Merging man and maths

tiiv.ord

Q.1 Four possible answers to each statement are given below. Tick (\checkmark) the correct answer

- \succ (1) Trichotomy is property of:
 - (a) In-equality
 - (c) Division

(b) Equality(d) Subtraction

- > (2) The multiplicative inverse of $(\sqrt{2}, -\sqrt{5})$ is:
 - (a) $\left(\frac{\sqrt{2}}{\sqrt{7}}, \frac{\sqrt{5}}{\sqrt{7}}\right)$ (b) $\left(\frac{\sqrt{2}}{7}, \frac{-\sqrt{5}}{7}\right)$ (c) $\left(\frac{\sqrt{2}}{7}, \frac{\sqrt{5}}{7}\right)$ (d) $\left(\frac{-\sqrt{2}}{7}, \frac{-\sqrt{5}}{7}\right)$
- (3) If $A \cap B = \phi$ then n(A B) is equal to

(a)
$$n(A)$$
(b) $n(A \cap B)$ (c) $n(B)$ (d) $n(A \cup B)$

- → (4) The contra positive of the conditional $p \rightarrow q$ is :
- (a) $q \rightarrow p$ (b) $\sim q \rightarrow \sim p$ (c) $\sim p \rightarrow \sim q$ (b) $\sim q \rightarrow \sim p$ (d) $\sim q \rightarrow p$ (5) For matrix equation $\begin{bmatrix} 3 & 1 \\ -3 & 3y - 4 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ -3 & 2 \end{bmatrix}$ the value of y =____:

(6) The roots of the equation x² + px + q = 0, are additive inverse of one another, then:
(a) p = 1
(b) q = 1
(c) q = 0
(d) p = 0

▶ (7) The partial fraction of
 ¹/_{(x-1)²(x+1)} is of the form:

(a)
$$\frac{A}{x+1} + \frac{B}{(x-1)^2}$$

(b) $\frac{A}{x+1} + \frac{B}{x-1} + \frac{C}{(x+1)^2}$
(c) $\frac{A}{x-1} + \frac{Bx+C}{(x-1)^2}$
(d) $\frac{A}{x+1} + \frac{Bx+C}{x-1} + \frac{Dx+F}{(x-1)^2}$

▶ (8) If $a_{n-2} = 3n - 11$, then 5th term is:

(9) Let
$$\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$$
 be H.M between a and b, then:
(a) $n = 0$
(b) $n = 1$
(c) $n = \frac{1}{2}$
(d) $n = -1$

 \succ (10) 5 keys can be arranged in a circular ring in number of ways:

(a) 24	(b) 12
(c) 6	(d) 5

 \succ (11) A die is rolled once. The probability that the dots on the top are greater than four is :

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{3}$
(c) $\frac{1}{4}$ (d) $\frac{1}{6}$

Created on 07/11/2011 19:55:00

(12) The in-equality $3^n < n!$, holds the formula $n > 2$	for positive integral values of n if: (b) $n > 3$			
(a) $n > 2$ (c) $n > 4$	(d) $n > 6$			
(13) The numbers of terms in the expansion of $(2a+b)^{13}$ are:				
(a) 12	(b) 13			
(c) 14	(d) 15			
(14) The expansion of $(1+2x)^{-3}$ is	valid only if:			
(a) $ x < 2$	$(b) x < \frac{1}{2}$			
$(c) x < \frac{1}{3}$	$(d) x < \frac{1}{6}$			
▶ (15) 3 radian is equal to in degree:				

 (a) 169.78° (c) 170.889° 	(b) 171.888° (d) 171.5°
(16) $Sin\left(3\frac{\pi}{2}+\theta\right)=:$	

$$(16) \sin\left(3\frac{\pi}{2} + \theta\right) =:$$
(a) $\cos\theta$
(b) $-\cos\theta$
(c) $\sin\theta$
(c) $\sin\theta$
(c) $\sin\theta$

> (17) Domain of $\cot \theta = :$

(a)
$$-\infty < \theta < \infty, \ \theta \neq n\pi$$

(b) $-\infty < \theta < \infty, \ \theta \neq \left(\frac{2x+1}{2}\right)\pi$
(c) $-1 \le \theta \le 1$
(d) $\theta \ge 1 \text{ or } \theta \le -1$

➤ (18) Circum radius R (in usual notation):

