\cos 2x - 1}{1 + \cos 2x} dx$
х.	Evaluate	$\int \frac{\cos 2x - 1}{1 + \cos 2x} dx$
xi.	Evaluate	$\int \sqrt{1-\cos 2x}dx$
xii.	Evaluate	$\int (a-2x)^{\frac{3}{2}} dx$

1. $\int \frac{d}{x\sqrt{x}}$	$\frac{lx}{r^2-1} =$			
	$c^{-1}x + c$	(b) $Tan^{-1}x + c$	(c) $Cot^{-1}x + c$	(d) $Sin^{-1}x + c$
2. $\int \frac{dx}{x \ln x}$				
(a) ✔ln	lnx + c	(b) <i>x</i> + <i>c</i>	(c) $lnf'(x) + c$	(d) $f'(x)lnf(x)$
3. In ∫($(x^2-a^2)^{rac{1}{2}}dx$, the	e substitution is		
(a) $x = a$		(b) $\checkmark x = asec\theta$		(d) $x = 2asin\theta$
4. The s		on for $\int \sqrt{2ax-x^2}dx$ is		
		(b) $\checkmark x - a = asin\theta$	(c) $x + a = acos\theta$	(d) $x + a = asin\theta$
5. $\int \frac{x+2}{x+1}$	dx =			
(a) $\ln(x)$	(+1) + c	(b) $\ln(x+1) - x + c$	(c) $\checkmark x + \ln(x+1) +$	- <i>c</i> (d) None
6. The s	suitable substitution	on for $\int \sqrt{a^2+x^2}dx$ is:		
(b) ✔ x =	= atanθ	(b) $x = asin\theta$	(c) $x = a cos \theta$	(d)None of these
		SHORT QU	IESTIONS	
i. E	valuate	$\int \frac{1}{x \ln x} dx$		
ii. E	valuate	$\int \frac{x^2}{4+x^2} dx$		
iii. E	valuate	$\int \frac{e^x}{e^x+3} dx$		
iv. E	valuate	$\int \frac{\sec^2 x}{\sqrt{\tan x}} dx$		
v. E	valuate	$\int \frac{\cos x}{\sin x \ln \sin x} dx$		
vi. E	valuate	$\int \frac{\sqrt{2}}{sinx+cosx} dx$		
vii. E	valuate	$\int cosx\left(\frac{lnsinx}{sinx}\right) dx$		
viii. E	valuate	$\int rac{dx}{x(ln2x)^3}$, $(x>0)$		
	valuate ind	$\int \frac{dx}{x(\ln 2x)^3}, (x > 0)$ $\int a^{x^2} \cdot x dx, (a > 0, a)$ $\int \frac{1}{(1+x^2)Tan^{-1}x} dx$	≠ 1)	

LONG QUESTIONS

Show that
$$\int \sqrt{a^2 - x^2} dx = \frac{a^2}{2} Sin^{-1} \frac{x}{2} + \frac{x}{2} \sqrt{a^2 - x^2} + c$$

Show that
$$\int \frac{dx}{\sqrt{x^2-a^2}} = ln(x+\sqrt{x^2-a^2})+c$$

EXERCISE 3.4

Tick (✔) the correct answer.

1. $\int u dv$ equals: (b) $uv + \int v du$ (c) $\checkmark uv - \int v du$ (d) $u du + \int v du$ (a) $udu - \int vu$ 2. $\int x \cos x dx =$ (a) sinx + cosx + c (b) cosx - sinx + c (c) $\checkmark xsinx + cosx + c$ (d) None 3. $\int \frac{e^{Tan^{-1}x}}{1+x^2} dx =$ (b) $\frac{1}{2} e^{Ta^{-1}x} + c$ (c) $x e^{Tan^{-1}x} + c$ (d) $\checkmark e^{Ta^{-1}x} + c$ (a) $e^{Tanx} + c$ c4. $\int e^{x} \left[\frac{1}{x} + lnx\right] =$ (a) $e^{x} \frac{1}{x} + c$ (b) $-e^{x} \frac{1}{x} + c$ (c) $\checkmark e^{x} lnx + c$ (d) $-e^{x} lnx + c$ 5. $\int e^{x} \left[\frac{1}{x} - \frac{1}{x^{2}}\right] =$ (a) $\checkmark e^{x} \frac{1}{x} + c$ (b) $-e^{x} \frac{1}{x} + c$ (c) $e^{x} lnx + c$ (d) $-e^{x} \frac{1}{x^{2}} + c$ С SHORT QUESTIONS $\int \ln x dx$ $\int x^3 \ln x dx$ $\int xTan^{-1}x dx$ $\int \frac{xSin^{-1}x}{\sqrt{1-x^2}} dx$ $\int x^2 e^{ax} dx$ i. Evaluate ii. Evaluate iii. Evaluate iv. Evaluate **Evaluate** v. $\int tan^4x$ vi. Evaluate $\int e^{ax} \left[aSec^{-1}x + \frac{1}{x\sqrt{x^2-1}} \right]$ vii. Evaluate $\int \frac{e^{mTan^{-1}x}}{(1+x^2)} dx$ viii. Evaluate $\int e^{x} \left(\frac{1}{x} + \ln x\right) dx$ $\int \left(\frac{1 - \sin x}{1 - \cos x}\right) e^{x} dx$ ix. Evaluate **Evaluate** х.

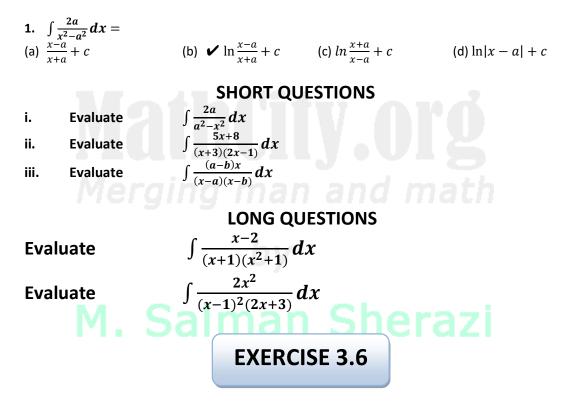
LONG QUESTIONS

Evaluate $\int sin^4 x dx$

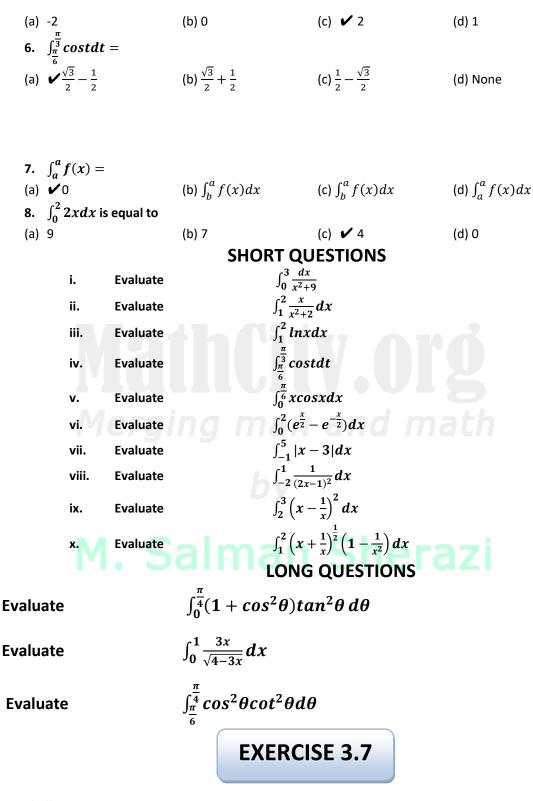
Find
$$\int e^{ax} cosbx dx$$

Evaluate $\int \sqrt{4 - 5x^2} dx$
Show that $\int e^{ax} sinbx = \frac{1}{\sqrt{a^2 + b^2}} e^{ax} sin(bx - Tan^{-1}\frac{b}{a}) + c$
Evaluate $\int e^{2x} cos3x dx$

Tick (✔) the correct answer.



