Federal Board - Arrual 2004 Paper II

Mathcity.org Merging man and maths

Mathematics II (Objective), Time Allowed: 20 Min. Marks: 20, Available online @ http://www.mathcity.org/fsc

Section – A (20 marks)		
Note: Section A is compulsory.		
Q. 1(a): Fill in the blanks. i) The domain of $g(x) = \sqrt{x+1}$ is .		
ii) $\frac{d}{dx}(\operatorname{sech} x) = \dots$		
iii) $\int \csc^2 x dx = \ldots$		
iv) $l_1 \perp l_2$ if $1 + m_1 m_2 = \dots$		
v) $A^c \cup B^c = \dots$		
Q. 1(b): Encircle the correct answer as tr i) If $0 < e < 1$ then conic is an ellipse.	rue or false. T / F	
ii) $\lim_{x \to 0} \left(\frac{e^x - 1}{x} \right) = \log_{10} e$	T / F	
iii) $\frac{d}{dx}a^x = xa^{x-1}$	T / F	
iv) Gradient of <i>x</i> -axis is zero	T / F	
v) A non vertical line divides the plan	ne into left and right planes. T / F	
Q. 1(c): Choose and tick (\checkmark) the best pose i) The symbol $\frac{dy}{dx}$ is used for the derivative of	Evative of y w.r.t x by	
a) Newton c) Lagrange	d) Cauchy	
ii) If $b^2 = a^2(e^2 - 1)$, then the conic is	8	
a) Parabola c) Hyperbola	b) Ellipse d) None	
iii) If $\underline{a} \times \underline{b} = 0$ and $\underline{a} \cdot \underline{b} = 0$ then		
a) <u>a</u> <u>b</u> c) At least one is zero	b) $\underline{a} \perp \underline{b}$ d) None	
iv) The series $f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + \dots$ is		
a) Taylor series c) Binomial Series	b) Maclaurin Seriesd) None	
v) $\lim_{x \to -\infty} e^x$ is equal to		
a) ∞ c) e	b) 0 d) None	

Q. 1(d): Match the column I with column II and write the correct answer in column III.

	Column I	Column II	Column III
i.	$ \lim_{x \to 1} \frac{x^2 - 1}{x^2 - x} $	[0,2]	
ii	Domain of the function $y = \begin{cases} x & if \ 0 \le x \le 1 \\ x - 1 & if \ 1 \le x \le 2 \end{cases}$	$\ln x + c$	
iii	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	2	
iv	y = mx + c	Length of latus rectum is $2b^2/a$	
v	$\int \frac{1}{x} dx$	y-intercept is c	

ANSWERS					
Q.1	_	(ii) $-\operatorname{sech} x$	tanh x (iii	$) -\cot x$ (iv)) 0 (v) $(A \cap B)^c$
Q.1	(b): (i) T	(ii) F	(iii) F	(iv) T	(v) F
Q.1	(c): (i) b	(ii) c	(iii) c	(iv) b	(v) a
Q.1	(i) 2	(ii) $[0,2]$ ercept is c		gth of latus rec c	tum is $2b^2/a$

This Paper is available online at http://www.mathcity.org

If you have a question or query you can ask at http://forum.mathcity.org

If you found any error submit at http://www.mathcity.org/error

mathcity.org

Merging man and maths

Federal Board - Arraal 2004 Paper II Mathematics Paper-II , Time Allowed: 2.30 Hours Max. Marks: 80 , Available online @ http://www.mathcity.org/fsc

