Lakore Board - Arraal 2010 Group II Mathematics Paper-I(Obj), Time Allowed: 30 Mints Max. Marks: 20, Available online @ <u>http://www.mathcity.org/fsc</u>

Q.1 Four possible answers to each statement are given below. Tick (\checkmark) the correct answer.

MathCity.org

Merging man and maths

▶ (1) The property $\forall a \in R$; $a = a$ is called	l:
(a) Reflexive	(b) Symmetric
(c) Transitive	(d) Commutative
(c) Transitive	(d) Commutative
\succ (2) The multiplicative inverse of complex	number $(0-1)$ is:
(a) $(1,0)$	(b) $(0,1)$
(c) $(-1,0)$	(d) $(0,0)$
\blacktriangleright (3) A function which is on to is called:	
(a) Objective	(b) Injective
(c) Bijective	(d) Surjective
→ (4) The contra positive of $p \rightarrow q$ is:	
(a) $\sim p \rightarrow \sim q$	(b) $\sim q \rightarrow \sim p$
(c) $q \rightarrow p$	(d) $p \rightarrow q$
\succ (5) If A is a matrix of order 3×2 then ord	er of $A^{t}A = :$
(a) 3×3	(b) 2×3
(c) 2×2	(d) 3×2
\succ (6) If ω is the imaginary cube root of uni	ity then $\omega^2 = \vdots$
(a) 1	(b) -1
(a) 1 (c) ω^{-1}	(b) -1 (d) ω^{-2}
$(e) \omega$	(d) ω
(x-a)(x-b)	
> (7) Partial fraction of $\frac{(x-a)(x-b)}{(x-c)(x-d)}$ is of	the form:
(a) $\frac{A}{x-c} + \frac{B}{x-d}$	(b) $1 + \frac{A}{B} + \frac{B}{B}$
	x-a $x-b$
(c) $\frac{A}{x-a} + \frac{B}{x-b}$	(d) $1 + \frac{B}{x-c} + \frac{A}{x-d}$
x-a $x-b$	x-c $x-d$
$(8) 1^3 + 2^3 + 3^3 + \dots + n^3 =:$	
(a) $\left(\frac{n(n+1)}{2}\right)^3$	(b) $\frac{n(n+1)(2n+1)}{6}$
$(a)\left(\frac{1}{2}\right)$	6
n(n+1)(2n+1)	$n^{2}(n+1)^{2}$
(c) $\frac{n(n+1)(2n+1)}{3}$	(d) $\frac{n^2(n+1)^2}{4}$
~	4
	and $2\sqrt{2}$ is
(9) Arithmetic Mean (A.M) between $\sqrt{2}$	3
(a) ± 6	(b) $\frac{3}{\sqrt{2}}$
	· -
(c) $\sqrt{8}$	(d) $4\sqrt{2}$
\succ (10) Numbers of ways in which 5 persons	can be seated at a round table are:
(a) 120	(b) 24

(a) 120 (b) 24 (c) 60 (d) 12

 \succ (11) If E is an event then probability of non-occurrence of E is:

(a) $1 - p(\overline{E})$	(b) $p(\overline{E})-1$
(c) $1 - p(E)$	(d) $p(E) - 1$

 (12)The sum of odd coefficients in the expansion (a) 16 	(b) 32
(c) 25	(d) 5
(13) The expansion of $(3-5x)^{\frac{-1}{2}}$ is valid only if:	
(a) $ x < 5$	(b) $ x < \frac{5}{3}$
(c) $ x < \frac{3}{5}$	(d) $ x < \frac{1}{2}$
(14) $2^n - 1 < n!$ is true for:	
(a) $n \ge 1$	(b) $n \ge 2$
(c) $n \ge 3$	(d) $n \ge 4$
\blacktriangleright (15) 1 - sec ² θ =	
(a) $\tan^2 \theta$	(b) $-\tan^2\theta$
(c) $\tan^2 \theta - 1$	(d) $1 - \tan^2 \theta$
(16) $2\cos 5\theta \sin 3\theta$:	
(a) $\sin 8\theta - \sin 2\theta$	(b) $\sin 8\theta + \sin 2\theta$
(c) $\cos 8\theta + \cos 2\theta$	(d) $\sin 4\theta - \sin \theta$
(17) The range of $y = \cos x$ is:	
(a) $-1 \le x \le 1$	(b) $-\infty \le x \le +\infty$
(c) $-1 \le y \le 1$	(d) $-\infty \le y \le +\infty$
\succ (18) The in-radius of the in-circle is:	
(a) $\frac{abc}{4\Delta}$	(b) $\frac{\Delta}{-}$
	(U) S
(c) $\frac{\Delta}{s-a}$	(d) $\frac{s}{\Lambda}$
s-a	Δ
\succ (19) $Tan^{-1}(-\sqrt{3}) = :$	
(a) $\frac{2\pi}{3}$	(b) $\frac{-2\pi}{3}$
5	
(c) $\frac{-\pi}{6}$	(d) $\frac{-\pi}{3}$
> (20)The equation $Cos^2 x = \frac{3}{4}$ has solution:	
(a) One	(b) Two
(c) Four	(d) Infinite

Available online at http://www.MathCity.org

If you have a question; ask at http://forum.mathcity.org

If you found any error submit at http://www.MathCity.org/error

Composed by: Haji Asif ALI (<u>asif.mathematics@gmail.com</u>) LECTURER IN MATHEMATICS, SUPERIOR GROUP OF COLLEGES SHEIKHUPURA

Acknowledgments: We are really very thankful to Haji Asif ALI for providing this paper.

MathCity.org Merging man and maths

Lakore Board - Arrzal 2010 Group 11

Mathematics Paper-I(Sub), Time Allowed: 2:30 Hours Max. Marks: 80, Available online @ <u>http://www.mathcity.org/fsc</u>

Section – I

Note: All questions are to be attempted on answer book.

Q # 2: Write any TWENTY-FIVE short answers of the following questions:

- (i) Show that $s = \{1, -1\}$, is closed under multiplication.
- (ii) Simplify $(a bi)^3$.
- (iii) Under what condition on sets A and B that the statement A B = A, is true?
- (iv) Construct the truth table of $(p \rightarrow q) \land p$.
- (v) For the set A = $\{1, 2, 3, 4\}$ state domain and range of relation $\{(x, y) | x + y > 5\}$
- (vi) Define surjective function.

(vii) If
$$A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$$
 and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ find values of a and b.

- (viii) Show that $(A^{-1})^{-1} = A$ where A is non singular matrix.
- (ix) If A is any square matrix of order 3, show that $(A + A^t)$ is symmetric.
- (**x**) Define radical equation.
- (xi) Show that $1 + \omega + \omega^2 = 0$.
- (xii) If α and β are roots of the equation $3x^2 2x + 4 = 0$, find values of $\alpha^3 + \beta^3$.
- (xiii) The sum of a positive number and its reciprocal is $\frac{26}{5}$. find the number.
- (xiv) Find the 13^{th} term of the sequence x, 1, 2 x, ...

(**xv**) If
$$\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$$
 are in G.P show that common ratio is $\pm \sqrt{\frac{a}{c}}$

(xvi) If
$$y = \frac{2}{3}x + \frac{4}{9}x^2 + \frac{8}{27}x^3 + \dots$$
 if $0 < x < \frac{3}{2}$ then show that $x = \frac{3y}{2(1+y)}$

(**xvii**) Find the 9th term of the sequence
$$\frac{-1}{5}, \frac{-1}{3}, -1, \dots$$

(**xviii**) Prove that ${}^{n}P_{r} = n \cdot {}^{n-1}P_{r-1}$

(xix) Find the number of ways in which 5 men and 5 women can be seated at a round table in such a way that no two persons of the same sex are together.