1. $\int_{\pi}^{-\pi} sinx dx =$			
(a) 🗸 2	(b) -2	(c) 0	(d) -1
2. $\int_{-1}^{2} x dx =$			
(a) $\frac{1}{2}$	(b) $-\frac{1}{2}$	(c) $\frac{5}{2}$	(d) $\checkmark \frac{3}{2}$
3. $\int_0^1 (4x+k)dx = 2 t h$	hen k =		
(a) 8	(b) -4	(c) 🖌 0	(d) -2
4. $\int_0^3 \frac{dx}{x^2+9} =$			
4. $\int_0^3 \frac{dx}{x^2+9} =$ (a) $\frac{\pi}{4}$	(b) $\checkmark \frac{\pi}{12}$	(c) $\frac{\pi}{2}$	(d) None of these
5. $\int_0^{-\pi} sinx dx$ equals to):		



- 1. To determine the area under the curve by the use of integration , the idea was given by
- (a) Newton (b) 🗸 Archimedes (c) Leibnitz (d) Taylor

- Find the area bounded by the curve $y = x^3 + 3x^2$ and the x axis. i.
- Find the area between the x axis and the curve $y^2 = 4 x$ in the first quadrant ii. from x = 0 to x = 3.
- Find the area bounded by *cos* function from $y = -\frac{\pi}{2} \operatorname{to} \frac{\pi}{2}$. iii.
- Find the area between the x axis and the curve $y = cos \frac{1}{2}x$ form $-\pi$ to π . iv.

LONG QUESTIONS

Find the area between the curve y = x(x-1)(x+1) and the x - axis.

Find the area between the x - axis and the curve $y = \sqrt{2ax - x^2}$ when *a* > 0.

Find the area between bounded by $y = x(x^2 - 4)$ and the x - axis.

Mergin Exercise 3.8 math

Tick (✔) the correct answer.

- 1. The order of the differential equation : $x \frac{d^2y}{dx^2} + \frac{dy}{dx} 2 = 0$ (c) 🖌 2 (d) more than 2 (a) 0
- 2. The equation $y = x^2 2x + c$ represents (c being a parameter)
- (a) One parabola (b) **V** family of parabolas (c) family of line (d) two parabolas

3. Solution of the differential equation : $\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$ (a) $\checkmark y = \sin^{-1} x + c$ (b) $y = \cos^{-x} + c$ (c) \checkmark 4. The general solution of differential equation $\frac{dy}{dx} = -\frac{y}{x}$ is (b) $\frac{y}{dx} = c$ (c) $\checkmark xy = c$ (d) $x^2y^2 = c$

- 5. Solution of differential equation $\frac{dv}{dt} = 2t 7$ is :
- (a) $v = t^2 7t^3 + c$ (b) $v = t^2 + 7t + c$ (c) $v = t \frac{7t^2}{2} + c$ (d) $\checkmark v = t^2 2t^2 2t^2 + c$ 7t + c

6. The solution of differential equation
$$\frac{dy}{dx} = sec^2 x$$
 is

(a) y = cosx + c (b) $\checkmark y = tanx + c$ (c) y = sinx + c (d) y = cotx + c

		SHORT QUESTIONS
i.	Solve	$\frac{dy}{dx} = \frac{y^2 + 1}{e^{-x}}$
ii.	Solve	$\frac{1}{x}\frac{dy}{dx} - 2y = 0$
iii.	Solve	$\frac{dy}{dx} = \frac{3}{4}x^2 + x - 3$, if $y = 0$ and $x = 2$
iv.	Solve	$\frac{\frac{dy}{dx}}{\frac{dy}{dx}} = \frac{y}{x^2}, (y > 0)$ $\frac{\frac{dy}{dx}}{\frac{dy}{dx}} = \frac{1-y}{x}$
v .	Solve	$\frac{dy}{dx} = \frac{1-y}{y}$
vi.	Solve	$(e^x + e^{-x})\frac{dy}{dx} = e^x - e^{-x}$
vii.	Solve	$secx + tany \frac{dy}{dx} = 0$
viii.	Solve	$1 + \cos x \tan y \frac{dy}{dx} = 0$
ix.	Solve	$\frac{dy}{dx} = -y$
х.	Define "Different	ial Equation" and "Order of Differential Equation".
		LONG QUESTIONS

Find the general solution of the equation $\frac{dy}{dx} - x = xy^2$. Also find the particular solution if y = 1 when x = 0. Solve the differential equation $\frac{ds}{dt} + 2st = 0$. Also find the particular solution

if
$$s = 4e$$
, when $t = 0$.

EXERCISE 4.1

Tick (✔) the correct answer. 1. If x < 0, y < 0 then the point P(x, y) lies in the quadrant (a) I (b) II (c) 🖌 III (d) IV 2. The point P in the plane that corresponds to the ordered pair (x, y) is called: (a) \checkmark graph of (x, y)(b) mid-point of x, y (c) abscissa of x, y (d) ordinate of x, y 3. If x < 0, y > 0 then the point P(-x, -y) lies in the quadrant (a) I (b) II (c) III (d) 🗸 IV 4. The straight line which passes through one vertex and though the mid-point of the opposite side is called: (a) Median (b) altitude (c) perpendicular bisector (d) normal 5. The straight line which passes through one vertex and perpendicular to opposite side is called: (b) 🗸 altitude (c) perpendicular bisector (d) normal (a) Median 6. The point where the medians of a triangle intersect is called______ of the triangle. (a) (a) Centroid (c) orthocenter (d) circumference (b) centre 7. The point where the altitudes of a triangle intersect is called ______ of the triangle.

SHORT QUESTIONS

(a)	Centroid	(b) centre	(c) 🗸 orthocenter	(d) circumference
8.	The centroid of a trian	gle divides each median	in the ration of	
(a)	✔2:1	(b) 1:2	(c) 1:1	(d) None of these
9.	The point where the ar	ngle bisectors of a triang	gle intersect is called	of the
	triangle.			
(a)	Centroid	(b) 🖌 in centre	(c) orthocenter	(d) circumference

- i. Show that the points A(3, 1), B(-2, -3) and C(2, 2) are vertices of an isosceles triangle.
- ii. Find the mid-point of the line segment joining the vertices A(-8, 3), B(2, -1).
- iii. Show that the vertices A(-1, 2), B(7, 5), C(2, -6) are vertices of a right triangle.
- iv. Find the points trisecting the join of A(-1, -4) and B(6, 2).
- v. Find h such that A(-1, h), B(3, 2), and C(7, 3) are collinear.
- vi. Describe the location in the plane of point P(x, y) for which x = y.
- vii. The point C(-5,3) is the centre of a circle and P(7,-2) lies on the circle. What is the radius of the circle?
- viii. Find the point three-fifth of the way along the line segment from A(-5, 8) to B(5, 3).

