Section - A (20 marks)

Note: Section A is compulsory.

Q. 1(a): Fill in the blanks.
i) Domain of $\cot x$ is \qquad
ii) $f(x)$ has relative maxima at $x=c$ if \qquad
iii) $\int \frac{2 x}{\sqrt{1-x^{2}}} d x=$ \qquad
iv) Equation of straight line in slope intercept form is \qquad
v) Equation of a parabola with vertex at origin and focus $(0,-2)$ is \qquad
Q. 1(b): Encircle the correct answer as true or false.
i) $f(x)=x^{2}+1, x$ is dependent variable
ii) $\int \ln x d x=\frac{1}{x}$
iii) A point of solution where two of its boundary lines intersect is called vertex
iv) $\lim _{x \rightarrow 0} \frac{\tan x}{x}=1$

T/F
v) In an ellipse $e>1$

T/F
Q. 1(c): Choose and tick (\checkmark) the best possible answer.
i) $\sec ^{2} x=$ \qquad
a) $1+\tanh ^{2} x$
b) $\tanh ^{2} x-1$
c) $1-\tanh ^{2} x$
d) None
ii) $\int e^{x}(\sin x+\cos x) d x$ is \qquad
a) $e^{x} \cos x$
b) $e^{x} \sin x$
c) $e^{x} \tan x$
d) None
iii) Angle between two parallel lines is
a) 90°
b) 270°
c) 0°
d) None
iv) A feasible region is restricted to \qquad
a) x-axis
b) $1^{\text {st }}$ Quadrant
c) $2^{\text {nd }}$ Quadrant
d) None
v) If $\underline{i}, \underline{j}$ and \underline{k} are unit vectors then:
a) $\underline{i} \cdot \underline{i}=0$
b) $\underline{i} \times \underline{j}=1$
c) $\underline{i} \cdot \underline{j}=0$
d) None
Q. 1(d): Match the column I with column II and write the correct answer in column III.

	Column I	Column II	Column III
i.	Identity Function	e^{x}	
ii	$a x+b y+c=0$	Parabola	
iii	$c=\frac{a}{m}$	$f(x)=x$	
iv	Moment of force	Straight line	
v	$1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$	$\vec{r} \times \vec{F}$	

This Paper is available online at http:/ / www.mathcity.org
If you have a question or query you can ask at
http:/ / forum.mathcity.org

> If you found any error submit at
> http:/ / www.mathcity.org/ error

Section-B (4 $\times 10=\mathbf{4 0}$ marks)

Q \# 2. Attempt any TEN parts. Graph paper will be supplied on demand.

(i) Evaluate: $\lim _{x \rightarrow 0} \frac{\sec x-\cos x}{x}$
(ii) Determine whether the given $f(x)=\sin x+\cos$
odd.
(iii) If $y=a^{x}$, prove that $\frac{d y}{d x}=a^{x} \ln a$.
(iv) Apply Maclaurin series to prove:
$\qquad$$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots .$.

(v) Evaluate: $\int \sin ^{-1} x d x$	Ex $3.4-1$ (xiii) -p 144
(vi) Evaluate: $\int \frac{1}{\sqrt{a^{2}+x^{2}}} d x$	Ex $3.3-$ Exp1 - p136

(vii) Use differential to approximate the value of $(17)^{\frac{1}{4}}$	Ex $3.1-$ Exp $1-$ p122
(viii) The $x y$-coordinate axes are rotated about the origin through	Ex $4.2-3$ (ii) - p190

an angle of 30°. The new axes are $O X$ and $O Y$. Find the $X Y$ -
coordinate of the point whose $x y$-coordinate are $(3,-7)$.
(ix) Use slopes, prove that following points are collinear: $(4,-5), \quad$ Ex $4.3-4(b)-p 215$
$(7,5),(10,15)$.
(x) Indicate the solution region of the following system of linear inequalities by shading. (use graph paper)

$$
x+y \leq 5 \quad, \quad y-2 x \leq 2 \quad, \quad y \geq 0
$$

 point:

$$
x^{2}+5 x y-4 y^{2}+4=0 \quad \text { at } \quad y=-1
$$

(xiii) Prove that the normal lines of a circle pass through the centre of the circle.	Ex 6.1-1-p272
(xiv) Use vectors to prove: $a^{2}=b^{2}+c^{2}-2 b c \cos A$.	Ex 7.3-Exp8(i)-p348