- (xx) Pakistan and India play a cricket match. Find the probability that Pakistan wins
- (xxi) A box contains 10 red, 30 white and 20 black marbles. A marble is drawn at random. Find the probability that it is either red or white.
- (xxii) State principle of mathematical induction.
- (**xxiii**) State any four points of observation in the expansion of $(a + x)^n$
- (**xxiv**) Find the general term in the expansion of $(1 + x)^{-3}$ when |x| < 1
- (xxv) Using binomial theorem, find the value of $\sqrt{99}$ to the three places of decimal.

(**xxvi**) Express
$$\frac{19\pi}{32}$$
 in to the measure of sexagesimal system.

(**xxvii**) Find x if
$$\tan^2(45^\circ) - \cos^2(60^\circ) = x\sin(45^\circ)\cos(45^\circ)\tan(60^\circ)$$

(**xxviii**) Prove that
$$\tan(45^{\circ} + A)\tan(45^{\circ} - A) = 1$$

(**xxix**) Find value of
$$\sin(2\alpha)$$
 if $\cos(\alpha) = \frac{3}{5}$ where $0 < \alpha < \frac{\pi}{2}$

(**xxx**) Express $\cos 12^{\circ} + \cos 48^{\circ}$ as product.

(xxxi)Write the domain and range of $y = \cos ec(x)$ (xxxii)Find the period of $\cos(2x)$ (xxxiii)In the right triangle ABC in which $\gamma = 90^{\circ}, a = 8, b = 8, Find \alpha$.(xxxiv)Write the law of Sine(xxxv)Show that $r_2 = s \tan \frac{\beta}{2}$ (xxxvi)Solve trigonometric equation $\cos(x) = \sin(2x)$ in $[0, \pi]$ (xxxvii)Find the solution of $\sin x = -\frac{\sqrt{3}}{2}in[0, 2\pi]$

Section - II		
Note: Attempt any THREE questions.		
Q # 3 (a) Solve the system of linear equations.	5	
2x + 2y + z = 3		
3x - 2y - 2z = 1		
5x + y - 3z = 2	_	
(b) Show that roots of $x^2 + (mx+c)^2 = a^2$ will be equal if $c^2 = a^2(1+m^2)$	5	
Q # 4 (a) Resolve in to partial fractions $\frac{x^3}{(x-1)^3(x+1)}$	5	
(b) For what value of n, $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ is harmonic mean between a and b.	5	
Q # 5 (a) Find the values of n and r when ${}^{n}C_{r} = 35 and {}^{n}P_{r} = 210$	5	
(b) If x is very nearly equal to 1 then prove that $P x^{p} - q x^{q} = (p - q) x^{p+q}$	5	
Q # 6 (a) Show that $\sin^6(\theta) + \cos^6(\theta) = 1 - 3\sin^2\theta\cos^2\theta$	5	
(b) If α, β, γ are angles of a triangle ABC, then show that		
$\cot\frac{\alpha}{2} + \cot\frac{\beta}{2} + \cot\frac{\gamma}{2} = \cot\frac{\alpha}{2} \cdot \cot\frac{\beta}{2} \cdot \cot\frac{\gamma}{2}$	5	
Q #7 (a) The sides of a triangle are $x^2 + x + 1$, $2x + 1$, and $x^2 - 1$, prove that the greatest angle of the triangle is 120^0 .	5	
(b) Prove that $\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{3}{5} - \tan^{-1}\frac{8}{19} = \frac{\pi}{4}$	5	

Available online at http://www.MathCity.org

If you have a question; ask at http://forum.mathcity.org

If you found any error submit at http://www.MathCity.org/error

Composed by: Haji Asif ALI (<u>asif.mathematics@gmail.com</u>) LECTURER IN MATHEMATICS, SUPERIOR GROUP OF COLLEGES SHEIKHUPURA

Acknowledgments: We are really very thankful to Haji Asif ALI for providing this paper.