LONG QUESTIONS

Find *h* such that the quadrilateral with vertices A(-3, 0), B(1, -2), C(5, 0) and D(1, h) is parallelogram. Is it a square?

Show that the points A(5,2), B(-2,3), C(-3,-4) and D(4,-5) are the vertices of a $||^m$. Is the $||^m$ a square.

Find the points that divide the line segment joining $A(x_1, y_1)$ and $B(x_2, y_2)$ into four equal parts.

EXERCISE 4.2

SHORT QUESTIONS

- i. The two points *P* and *O*' are given in xy -coordinate system. Find the *XY*-coordinates of *P* referred to the translated axes *O*'*X* and *O*'*Y* if *P*(-2, 6) and *O*'(-3, 2).
- ii. The *xy*-coordinate axes are translated through point O' whose coordinates are given in *xy* -coodinate system. The coordinates of *P* are given in the *XY* -coodinate system. Find the coordinates of *P* in *xy*-coordiante system if P(-5, -3), O'(-2, 3).
- iii. What are translated axes.

iv. What are rotated axes.

LONG QUESTIONS

The xy -coordiante axes are rotated about the origin through the indicated angle. The new axes are O'X and O'Y. Find the XY-coordiantes of the point P with the given

xy-coordinates if P(15, 10) and $\theta = \arctan \frac{1}{2}$

The xy -coordinte axes are rotated about the origin through the indicated angle and the new axes are OX and OY. Find the xy -coordinates of P and with the given XY-coordiantes if P(-5,3) and $\theta = 30^{\circ}$

EXERCISE 4.3

Tick (✔) the correct answer.

1. The two intercepts form of the equation of the straight line is (b) $y - y_1 = m(x - x_1)$ (c) $\checkmark \frac{x}{a} + \frac{y}{b} = 1$ (a) y = mx + c(d) $xcos\alpha$ + $y cos \alpha = p$ 2. The Normal form of the equation of the straight line is (b) $y - y_1 = m(x - x_1)$ (c) $\frac{x}{a} + \frac{y}{b} = 1$ (d) $\checkmark x \cos a + y \cos a = p$ (a) y = mx + c3. In the normal form $x\cos\alpha + y\cos\alpha = p$ the value of p is (a) **V**Positive (b) Negative (c) positive or negative (d) Zero 4. If α is the inclination of the line l then $\frac{x-x_1}{\cos \alpha} = \frac{y-y_1}{\sin \alpha} = r(say)$ (a) Point-slope form (b) normal form (c) ✓ symmetric form (d) none of these 5. The slope of the line ax + by + c = 0 is (d) $-\frac{b}{a}$ (c) $\frac{b}{a}$ (a) <u>a</u> (b) $\checkmark -\frac{a}{r}$ 6. The slope of the line perpendicular to ax + by + c = 0(b) $-\frac{a}{b}$ (c) $\checkmark \frac{b}{a}$ (d) $-\frac{b}{a}$ (a) $\frac{a}{b}$ 7. The general equation of the straight line in two variables x and y is (d) $ax^2 + by^2 + by^2$ (a) $\checkmark ax + by + c = 0$ (b) $ax^2 + by + c = 0$ (c) $ax + by^2 + c = 0$ c = 08. The x - intercept 4x + 6y = 12 is (a) 4 (b) 6 (c) 🗸 3 (d) 2 9. The lines 2x + y + 2 = 0 and 6x + 3y - 8 = 0 are (a) V Parallel (b) perpendicular (d) non coplanar (c) neither 10. The point (-2, 4) lies _____ the line 2x + 5y - 3 = 0(a) ✔Above (b) below (c) on (d) none of these

SHORT QUESTIONS

i. Show that the points A(-3, 6), B(3, 2) and C(6, 0) are collinear.

- ii. Find an equation of the straight line if its slope is 2 and y - axis is 5.
- Find the slope and inclination of the line joining the points (-2, 4); (5, 11)iii.
- Find k so that the line joining A(7,3); B(k,-6) and the line joining C(-4,5); iv. D(-6, 4) are perpendicular.
- Find an equation of the line bisecting the I and III quadrants. v.
- Find an equation of the line for x intercept: -3 and y intercept: 4vi.
- vii. Find the distance from the point P(6, -1) to the line 6x - 4y + 9 = 0
- Find whether the given point (5, 8) lies above or below the line 2x 3y + 6 =viii. n
- ix. Check whether the lines are concurrent or not.
 - 3x 4y 3 = 0; 5x + 12y + 1 = 0; 32x + 4y 17 = 0
- Transform the equation 5x 12y + 39 = 0 to "Two-intercept form". х.

LONG QUESTIONS

Find the distance between the line given parallel lines. Sketch the lines. Also find an equation of the parallel line lying midway between them.

$$3x - 4y + 3 = 0 \quad ; \quad 3x - 4y + 7 = 0$$

The points A(-1,2), B(6,3) and C(2,-4) are vertices of a triangle. Show that the line joining the midpoint D of AB and the midpoint E of AC is parallel to *BC* and $DE = \frac{1}{2}BC$.

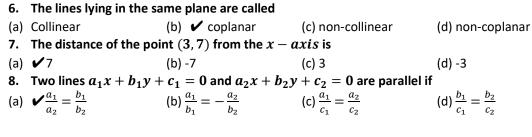
M Sa EXERCISE 4.4

Tick (✔) the correct answer.

1. If φ be an angle between two lines l_1 and l_2 when slopes m_1 and m_2 , then angle from l_1 to l_2

(a) $tan\varphi = \frac{m_1 - m_2}{1 + m_1 m_2}$ (b) $\checkmark tan\varphi = \frac{m_2 - m_1}{1 + m_2 m_1}$ (c) $tan\varphi = \frac{m_1 + m_2}{1 + m_1 m_2}$ (d) $tan\varphi = \frac{m_2 + m_1}{1 + m_1 m_2}$

- 2. If φ be an acute angle between two lines l_1 and l_2 when slopes m_1 and m_2 , then acute
- angle from l_1 to l_2 (a) $|tan\varphi = \frac{m_1 m_2}{1 + m_1 m_2}|$ (b) $\checkmark |tan\varphi = \frac{m_2 m_1}{1 + m_2 m_1}|$ (c) $|tan\varphi = \frac{m_1 + m_2}{1 + m_1 m_2}|$ (d) $|tan\varphi = \frac{m_1 m_2}{1 + m_1 m_2}|$ $1+m_{1 m_2}$
- 3. Two lines l_1 and l_2 with slopes m_1 and m_2 are parallel if
- (a) $\checkmark m_1 m_2 = 0$ (b) $m_1 + m_2 = 0$ (c) $m_1 m_2 = 0$ (d) $m_1 m_2 = -1$
- 4. Two lines l_1 and l_2 with slopes m_1 and m_2 are perpendicular if
- (d) $\checkmark m_1 m_2 = -1$ (b) $m_1 - m_2 = 0$ (b) $m_1 + m_2 = 0$ (c) $m_1 m_2 = 0$
- 5. The lines represented by $ax^2 + 2hxy + by^2 = 0$ are orthogonal if
- (b) $\checkmark a + b = 0$ (c) a + b > 0(d) a - b < 0(a) a - b = 0