Section C (40 Marks (5+5 each))

Note: Attempt any FOUR questions. Graph paper will be supplied on demand.

Q \# 3 (a) Draw the graph:

$$
x=t, y=t^{2} \quad,-3 \leq t \leq 3, t \text { is a parameter. }
$$

(b) Find $\frac{d y}{d x}$, using $1^{\text {st }}$ principle when $y=\sqrt{x+2}$.

Ex 1.5-2(i) - p40

Q \# 4 (a). If $y=x \sin ^{-1} \frac{x}{a}+\sqrt{a^{2}-x^{2}}$, find $\frac{d y}{d x}$ (b) Evaluate: $\int x \sqrt{x+a} d x$	$\begin{aligned} & \text { Ex } 2.5-\text { Exp1-p78 } \\ & \text { Ex } 3.3-3-\text { p137 } \\ & \text { Excluded } \end{aligned}$
Q \# 5 (a) Find two positive integer whose sum is 12 and product of one with square of the other will be maximum. (b) Find the area between the curve $y=x(x-1)(x+1)$ and the x-axis.	$\begin{aligned} & \text { Ex } 2.10-3-\mathrm{p} 117 \\ & \text { Ex } 3.7-10-\mathrm{p} 168 \end{aligned}$
Q \# 6 (a) Find joint equation of the lines through the origin and perpendicular to the lines $x^{2}-2 x y \tan \alpha-y^{2}=0$ (b) Graph the feasible region of the following system of linear inequalities and find the corner points: $2 x+y \leq 10, x+4 y \leq 12, x+2 y \leq 10, x \geq 0, y \geq 0$	Ex 4.5-7-p228 Ex 5.2-2(i) - p243
Q \# 7 (a) If two vertices of an equilateral triangle are $A(-3,0)$ and $B(3,0)$. Find the third vertex. How many of these triangles are possible. (b) Derive standard equation of hyperbola.	$\begin{aligned} & \text { Ex } 4.1-12-\mathrm{p} 186 \\ & \text { Ex } 6.7-\text { Art - p291 } \end{aligned}$
Q \# 8 (a) Find an equation of the circle passing through the points $A(3,-1), B(0,1)$ and having centre at $4 x-3 y-3=0$. (b) Find a unit vector perpendicular to the plane containing \underline{a} $\& \underline{b}$ if $\quad \underline{a}=2 \underline{i}-6 \underline{j}-3 \underline{k} \quad, \quad \underline{b}=4 \underline{i}-3 \underline{j}-\underline{k}$	$\begin{aligned} & \text { Ex } 6.1-4(a)-\text { p255 } \\ & E x 7.4-2(i)-p 358 \end{aligned}$
Q \# 9 (a) Use vectors to prove that perpendicular bisectors of the sides of a triangle are concurrent. (b) If $f(x)=[-x+9]^{3}$, find $f^{-1}(x)$. Also verify $f\left[f^{-1}(x)\right]=f^{-1}[f(x)]=x$	$\begin{aligned} & \text { Ex } 7.3-8-\mathrm{p} 350 \\ & \text { Ex } 1.2-2(\mathrm{i})-\mathrm{p} 14 \end{aligned}$

Chart between Question from Exercises and Examples

\square Questions
\square Examples

Ask us at http:/ / forum.mathcity.org

For news and updates visit http:/ / www.mathcity.org

