mathcity.org

Section - A (20 marks)

Note: Section A is compulsory.

Q. 1(a): Fill in the blanks.

i) The domain of $g(x)=\sqrt{x+1}$ is \qquad
ii) $\frac{d}{d x}(\operatorname{sech} x)=$ \qquad
iii) $\int \operatorname{cosec}^{2} x d x=$
iv) $l_{1} \perp l_{2}$ if $1+m_{1} m_{2}=$
v) $A^{c} \cup B^{c}=$ \qquad
Q. 1(b): Encircle the correct answer as true or false.
i) If $0<e<1$ then conic is an ellipse.
ii) $\lim _{x \rightarrow 0}\left(\frac{e^{x}-1}{x}\right)=\log _{10} e$
iii) $\frac{d}{d x} a^{x}=x a^{x-1}$
iv) Gradient of x-axis is zero
v) A non vertical line divides the plane into left and right planes.
Q. 1(c): Choose and tick (\checkmark) the best possible answer.
i) The symbol $\frac{d y}{d x}$ is used for the derivative of y w.r.t x by
a) Newton
b) Leibniz
c) Lagrange
d) Cauchy
ii) If $b^{2}=a^{2}\left(e^{2}-1\right)$, then the conic is
a) Parabola
b) Ellipse
c) Hyperbola
d) None
iii) If $\underline{a} \times \underline{b}=0$ and $\underline{a} \cdot \underline{b}=0$ then
a) $\underline{a} \| \underline{b}$
b) $\underline{a} \perp \underline{b}$
c) At least one is zero
d) None
iv) The series $f(x)=f(0)+\frac{x}{1!} f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(0)+\ldots \cdot \frac{x^{n}}{n!} f^{(n)}(0)+\ldots$. is
a) Taylor series
b) Maclaurin Series
c) Binomial Series
d) None
v) $\lim _{x \rightarrow-\infty} e^{x}$ is equal to
a) ∞
b) 0
c) e
d) None
Q. 1(d): Match the column I with column II and write the correct answer in column III.

	Column I		Column II
i.	Column III $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-x}$	$[0,2]$	
ii	Domain of the function $y=\left\{\begin{array}{cl}x & \text { if } 0 \leq x \leq 1 \\ x-1 & \text { if } 1 \leq x \leq 2\end{array}\right.$	$\ln x+c$	
iii	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	2	
iv	$y=m x+c$	Length of latus rectum is $2 b^{2} / a$	
v	$\int \frac{1}{x} d x$	y-intercept is c	

This Paper is available online at http:/ / www.mathcity.org
If you have a question or query you can ask at http:/ / forum.mathcity.org

mathcity.org

Paper II
Mathematics Paper-II , Time Allowed: 2.30 Hours
Max. Marks: 80, Available online @ http://www.mathcity.org/fsc

Section - B ($\mathbf{4} \times \mathbf{1 0}=\mathbf{4 0}$ marks)

Q \# 2. Attempt any TEN parts. Graph paper will be supplied on demand.

(i) Prove that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$	$\begin{aligned} & \text { Ex 1.3-1.5.5-p23 } \\ & \text { (Article) } \end{aligned}$
(ii) Determine whether the given function $f(x)=x^{\frac{2}{3}}+6$ is even or odd.	Ex 1.1-9(v)-p11
(iii) If $x=\sin \theta, y=\sin m \theta$ show that $\left(1-x^{2}\right) y_{2}-x y_{1}+m^{2} y=0 .$	Ex 2.7-5-p95
(iv) Show that $y=\frac{\ln x}{x}$ has a maximum value at $x=e$.	Ex 2.9-4-p113
(v) Find the area between the \underline{x}-axis and the curve $y^{2}=4-x$ in the first quadrant from $x=0$ to $x=3$.	Ex 3.7-Exp5-p167
(vi) Find the general solution of $\frac{d y}{d x}-x=x y^{2}$. Also find the particular solution if $y=1$ when $x=0$.	Ex 3.8-19-p178
(vii) Find an equation of horizontal line through (7,9).	Ex 4.3-9(i)-p216
(viii) The $x y$-coordinate axes are rotated about the origin through an angle of 45°. The new axes are $O X$ and $O Y$. Find the $X Y$ coordinate of the point whose $x y$-coordinate are $(5,3)$.	Ex 4.2-3(i)- p190
(ix) Derive standard equation of parabola.	Ex 6.4-Art - p273
(x) Minimize $z=2 x+y$ subject to the constraints $x+y \geq 3$, $7 x+5 y \leq 35 \quad, x \geq 0, y \geq 0$.	Ex 5.3-4-p248
(xi) Find the centre and radius of the circle $4 x^{2}+4 y^{2}-8 x+12 y-25=0$.	Ex 6.1-2(d) - p255
(xii) Find an equation of the ellipse with given data: foci $(\pm 3,0)$ and minor axis of length 10 .	Ex 6.5-1(i)-p290
(xiii) Show that the vector $2 \underline{i}-\underline{j}+\underline{k}, \underline{i}-3 \underline{j}-5 \underline{k}$ and $3 \underline{i}-4 \underline{j}-4 \underline{k}$ form the sides of a triangle.	Ex 7.3 - Exp6-p347
(xiv) Evaluate: $\int \tan ^{4} x d x$	Ex 3.4-2(i)-p144