- i. Find the point of intersection of the lines x 2y + 1 = 0 and 2x y + 2 = 0
- ii. Find an equation of the line through the point (2, -9) and the intersection of the lines 2x + 5y 8 = 0 and 3x 4y 6 = 0.
- iii. Determine the value of p such that the lines 2x 3y 1 = 0, 3x y 5 = 0and 3x + py + 8 = 0 meet at a point.
- iv. Find the angle measured from the line l_1 to the line l_2 where l_1 : Joining (2, 7) and (7, 10) l_2 : Joining (1, 1) and (-5, 5)
- v. Express the given system of equations in matrix form

$$2x + 3y + 4 = 0; x - 2y - 3 = 0; 3x + y - 8 = 0$$

vi. Find the angle from the line with slope $-\frac{7}{3}$ to the line with slope $\frac{5}{2}$.

LONG QUESTIONS

Find the interior angles of the triangle whose vertices are

$$A(6, 1), B(2, 7), C(-6, -7)$$

Find the area of the region bounded by the triangle whose sides are

7x - y - 10 = 0; 10x + y - 41 = 0; 3x + 2y + 3 = 0

Find the interior angles of the quadrilateral whose vertices are

A(5,2), B(-2,3), C(-3,-4) and D(4,-5)

M. Salman Sheraz

EXERCISE 4.5

Tick (✔) the correct answer.

1. The equation $y^2 - 16 = 0$ represents two lines.

(a)
$$\checkmark$$
 Parallel to $x - axis$ (b) Parallel $y - axis$ (c) not || to $x - axis$ (d) not || to $y - axis$

- 2. The perpendicular distance of the line 3x + 4y + 10 = 0 from the origin is
- (a) 0 (b) 1 (c) ✓2 (d) 3
- 3. The lines represented by $ax^2 + 2hxy + by^2 = 0$ are orthogonal if
- (b) a b = 0 (b) $\checkmark a + b = 0$ (c) a + b > 0 (d) a b < 0
- 4. Every homogenous equation of second degree $ax^2 + bxy + by^2 = 0$ represents two straight lines

(a) \checkmark Through the origin (b) not through the origin (c) two || line (d) two \bot ar lines 5. The equation $10x^2 - 23xy - 5y^2 = 0$ is homogeneous of degree (a) 1 (b) \checkmark 2 (c) 3 (d) more than 2 6. The equation $y^2 - 16 = 0$ represents two lines. (a) \checkmark Parallel to x - axis (b) Parallel y - axis (c) not || to x - axis (d) not || to y - axisSHORT QUESTIONS

- i. Find an equation of each of the lines represented by $20x^2 + 17xy 24y^2 = 0$
- ii. Define Homogenous equation.
- iii. Write down the joint equation.
- iv. Find a joint equation of the straight lines through the origin perpendicular to the lines represented by $x^2 + xy 6y^2 = 0$.
- v. Find measure of angle between the lines represented by $x^2 xy 6y^2 = 0$. LONG QUESTIONS

Find the lines represented by $x^2 + 2xysec\alpha + y^2 = 0$ and also find measure of the angle between them.

Find a join equation of the lines through the origin and perpendicular to the lines: $x^2 - 2xytan\alpha - y^2 = 0$

Find a joint equation of the lines through the origin and perpendicular to the lines $ax^2 + 2hxy + by^2 = 0$

EXERCISE 5.1

Tick () the correct answer. 1. (0.0) is satisfied by

±.	(0,0) 13 Satisfied by			
(a)	x - y < 10	(b) $2x + 5y > 10$	(c) $\checkmark x - y \ge 13$	(d) None
2.	The point where two b	oundary lines of a shad	ed region intersect is cal	led point.
(a)	Boundary	(b) 🖌 corner	(c) stationary	(d) feasible
3.	If $x > b$ then			
(a)	-x > -b	(b) – $x < b$	(c) $x < b$	(d) $\checkmark -x < -b$
4.	The symbols used for i	nequality are		
(a)	1	(b) 2	(c) 3	(d) 🖌 4
5.	A linear inequality con	tains at least	variables.	
(a)	✔ One	(b) two	(c) three	(d) more than three

6. An inequality with one or two variables has ______ solutions.
(a) One (b) two (c) three (d) ✓ infinitely many

7. ax + by < c is not a linear inequality if

- (a) $\checkmark a = 0, b = 0$ (b) $a \neq 0$, $b \neq 0$ (c) $a = 0, b \neq 0$ (d) $a \neq 0, b =$ 0, c = 08. The graph of corresponding linear equation of the linear inequality is a line called_ (a) **V** Boundary line (b) horizontal line (c) vertical line (d) inclined line 9. The graph of a linear equation of the form ax + by = c is a line which divides the whole plane into _____ disjoints parts. (a) ✔Two (b) four (c) more than four (d) infinitely many **10.** The graph of the inequality $x \le b$ is (a) Upper half plane (b) lower half plane (c) 🖌 left half plane (d) right half plane
- **11.** The graph of the inequality $y \le b$ is
- (b) Upper half plane (b) ✔ lower half plane (c) left half plane (d) right half plane

- i. Define "Corner Point" or "Vertex".
- ii. Graph the solution set of linear inequality $3x + 7y \ge 21$.
- iii. Indicate the solution set of $3x + 7y \ge 21$; $x y \le 2$
- iv. What is "Corresponding equation".
- v. Graph the inequality x + 2y < 6.

LONG QUESTIONS

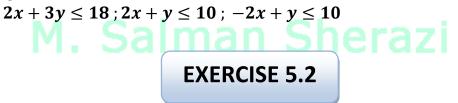
Graph the following system of inequalities

 $2x + y \ge 2$; $x + 2y \le 10$; $y \ge 0$

Graph the following system of inequalities and find the corner points

 $x + y \le 5$; $-2x + y \le 0$; $y \ge 0$

Graph the solution region of the following system of linear inequalities by shading



Tick (✔) the correct answer.

