Section – A (20 marks)				
Note: Section A is compulsory.				
Q. 1(a): Fill in the blanks.				
i) Domain of cot x is				
ii) $f(x)$ has relative maxima at $x = c$ if				
iii) $\int \frac{2x}{\sqrt{1-x^2}} dx = \dots$				
iv) Equation of straight line in slope interc	ept form is			
v) Equation of a parabola with vertex at o	rigin and focus $(0,-2)$ is			
Q. 1(b): Encircle the correct answer as true or $2^2 + 1$	false.			
1) $f(x) = x^{-} + 1$, x is dependent variable	1 / F			
ii) $\int \ln x dx = \frac{1}{x}$	T / F			
iii) A point of solution where two of its bo	undary lines intersect is called vertex			
tan x	1 / F			
iv) $\lim_{x \to 0} \frac{\tan x}{x} = 1$	T / F			
v) In an ellipse $e > 1$	T / F			
$O_{1}(c)$: Choose and tick (\checkmark) the best possible answer.				
i) $\sec h^2 x = \dots$				
a) $1 + \tanh^2 x$	b) $\tanh^2 x - 1$			
c) $1 - \tanh^2 x$	d) None			
ii) $\int e^x (\sin x + \cos x) dx$ is				
a) $e^x \cos x$	b) $e^x \sin x$			
c) $e^x \tan x$	d) None			
iii) Angle between two parallel lines is				
a) 90°	b) 270°			
c) 0°	d) None			
iv) A feasible region is restricted to				
a) $x - axis$	b) 1 st Quadrant			
c) 2 nd Quadrant	d) None			
v) If \underline{i} , \underline{j} and \underline{k} are unit vectors then:				
a) $\underline{i} \cdot \underline{i} = 0$	b) $\underline{i} \times \underline{j} = 1$			
c) $\underline{i} \cdot \underline{j} = 0$	d) None			

	Column I	Column II	Column III
	Identity Function	e ^x	
ii	ax + by + c = 0	Parabola	
iii	$c = \frac{a}{m}$	f(x) = x	
iv	Moment of force	Straight line	
v	$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$	$\vec{r} \times \vec{F}$	

Γ

ANSWERS			
Q.1(a): (i) $\{x: x \in \mathbb{R} \land x \neq np, n \in \mathbb{Z}\}$ (ii) $f''(c) < 0$ (iii) $-2\sqrt{1-x^2}$ (iv) $y = mx + c$ (v) $x^2 = -8y$			
Q.1(b): (i) F (ii) F (iii) F (iv) T (v) F			
Q.1(c): (i) c (ii) b (iii) c (iv) b (v) c			
Q.1(d): (i) $f(x) = x$ (ii) Straight line (iii) Parabola (iv) $\vec{r} \times \vec{F}$ (v) e^x			

This Paper is available online at http://www.mathcity.org

If you have a question or query you can ask at http://forum.mathcity.org

If you found any error submit at http://www.mathcity.org/error

Federal Board - Supplementary 2005

Mathematics Paper-II, Time Allowed: 2.40 Hours Max. Marks: 80, Available online @ http://www.mathcity.org/fsc