Section C (40 Marks (5+5 each))

Note: Attempt any FOUR questions. Graph paper will be supplied on demand.
Q \# 3 (a) Find the value of m and n so that the given function f is continuous at $x=3$.

$$
f(x)=\left\{\begin{array}{ccc}
m x & \text { if } & x<3 \\
n & \text { if } & x=3 \\
-2 x+9 & \text { if } & x>3
\end{array}\right.
$$

(b) If $y=\sqrt{x}-\frac{1}{\sqrt{x}}$. Show that $2 x \frac{d y}{d x}+y=2 \sqrt{x}$.

Ex 1.4-5(i) - p32

Ex 2.3-16-p61

Q \# 4 (a). The perimeter of a triangle is 16 cm . If one side is of length 6 cm . What are the lengths of the other sides for maximum area of the triangle?
(b) Evaluate: $\quad \int_{0}^{\frac{\pi}{4}} \frac{1}{1+\sin x} d x$.
Q \# 5 (a) Show that
$\quad \cos (x+h)=\cos x-\frac{h}{1!} \sin x-\frac{h^{2}}{2!} \cos x+\frac{h^{3}}{3!} \sin x+\ldots \ldots .$.
and evaluate $\cos 61^{\circ}$.
(b) Evaluate: $\int \frac{x+\sin x}{1+\cos x} d x$.

Q \#6 (a) Graph the feasible region of the following system of linear inequalities and find the corner points.

$$
x+y \leq 5 \quad, \quad-2 x+y \geq 2 \quad, \quad x \geq 0 .
$$

(b) Find the distance between the parallel lines

$$
l_{1}: 2 x-5 y+13=0 \quad \text { and } \quad l_{2}:-2 x+5 y-6=0
$$

Q \# 7 (a) The major axis of an ellipse in standard form lies along the x-axis and has length $4 \sqrt{2}$. The distance between foci equals the length of the minor axis. Write an equation of the ellipse.
(b) Find an equation of the line through the intersection of the line $x+2 y+3=0$ and $3 x+4 y+7=0$ and making equal intercept on the axis.

Q \#8 (a) An arch in the form of half an ellipse is $40 m$ wide and $15 m$
high at the centre. Find the height of the arch at a distance of 10 m from its centre.
(b) Prove that the points whose position vectors are
$A(-6 \underline{i}+3 \underline{j}+2 \underline{k}), B(3 \underline{i}-2 \underline{j}+4 \underline{k})$ and $C(5 \underline{i}+7 \underline{j}+3 \underline{k})$ are coplanar.
Q \# 9 (a) Evaluate: $\lim _{\theta \rightarrow 0} \frac{\tan \theta-\sin \theta}{\sin ^{3} \theta}$
(b) Prove by vector method:

$$
\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta
$$

Ex 6.5-Exp4-p289
Ex 2.10-4-p117

Ex 3.6-27-p164

Ex 2.8-2-p101

Ex 3.4-5(xiv) - p145
(Excluded)
Ex 5.2-1(iii) - p242

Ex 4.3 - Exp - p213
(Old Book)

Ex 6.5-6-p291

Ex 4.4 - 2(iii) - p223

Ex 7.5 - Exp5 -p363
(Need Correction)

Ex 1.3-3(xii) - p27

Ex 7.4-8-p358
------ 2HA-0407-L -------

Chart between Question from Exercises and Examples

For news and updates visit http:/ / www.mathcity.org