- 1. The feasible solution which maximizes or minimizes the objective function is called
- (a) Exact solution (b) ✓ optimal solution (c) final solution (d) objective function
- 2. Solution space consisting of all feasible solutions of system of linear in inequalities is called

(a)	Feasible solution	(b) Optimal solution	(c) 🖌 Feasible region	(d) General solution
3.	Corner point is also cal	led		
(a)	Origin	(b) Focus	(c) 🖌 Vertex	(d) Test point
4.	For feasible region:			
(a)	$\checkmark x \ge 0, y \ge 0$	(b) $x \ge 0, y \le 0$	(c) $x \le 0, y \ge 0$	(d) $x \le 0, y \le 0$

5. x = 0 is in the solution of the inequality

- (a) x < 0 (b) x + 4 < 0 (c) $\checkmark 2x + 3 > 0$ (d) 2x + 3 < 0

 6. Linear inequality 2x 7y > 3 is satisfied by the point
 (d) 2x + 3 < 0 (e) (5,1) (f) (-5,-1)

 (a) (5,1) (b) (-5,-1) (c) (0,0) (d) $\checkmark (1,-1)$

 7. The non-negative constraints are also called
 (c) (0,0) (d) $\checkmark (1,-1)$
- (a) V Decision variable (b) Convex variable (c) Decision constraints (d) concave variable
- 8. If the line segment obtained by joining any two points of a region lies entirely within the region , then the region is called
- (a) Feasible region (b) 🗸 Convex region (c) Solution region (d) Concave region

- i. Graph the feasible region of $x + y \le 5$; $-2x + y \le 0$ $x \ge 0$; $y \ge 0$
- ii. Graph the feasible region of $5x + 7y \le 35$; $x 2y \le 4$ $x \ge 0$; $y \ge 0$
- iii. What is "Convex".
- iv. Define "Feasible region".
- v. Graph the feasible region of $2x 3y \le 6$; $2x + y \ge 2$ $x \ge 0$; $y \ge 0$ LONG QUESTIONS

Graph the feasible region and find the corner points of

$$2x + y \le 10; x + 4y \le 12; x + 2y \le 10$$
 $x \ge 0; y \ge 0$

Graph the feasible region and find the corner points of

$$2x + y \le 20$$
; $8x + 15y \le 120$; $x + y \le 11$ $x \ge 0$; $y \ge 0$

Tick (✔) the correct answer.

1.	A function which is to	be maximized or minim	ized is called:	
(a)	Linear function (b) 🗸	 Objective function 	(c) Feasible function	(d) None of these
2.	For optimal solution w	e evaluate the objective	function at	
(a)	Origen	(b) Vertex	(c) 🖌 Corner Points	(d) Convex points
3.	. We find corner points at			
(a)	Origen	(b) Vertex	(c) 🖌 Feasible region	(d) Convex region

LONG QUESTIONS

Maximize f(x, y) = x + 3y subject to constraints

$$2x + 5y \le 30$$
; $5x + 4y \le 20$ $x \ge 0$; $y \ge 0$

Minimize z = 3x + y subject to constraints

 $3x + 5y \ge 15$; $x + 6y \ge 9$ $x \ge 0$; $y \ge 0$

Maximize f(x, y) = 2x + 5y subject to constraints $2y - x \le 8$; $x - y \le 4$ $x \ge 0$; $y \ge 0$ EXERCISE 6.1

Tick (✔) the correct answer.

1. The locus of a revolving line with one end fixed and other end on the circumference of a circle of a circle is called:

(a) a sp	ohere	(b) a circle	(c) 🗸 a cone	(d) a conic	
2. The	2. The set of points which are equal distance from a fixed point is called:				
(a) 🗸 🗸	Circle	(b) Parabola	(c) Ellipse	(d) Hyperbola	
3. The	3. The circle whose radius is zero is called:				
(a) Uni	t circle	(b) 🖌 point circle	(c) circumcircle	(d) in-circle	
4. The circle whose radius is 1 is called:					
(a) 🖌 L	Jnit circle	(b) point circle	(c) circumcircle	(d) in-circle	

5. The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents the circle with centre (a) (g, f) (b) \checkmark (-g, -f) (c) (-f, -g) (d) (g, -f)

6. The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents the circle with centre (a) $\sqrt{g^2 + f^2 - c}$ (b) $\sqrt{g^2 + f^2 + c}$ (c) $\sqrt{g^2 + c^2 - f}$ (d) $\sqrt{g + f - c}$

Sa SHORT QUESTIONS = Ta

- i. Write the equation of the circle with centre (-3, 5) and radius.
- ii. Find the equation of the circle with ends of a diameter at (-3, 2) and (5, -6).
- iii. Find the centre and radius of the circle of $x^2 + y^2 + 12x 10y = 0$

LONG QUESTIONS

Find an equation of the circle passing through A(3, -1), B(0, 1) and having centre at 4x - 3y - 3 = 0

Show that the circles $x^2 + y^2 + 2x - 8 = 0$ and $x^2 + y^2 - 6x + 6y - 46 = 0$ touch internally.

Find the equation of the circle of radius 2 and tangent to the line x - y - 4 = 0 at A(1, -3)

Show that the lines 3x - 2y = 0 and 2x + 3y - 13 = 0 are tangents to the circle $x^2 + y^2 + 6x - 4y = 0$

EXERCISE 6.2

LONG QUESTIONS

Find the length of the chord cut off from the line 2x + 3y = 13 by the circle $x^2 + y^2 = 26$

Find the length of the tangent drawn from the point (-5, 4) to the circle $5x^2 + 5y^2 - 10x + 15y - 131 = 0$

Find an equation of the chord of contact of the tangents drawn from (4, 5) to the circle $2x^2 + 2y^2 - 8x + 12y + 21 = 0$

EXERCISE 6.3

LONG QUESTIONS

Prove that length of a diameter of the circle $x^2 + y^2 = a^2$ is 2a.

Prove that the midpoint of the hypotenuse of a right triangle is the circumference of the triangle.

The perpendicular at the outer end of a radial segment is tangent to the circle.

1.	The ratio of the distance of a point from the focus to distance from the directrix is denoted by				
(a)	✓ r	(b) <i>R</i>	(c) <i>E</i>	(d) <i>e</i>	
2.	. Standard equation of Parabola is :				
(a)	$y^2 = 4a$	(b) $x^2 + y^2 = a^2$	(c) $\checkmark y^2 = 4ax$	(d) $S = vt$	
3.	3. The focal chord is a chord which is passing through				
(a)	✓ Vertex	(b) Focus	(c) Origin	(d) None of these	
4. The curve $y^2 = 4ax$ is symmetric about					
(a)	✔ y – axis	(b) $x - axis$	(c) Both (a) and (b)	(d) None of these	
5. Latusrectum of $x^2 = -4ay$ is					
(a)	x = a	(b) $x = -a$	(c) $y = a$	(d) $\checkmark y = -a$	

6. Eccentricity of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is					
(a) $\frac{a}{a}$		(b) <i>ac</i>	(c) $\checkmark \frac{c}{a}$	(d) None of these	
7. F	7. Focus of $y^2 = -4ax$ is				
(a) ((0, <i>a</i>)	(b) ✔(- <i>a</i> , 0)	(c) (<i>a</i> , 0)	(d) (0,−a)	
8. <i>I</i>	8. A type of the conic that has eccentricity greater than 1 is				
(a) A	An ellipse	(b) A parabola	(c) 🖌 A hyperbola	(d) A circle	
9. ג	9. $x^2 + y^2 = -5$ represents the				
(a) F	Real circle	(b) 🖌 Imaginary circle	(c) Point circle	(d) None of these	
10. Which one is related to circle					
(a) <i>e</i>	e = 1	(b) $e > 1$	(c) <i>e</i> < 1	(d) $\checkmark e = 0$	
11. Circle is the special case of :					
(a) F	Parabola	(b) Hyperbola	(c) 🖌 Ellipse	(d) None of these	
12. Equation of the directrix of $x^2 = -4ay$ is:					
(a) x	x + a = 0	(b) $x - a = 0$	(c) $y + a = 0$	(d) $\checkmark y - a = 0$	

- i. Define Parabola.
- ii. Analyze the parabola $x^2 = -16y$
- iii. The point of a parabola which is closest to the focus is the vertex of the parabola.
- iv. Find the focus , vertex and directrix of the parabola $y^2 = 8x$, $x^2 = 4(y - 1)$, $y^2 = -8(x - 3)$ v. Write an equation of the parabola with given elements
- v. Write an equation of the parabola with given elements Focus (-3, 1); directrix x = 3 directrix x = -2, Focus (2, 2)Directrix y = 3; vertex (2, 2)

LONG QUESTIONS

Find an equation of the parabola having its focus at the origin and directrix parallel to the (i) x - axis (ii) y - axisShow that the ordinate at any point *P* of the parabola is a mean proportional between the length of the letusrectum and the abscissa of *P*.