Section –B (4 ´ 10 =40 marks)				
Q # 2. Attempt any TEN parts. Graph paper will be supplied on demand.				
(i) Evaluate: $\lim_{x \to 0} \frac{\sec x - \cos x}{x}$	Ex 1.3 – 3(x) – p27			
(ii) Determine whether the given $f(x) = \sin x + \cos x$ is even or odd.	Ex 1.1 - Exp3(c) - p10			
(iii) If $y = a^x$, prove that $\frac{dy}{dx} = a^x \ln a$.	Ex 2.6 - Art 2.10(2) - p80			
(iv) Apply Maclaurin series to prove: $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$	Ex 2.8 – 1(ii) – p101			
(v) Evaluate: $\int \sin^{-1} x dx$	Ex 3.4 – 1(xiii) – p144			
(vi) Evaluate: $\int \frac{1}{\sqrt{a^2 + x^2}} dx$	Ex 3.3 – Exp1 – p136			
(vii) Use differential to approximate the value of $(17)^{\frac{1}{4}}$	Ex 3.1 – Exp1 – p122			
(viii) The xy-coordinate axes are rotated about the origin through an angle of 30° . The new axes are OX and OY. Find the XY-coordinate of the point whose xy-coordinate are $(3,-7)$.	Ex 4.2 - 3(ii) – p190			
(ix) Use slopes, prove that following points are collinear: $(4,-5)$, $(7,5)$, $(10,15)$.	Ex 4.3 – 4(b) – p215			
(x) Indicate the solution region of the following system of linear inequalities by shading. (use graph paper) $x + y \le 5$, $y - 2x \le 2$, $y \ge 0$.	Ex 5.1 – 3(ii) – p237 Changed			
(xi) Find equation of a parabola with given elements: Focus $(-3,1)$, Directrix: $x = 3$	Ex 6.4 – 2(i) – p281			
(xii) Find equation of the tangent to the given curve at indicated point: $x^{2} + 5xy - 4y^{2} + 4 = 0$ at $y = -1$	Ex 6.9 – 3(ii) – p324			
(xiii) Prove that the normal lines of a circle pass through the centre of the circle.	Ex 6.1 – 1 – p272			
(xiv) Use vectors to prove: $a^2 = b^2 + c^2 - 2bc \cos A$.	Ex 7.3-Exp8(i)- p348			

Section C (40 Marks (5+5 each))

Note: Attempt any *FOUR* questions. Graph paper will be supplied on demand.

Q # 3 (a) Draw the graph:	Ex 1.5 – 2(i) – p40
$x = t$, $y = t^2$, $-3 \le t \le 3$, t is a parameter.	
(b) Find $\frac{dy}{dx}$, using 1 st principle when $y = \sqrt{x+2}$.	Ex 2.1 – 2(i) – p51

Q # 4 (a). If $y = x \sin^{-1} \frac{x}{a} + \sqrt{a^2 - x^2}$, find $\frac{dy}{dx}$ (b) Evaluate: $\int x \sqrt{x + a} dx$	Ex 2.5 – Exp1 – p78 Ex 3.3 – 3 – p137 Excluded
 Q # 5 (a) Find two positive integer whose sum is 12 and product of one with square of the other will be maximum. (b) Find the area between the curve y = x(x-1)(x+1) and the x-axis. 	Ex 2.10 - 3 – p117 Ex 3.7 – 10 – p168
Q # 6 (a) Find joint equation of the lines through the origin and perpendicular to the lines $x^2 - 2xy \tan a - y^2 = 0$ (b) Graph the feasible region of the following system of linear inequalities and find the corner points: $2x + y \le 10$, $x + 4y \le 12$, $x + 2y \le 10$, $x \ge 0$, $y \ge 0$	Ex 4.5 – 7 – p228 Ex 5.2 – 2(i) – p243
 Q # 7 (a) If two vertices of an equilateral triangle are A(-3,0) and B(3,0). Find the third vertex. How many of these triangles are possible. (b) Derive standard equation of hyperbola. 	Ex 4.1 – 12 – p186 Ex 6.7 – Art – p291
Q # 8 (a) Find an equation of the circle passing through the points $A(3,-1)$, $B(0,1)$ and having centre at $4x - 3y - 3 = 0$. (b) Find a unit vector perpendicular to the plane containing \underline{a} & \underline{b} if $\underline{a} = 2\underline{i} - 6\underline{j} - 3\underline{k}$, $\underline{b} = 4\underline{i} - 3\underline{j} - \underline{k}$	Ex 6.1 – 4(a) – p255 Ex 7.4 – 2(i) – p358
Q # 9 (a) Use vectors to prove that perpendicular bisectors of the sides of a triangle are concurrent. (b) If $f(x) = [-x+9]^3$, find $f^{-1}(x)$. Also verify $f[f^{-1}(x)] = f^{-1}[f(x)] = x$	Ex 7.3 – 8 – p350 Ex 1.2 – 2(i) – p14

Chart between Question from Exercises and Examples

Questions
 Examples