Section –B (4 ´ 10 =40 marks)		
Q # 2. Attempt any TEN parts. Graph paper will be supplied on demand.		
(i) Prove that $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$	Ex 1.3 – 1.5.5 – p23 (Article)	
(ii) Determine whether the given function $f(x) = x^{\frac{2}{3}} + 6$ is even or odd.	Ex 1.1 – 9(v) – p11	
(iii) If $x = \sin \theta$, $y = \sin m\theta$ show that $(1-x^2)y_2 - xy_1 + m^2y = 0.$	Ex 2.7 – 5 – p95	
(iv) Show that $y = \frac{\ln x}{x}$ has a maximum value at $x = e$.	Ex 2.9 – 4 – p113	
(v) Find the area between the <u>x</u> -axis and the curve $y^2 = 4 - x$ in the first quadrant from $x = 0$ to $x = 3$.	Ex 3.7 – Exp5 – p167	
(vi) Find the general solution of $\frac{dy}{dx} - x = xy^2$. Also find the	Ex 3.8 – 19 – p178	
particular solution if $y = 1$ when $x = 0$.		
(vii) Find an equation of horizontal line through $(7,9)$.	Ex 4.3 – 9(i) – p216	
(viii) The xy -coordinate axes are rotated about the origin through an angle of 45° . The new axes are OX and OY . Find the XY -coordinate of the point whose xy -coordinate are $(5,3)$.	Ex 4.2 – 3(i) – p190	
(ix) Derive standard equation of parabola.	Ex 6.4 – Art – p273	
(x) Minimize $z = 2x + y$ subject to the constraints $x + y \ge 3$, $7x + 5y \le 35$, $x \ge 0$, $y \ge 0$.	Ex 5.3 – 4 – p248	
(xi) Find the centre and radius of the circle $4x^2 + 4y^2 - 8x + 12y - 25 = 0$.	Ex 6.1 – 2(d) – p255	
(xii) Find an equation of the ellipse with given data: foci $(\pm 3, 0)$ and minor axis of length 10.	Ex 6.5 – 1(i) – p290	
(xiii) Show that the vector $2\underline{i} - \underline{j} + \underline{k}$, $\underline{i} - 3\underline{j} - 5\underline{k}$ and $3\underline{i} - 4\underline{j} - 4\underline{k}$ form the sides of a triangle.	Ex 7.3 – Exp6 – p347	
(xiv) Evaluate: $\int \tan^4 x dx$	Ex 3.4 – 2(i) – p144	

Section C (40 Marks (5+5 each))			
Note: Attempt any FOUR questions. Graph paper will be supplied on demand.			
Q #3 (a) Find the value of m and n so that the given function f is continuous at $x = 3$. $f(x) = \begin{cases} mx & if \ x < 3 \\ n & if \ x = 3 \\ -2x + 9 & if \ x > 3 \end{cases}$	Ex 1.4 – 5(i) – p32		
(b) If $y = \sqrt{x} - \frac{1}{\sqrt{x}}$. Show that $2x\frac{dy}{dx} + y = 2\sqrt{x}$.	Ex 2.3 – 16 – p61		

\mathbf{Q} # 4 (a). The perimeter of a triangle is $16 cm$. If one side is of length	Ex 2.10 – 4 – p117
6cm. What are the lengths of the other sides for maximum area of the	
triangle? e^{π} 1	
(b) Evaluate: $\int_{0}^{\frac{\pi}{4}} \frac{1}{1+\sin x} dx$.	Ex 3.6 – 27 – p164
Q # 5 (a) Show that	Ex 2.8 - 2 – p101
$\cos(x+h) = \cos x - \frac{h}{1!}\sin x - \frac{h^2}{2!}\cos x + \frac{h^3}{3!}\sin x + \dots$	
and evaluate $\cos 61^{\circ}$.	
(b) Evaluate: $\int \frac{x + \sin x}{1 + \cos x} dx$.	Ex 3.4 – 5(xiv) – p145 (Excluded)
Q # 6 (a) Graph the feasible region of the following system of linear	Ex 5.2 – 1(iii) - p242
inequalities and find the corner points. $x+y \le 5$, $-2x+y \ge 2$, $x \ge 0$.	
(b) Find the distance between the parallel lines	Ex 4.3 – Exp – p213
$l_1: 2x - 5y + 13 = 0$ and $l_2: -2x + 5y - 6 = 0$	(Old Book)
Q # 7 (a) The major axis of an ellipse in standard form lies along the <i>x</i> -axis and has length $4\sqrt{2}$. The distance between foci equals the	Ex 6.5 – 6 – p291
length of the minor axis. Write an equation of the ellipse. (b) Find an equation of the line through the intersection of the line $x + 2y + 3 = 0$ and $3x + 4y + 7 = 0$ and making equal intercept on the axis.	Ex 4.4 – 2(iii) – p223
Q # 8 (a) An arch in the form of half an ellipse is $40 m$ wide and $15 m$	Ex 6.5 – Exp4 – p289
high at the centre. Find the height of the arch at a distance of $10 m$	
from its centre. (b) Prove that the points whose position vectors are $A(-6\underline{i}+3j+2\underline{k})$, $B(3\underline{i}-2j+4\underline{k})$ and $C(5\underline{i}+7j+3\underline{k})$ are	Ex 7.5 – Exp5 -p363 (Need Correction)
coplanar. $(-2) = (-2)$	
Q # 9 (a) Evaluate: $\lim_{\theta \to 0} \frac{\tan \theta - \sin \theta}{\sin^3 \theta}$	Ex 1.3 – 3(xii) – p27
(b) Prove by vector method:	
$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta.$	Ex 7.4 – 8 – p358