EXERCISE 6.5

1.	The midpoint of the foci of the ellipse is its			
(a)	Vertex	(b) 🖌 Centre	(c) Directrix	(d) None of these
2.	. Focus of the ellipse always lies on the			
(a)	Minor axis	(b) 🗸 Major axi	(c) Directrix	(d) None of these

3.	Length of the major a	xis of $rac{x^2}{a^2}+rac{y^2}{b^2}=1$, $a>b$	b is		
(a)	✓2a	(b) 2 <i>b</i>	(c) $\frac{2b^2}{a}$	(d) None of these	
4.	In the cases of ellipse it is always true that:				
(a)	$\checkmark a^2 > b^2$	(b) $a^2 < b^2$	(c) $a^2 = b^2$	(d) <i>a</i> < 0, <i>b</i> < 0	
5.	Two conics always intersect each other in points				
	No	(b) one	(c) two	(d) 🖌 four	
6.	6. The eccentricity of ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is				
(a)	$\checkmark \frac{\sqrt{7}}{4}$	(b) $\frac{7}{4}$	(c) 16	(d) 9	
7.	7. The foci of an ellipse are $(4, 1)$ and $(0, 1)$ then its centre is:				
(a)	(4,2)	(b) ✔(2,1)	(c) (2,0)	(d) (1,2)	

- i. Analyze the equation $4x^2 + 9y^2 = 36$
- ii. Find the equation of the ellipse with given data : Foci $(\pm 3, 0)$ and minor axis of length 10 Vertices – 1, 1), (5, 1); Foci (4, 1) and (0, 1) Centre (0, 0), focus (0, -3), vertex (0, 4)
- iii. Find the centre , foci , eccentricity , vertices and directrices of the ellipse whose equations are given : $9x^2 + y^2 = 18$, $25x^2 + 9y^2 = 225$

Merging LONG QUESTIONS math

(d) Conjugate axis

Prove that the letusrectum of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\frac{2b^2}{a}$. Let a be a positive number and 0 < c < a. Let F(-c, 0) and F'(c, 0) be two given points. Prove that the locus of points P(x, y) such that

|PF| + |PF'| = 2a, is an ellipse.

EXERCISE 6.6

Tick (✔) the correct answer.

- **1.** The foci of hyperbola always lie on : (a) x - axis (b) \checkmark Transverse axis (c) y - axis
- 2. Length of transverse axis of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is (a) $\checkmark 2a$ (b) 2b (c) a (d) b3. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is symmetric about the: (a) y - axis (b) x - axis (c) \checkmark Both (a) and (b) (d) None of these 4. If $c = \sqrt{65}$, b = 7 and a = 4 then the eccentricity of hyperbola is :

(a)
$$\checkmark \frac{\sqrt{65}}{4}$$
 (b) $\frac{65}{16}$ (c) $\frac{\sqrt{65}}{7}$ (d) $\frac{7}{4}$
SHORT QUESTIONS

i. Define Hyperbola.

ii. Discuss $25x^2 - 16y^2 = 400$

- iii. Find the equation of hyperbola with given data : Foci $(\pm 5, 0)$, vertex (3, 0)Foci $(0, \pm 6)$, e = 2, Foci (5, -2), (5, 4) and one vertex (5, 3)
- iv. Find the centre ,foci , eccentricity , vertices and directrix of $x^2 y^2 = 9$ $\frac{y^2}{4} - x^2 = 1$, $\frac{y^2}{16} - \frac{x^2}{9} = 1$

For any point on the hyperbola the difference of its distances from the points (2, 2) and (10, 2) is 6. Find the equation of hyperbola Let 0 < a < c and F'(-c, 0), F(c, 0) be two fixed points . Show that th set of points P(x, y) such that

$$|PF| - |PF'| = \pm 2a$$
 is the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{c^2 - a^2} = 1$

EXERCISE 7.1

Tick (✔) the correct answer.

1. Two vectors are said to be negative of each other if they have the same magnitude and direction. (c) negative (a) Same (b) 🗸 opposite (d) parallel 2. Parallelogram law of vector addition to describe the combined action of two forces, was used by (b) 🗸 Aristotle (a) Cauchy (c) Alkhwarzmi (d) Leibnitz 3. The vector whose initial point is at the origin and terminal point is P, is called (b) unit vector (c) ✓ position vector (d) normal vector (a) Null vector 4. If *R* be the set of real numbers, then the Cartesian plane is defined as (a) $R^2 = \{(x^2, y^2): x, y \in R\}$ (b) $\checkmark R^2 = \{(x, y): x, y \in R\}$ (c) $R^2 = \{(x, y): x, y \in R, x = -y\}$ (d) $R^2 = \{(x, y) : x, y \in R, x = y\}$ 5. The element $(x, y) \in \mathbb{R}^2$ represents a (a) Space (b) V point (c) vector (d) line 6. If u = [x, y] in \mathbb{R}^2 , then |u| = ?(b) $\checkmark \sqrt{x^2 + y^2}$ (c) $\pm \sqrt{x^2 + y^2}$ (a) $x^2 + y^2$ (d) $x^2 - y^2$ 7. If $|u| = \sqrt{x^2 + y^2} = 0$, then it must be true that (a) $x \ge 0, y \ge 0$ (b) $x \le 0, y \le 0$ (c) $x \ge 0, y \le 0$ (d) $\checkmark x = 0, y = 0$ 8. Each vector [x, y] in \mathbb{R}^2 can be uniquely represented as (d) $\sqrt{x^2 + y^2}$ (a) *x<u>i</u> − yj* (b) $\checkmark x\underline{i} + y\underline{j}$ (c) x + y9. The lines joining the mid-points of any two sides of a triangle is always _____to the third side. (b) V Parallel (a) Equal (c) perpendicular (d) base

SHORT QUESTIONS

i. Write the vector \overrightarrow{PQ} in the form of $x\underline{i} + y\underline{j}$ if P(2,3), Q(6,-2)

- ii. Find the sum of the vectors \overrightarrow{AB} and \overrightarrow{CD} , given the four points A(1,-1), B(2,0), C(-1,3) and D(-2,2)
- iii. Find the unit vector in the direction of vector given $\underline{v} = \frac{1}{2}\underline{i} + \frac{\sqrt{3}}{2}j$
- iv. If $\overrightarrow{AB} = \overrightarrow{CD}$. Find the coordinates of the points *A* when points *B*, *C*, *D* are (1, 2), (-2, 5), (4, 11) respectively.
- v. If *B*, *C* and *D* are respectively (4, 1), (-2, 3) and (-8, 0). Use vector method to find the coordinates of the point *A* if *ABCD* is a parallelogram.
- vi. Define Parallel vectors.

LONG QUESTIONS

Prove that the line segment joining the mid points of two sides of a triangle is parallel to the third side and half as long.

Prove that the line segments joining the mid points of the sides of a quadrilateral taken in order form a parallelogram.

EXERCISE 7.2

Tick (✔) the correct answer 1. If $\underline{u} = 3\underline{i} - j + 2\underline{k}$ then [3,-1,2] are called ____ _ of *u* . (a) Direction cosines (b) **V** direction ratios (c) direction angles (d) elements 2. Which of the following can be the direction angles of some vector (a) 45°, 45°, 60° (b) 30°, 45°, 60° (c) ✔ 45°, 60°, 60° (d) obtuse 3. Measure of angle θ between two vectors is always. (b) $0 \le \theta \le \frac{\pi}{2}$ (a) $0 < \theta < \pi$ (c) $\checkmark 0 \le \theta \le \pi$ (d) obtuse 4. If the dot product of two vectors is zero, then the vectors must be (a) Parallel (b) **V** orthogonal (c) reciprocal (d) equal 5. If the cross product of two vectors is zero, then the vectors must be (a) V Parallel (b) orthogonal (c) reciprocal (d) Non coplanar 6. If θ be the angle between two vectors a and b, then $cos\theta =$ (c) <u>a.b</u> (d) $\frac{\underline{a}.\underline{b}}{|b|}$ <u>a.b</u> (b) 🗸 (a) |a||a||b||a||b|7. If θ be the angle between two vectors <u>a</u> and <u>b</u>, then projection of <u>b</u> along <u>a</u> is (c) ✔ <u>a.b</u> a×b (d) $\frac{\underline{a}.\underline{b}}{|b|}$ (a) |a||a||b|<u>a||b|</u> 8. If θ be the angle between two vectors a and b, then projection of a along b is (d) ✓ <u>a.b</u>/<u>|b|</u> a.b (a) (c) |a||b|a <u>a||b|</u> 9. Let $\underline{u} = a\underline{i} + bj + c\underline{k}$ then projection of \underline{u} along \underline{i} is (a) **∨**a (b) b (c) c (d) u

- i. Find α , so that $\left| \alpha \underline{i} + (\alpha + 1) \underline{j} + 2 \underline{k} \right| = 3$
- ii. Find a vector whose magnitude is 4 and is parallel to $2\underline{i} 3j + 6\underline{k}$.
- iii. Find *a* and *b* so that the vectors $3\underline{i} j + 4\underline{k}$ and $a\underline{i} + bj 2\underline{k}$ are parallel.
- iv. Find the direction cosines for the given vector: $\underline{v} = 3\underline{i} j + 2\underline{k}$
- v. Find Two vectors of length 2 parallel to the vector $\underline{v} = 2\underline{i} 4j + 4\underline{k}$.

LONG QUESTIONS

The position vectors of the points A, B, C and D are $2\underline{i} - j + \underline{k}$, $3\underline{i} + \underline{k}$

 \underline{j} , $2\underline{i} + 4\underline{j} - 2\underline{k}$ and $-\underline{i} - 2\underline{j} + \underline{k}$ respectively. Show that \overline{AB} is parallel to \overline{CD} .

EXERCISE 7.3

Tick (✔) the correct answer.

1. In any $\triangle ABC$, the law of cosine is

(a)
$$\checkmark a^2 = b^2 + c^2 - 2bcCosA$$
 (b) $a = bCosC + cCosB$ (c) $a.b = 0$ (d) $a - b = 0$

2. In any $\triangle ABC$, the law of projection is

(a)
$$a^2 = b^2 + c^2 - 2bcCosA$$
 (b) $\checkmark a = bCosC + cCosB$ (c) $a.b = 0$ (d) $a - b = 0$

3. If \underline{u} is a vector such that $\underline{u} \cdot \underline{i} = 0, \underline{u} \cdot \underline{j} = 0, \underline{u} \cdot \underline{k} = 0$ then \underline{u} is called

(a) Unit vector (b) \checkmark null vector (c) $[\underline{i}, \underline{j}, \underline{k}]$ (d) none of these

- 4. Cross product or vector product is defined
- (a) In plane only (b) V in space only (c) everywhere (d) in vector field
- 5. If \underline{u} and \underline{v} are two vectors , then $\underline{u} \times \underline{v}$ is a vector \bigcirc
- (a) Parallel to \underline{u} and \underline{v} (b) parallel to \underline{u} (c) \checkmark perpendicular to \underline{u} and \underline{v} (d) orthogonal to \underline{u} 6. If u and v be any two vectors, along the adjacent sides of ||gram then the area of ||gram
- is (a) $u \times v$ (b) $\checkmark |u \times v|$ (c) $\frac{1}{2}(u \times v)$ (d) $\frac{1}{2}|u \times v|$

(a)
$$\underline{u} \times \underline{v}$$
 (b) $|\underline{u} \times \underline{v}|$ (c) $\frac{1}{2}(\underline{u} \times \underline{v})$ (d) $\checkmark \frac{1}{2} |\underline{u} \times \underline{v}|$
8. The scalar triple product of \underline{a} , \underline{b} and \underline{c} is denoted by

(a)
$$\underline{a} \cdot \underline{b} \cdot \underline{c}$$
 (b) $\checkmark \underline{a} \cdot \underline{b} \times \underline{c}$ (c) $\underline{a} \times \underline{b} \times \underline{c}$ (d) $(\underline{a} + \underline{b}) \times \underline{c}$

SHORT QUESTIONS

- i. Calculate the projection of \underline{a} along \underline{b} if $\underline{a} = \underline{i} \underline{k}$, $\underline{b} = j + \underline{k}$
- ii. Find a real number α so that the vectors \underline{u} and \underline{v} are perpendicular $\underline{u} = 2\alpha \underline{i} + \underline{j} \underline{k}$, $\underline{v} = \underline{i} + \alpha j + 4\underline{k}$
- iii. If \underline{v} is a vector for which $\underline{v} \cdot \underline{i} = 0$, $\underline{v} \cdot \underline{j} = 0$, $\underline{v} \cdot \underline{k} = 0$ find $\underline{v} \cdot \underline{v}$.
- iv. Find the angle between the vectors $\underline{u} = 2\underline{i} \underline{j} + \underline{k}$ and $\underline{v} = -\underline{i} + \underline{j}$

Define Orthogonal Vectors. v.

LONG QUESTIONS

Prove that the angle in semi circle is a right angle.

Prove that $cos(\alpha + \beta) = \beta cos\alpha sin\beta - sin\alpha cos\beta$

Prove that the altitudes of a triangle are concurrent.

EXERCISE 7.4 Tick (✔) the correct answer. 1. Cross product or vector product is defined (b) 🖌 in space only (b) In plane only (c) everywhere (d) in vector field 2. If \underline{u} and \underline{v} are two vectors , then $\underline{u} \times \underline{v}$ is a vector (b) Parallel to *u* and *v* (b) parallel to \underline{u} (c) \checkmark perpendicular to \underline{u} and \underline{v} (d) orthogonal to \underline{u} 3. If \underline{u} and \underline{v} be any two vectors, along the adjacent sides of ||gram then the area of ||gram is (b) $\checkmark |\underline{u} \times \underline{v}|$ (c) $\frac{1}{2}(\underline{u} \times \underline{v})$ (d) $\frac{1}{2} | \underline{u} \times \underline{v} |$ (b) $u \times v$ 4. If \underline{u} and \underline{v} be any two vectors, along the adjacent sides of triangle then the area of triangle is (c) $\frac{1}{2}(\underline{u} \times \underline{v})$ (d) $\checkmark \frac{1}{2} |\underline{u} \times \underline{v}|$ (b) $|u \times v|$ (b) $u \times v$ 5. Two non zero vectors are perpendicular *iff* (c) $\underline{u}, \underline{v} \neq 0$ (d) $\checkmark \underline{u}, \underline{v} = 0$ (a) u.v = 1(b) <u>u</u>.<u>v</u> ≠ 1 SHORT QUESTIONS i. If $\underline{u} = 2\underline{i} - j + \underline{k}$ and $\underline{v} = 4\underline{i} + 2j - \underline{k}$, find $\underline{u} \times \underline{v}$ and $\underline{v} \times \underline{u}$ ii. Find the area of triangle, determined by the point P(0, 0, 0); Q(2, 3, 2); R(-1, 1, 4)Find the area of $||^m$, whose vertices are: iii. A(1, 2, -1); B(4, 2, -3); C(6, -5, 2); D(9, -5, 0)Which vectors, if any, are perpendicular or parallel iv. $\underline{u} = \underline{i} + 2\underline{j} - \underline{k}; \underline{v} = -\underline{i} + \underline{j} + \underline{k}; \underline{w} = -\frac{\pi}{2}\underline{i} - \pi\underline{j} + \frac{\pi}{2}\underline{k}$ If $\underline{a} + \underline{b} + \underline{c} = \mathbf{0}$, then prove that $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ v. If $\underline{a} \times \underline{b} = 0$ and $\underline{a} \cdot \underline{b} = 0$, what conclusion can be drawn about \underline{a} or \underline{b} ? vi. LONG QUESTIONS Prove that : $sin(\alpha - \beta) = sin\alpha cos\beta - cos\alpha sin\beta$

Prove that : $\underline{a} \times (\underline{b} + \underline{c}) + \underline{b} \times (\underline{c} + \underline{a}) + \underline{c} \times (\underline{a} + \underline{b}) = \mathbf{0}$

EXERCISE 7.5

Tick (✔) the correct answer.

- **1.** The scalar triple product of \underline{a} , \underline{b} and \underline{c} is denoted by (b) \underline{a} . \underline{b} . \underline{c} (b) \checkmark \underline{a} . $\underline{b} \times \underline{c}$ (c) $\underline{a} \times \underline{b} \times \underline{c}$ (d) $(\underline{a} + \underline{b}) \times \underline{c}$
- 2. The vector triple product of *a*, *b* and *c* is denoted by (b) $\underline{a} \cdot \underline{b} \times \underline{c}$ (c) $\checkmark \underline{a} \times \underline{b} \times \underline{c}$ (d) $(\underline{a} + \underline{b}) \times \underline{c}$ (a) <u>a</u>.<u>b</u>.<u>c</u> 3. Notation for scalar triple product of *a*, *b* and *c* is (d) **v** all of these (a) $\underline{a} \cdot \underline{b} \times \underline{c}$ (b) $\underline{a} \times \underline{b} . \underline{c}$ (c)[<u>a</u>.<u>b</u>.c] 4. If the scalar product of three vectors is zero, then vectors are (a) Collinear (b) 🗸 coplanar (c) non coplanar (d) non-collinear 5. If any two vectors of scalar triple product are equal, then its value is equal to (a) 1 (b) **V**0 (c) -1 (d) 2 6. Moment of a force about a point is: (a) Vector quantity (b) scalar quantity (c) zero (d) None of these 7. Two vectors lying in the same plane are called: (a) Collinear vectors (b) perpendicular vectors (c) 🖌 coplanar vectors (d) parallel vectors 8. Moment of a force *F* about a point is given by: (a) Dot product (b) **✓** cross product (c) both (a) and (b) (d) None of these

SHORT QUESTIONS

- i. What are coplanar vectors?
 ii. A force <u>F</u> = 7<u>i</u> + 4<u>j</u> 3<u>k</u> is applied at P(1, -2, 3). Find its moment about the point Q(2, 1, 1).
 iii. Find work done by <u>F</u> = 2<u>i</u> + 4<u>j</u> if its points of application to a body moves if from A(1, 1) to B(4, 6).
 iv. Prove that the vectors <u>i</u> 2<u>j</u> + <u>k</u>, -2<u>i</u> + 3<u>j</u> 4<u>k</u> and <u>i</u> 3<u>j</u> + 5<u>k</u> are coplanar.
 v. If <u>a</u> = 3<u>i</u> <u>j</u> + 5<u>k</u>, <u>b</u> = 4<u>i</u> + 3<u>j</u> 2<u>k</u> and <u>c</u> = 2<u>i</u> + 5<u>j</u> + <u>k</u> fine <u>a</u>. <u>b</u> × c
 vi. Find the volume of tetrahedron with the vertices A(0, 1, 2), B(3, 2, 1), C(1, 2, 1) and D(5, 5, 6).
- vii. Find the value of $2\underline{i} \times 2\underline{j} \cdot \underline{k}$ and $[k \ i \ j]$
- viii. Prove that $\underline{u}.(\underline{v} \times \underline{w}) + \underline{v}.(\underline{w} \times \underline{u}) + \underline{w}.(\underline{u} \times \underline{v}) = 3\underline{u}.(\underline{v} \times \underline{w})$
- ix. Write down the volume of tetrahedron.
- x. Find the value of , so that $\alpha \underline{i} + j, \underline{i} + j + 3\underline{k}$ and $2\underline{i} + j 2\underline{k}$ are coplanar.

LONG QUESTIONS

Prove that the points whose position vectors are $\left(-6\underline{i}+3\underline{j}+2\underline{k}\right)$, $B\left(3\underline{i}-2\underline{j}+4\underline{k}\right)$, $C\left(5\underline{i}+7\underline{j}+3\underline{k}\right)$ and $D\left(-13\underline{i}+17\underline{j}-\underline{k}\right)$ are coplanar.

A force of magnitude 6 units acting parallel to $2\underline{i} - 2\underline{j} + \underline{k}$ displces, the point of application from (1, 2, 3) to (5, 3, 7). Find the work done.

M.SALMAN SHERAZI 03337727666/03067856232

This document contains all the important MCQs, Short Questions and Long Questions of Mathematics HSSC-II (FSc Part 2) from the Calculus and Analytic Geometry, MATHEMATICS 12. It has been done to help the students and teachers at no cost by M Salman Sherazi. This work (pdf) is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0.

M. Salman Sherazi

Available at

https://www.mathcity.org