(a)
$$\frac{\Delta}{abc}$$
 (b) $\frac{abc}{\Delta}$
(c) $\frac{\Delta}{s}$ (d) $\frac{a}{2\sin\alpha}$

> (19) The value of $\tan^{-1}\left(-\sqrt{3}\right)$ is :

(a)
$$\frac{\pi}{3}$$
 (b) $\frac{2\pi}{3}$
(c) $\frac{\pi}{6}$ (d) $\frac{5\pi}{6}$

(20) Solution of the equation $\cos x - 1 = 0$ in $[0, 2\pi]$ is:

(a)
$$\{0, \pi\}$$

(b) $\{0, 2\pi\}$
(c) $\{0, \frac{\pi}{2}\}$
(d) $\{\frac{\pi}{3}, \frac{3\pi}{2}\}$

Available online at <u>http://www.MathCity.org</u> For more news and updates visit <u>http://www.mathcity.org</u> If you have a question; ask at <u>http://forum.mathcity.org</u> If you found any error submit at <u>http://www.MathCity.org/error</u>

Composed by: Haji Asif ALI (<u>asif.mathematics@gmail.com</u>) LECTURER IN MATHEMATICS, SUPERIOR GROUP OF COLLEGES SHEIKHUPURA

Lakore Board - Arrzal 2010 group I

Mathematics Paper-I(Sub), Time Allowed: 2:30 Hours Max. Marks: 80, Available online @ <u>http://www.mathcity.org/fsc</u>

Section – I

	e any Twenty-Five (25) short answers. While writing answer write its part number carefully. h part carries two marks. 50
) # 2:	
(i)	Write the closure law of multiplication and commutative law of addition in the set of real numbers.
(ii)	Express the complex number $1 + i\sqrt{3}$ in polar form.
(iii)	Define inductive and deductive logic.
(iv)	From suitable properties of union and intersection deduce the result $A \cap (A \cup B) = A \cup (A \cap B)$
(v)	If G is a group under the operation $*$ and $a, b \in G$, find the solution of the equation $a * x =$
(vi)	For $A = \{1, 2, 3, 4\}$, find the relation in A if $A = \{(x, y) \mid y = x\}$
(vii)	Write any two properties of determinants.
(viii)	If A and B are square matrices of the same order then explain why in general
	$(A+B)^2 \neq A^2 + 2AB + B^2$
	$\begin{bmatrix} 1 \end{bmatrix}$
(ix)	If $A = \begin{vmatrix} 1 \\ 1+i \\ i \end{vmatrix}$, find $A(\overline{A})^t$
	i
(x)	State factor theorem.
(xi)	If α , β are roots of $x^2 - px - p - c = 0$, prove that $(1 + \alpha)(1 + \beta) = 1 - c$
(xii)	Solve the equation $x^{-2} - 10 = 3x^{-1}$
(xiii)	Find two consecutive numbers, whose product is 132.
(xiv)	Which term of A.P 5, 2, -1 is -85?
(xv)	The sum of three numbers in an A.P is 24 and their product is 440. find the numbers.
(xvi)	Sum to n terms, the series $.2 + .22 + .222 +$
(xvii)	If 5 is H.M between 2 and b, then find b
(xviii)	How many words can be formed using all letters of the word 'PLANE' no letter is to be repeated?
(xix)	Find the number of the diagonals of a 6 sided figure.
(xx)	A die is rolled. Find the probability that the top shows 3 or 4 dots.
(xxi)	If a sample space = $\{1, 2, 3,, 9\}$, Event A = $\{2, 4, 6, 8\}$ and Event B = $\{1, 3, 5\}$, then find $P(A \cup B)$
(xxii)	Prove by Mathematical Induction that for all positive integer n $5^n - 2^n$ is divisible by 3
(xxiii)	Find the fifth term in the expansion of $\left(\frac{3}{2}x - \frac{1}{3x}\right)^{11}$
(xxiv)	Calculate $(0.97)^3$ by means of binomial theorem.
(xxv)	Expand $(8-5x)^{\frac{-2}{3}}$ up to three terms.
(xxvi)	Using usual notations find 'r' when $l = 5cm$; $\vartheta = \frac{1}{2}$ radians.
(xxvii)	Verify that $\sin^2 \frac{\pi}{6} + \sin^2 \frac{\pi}{3} + \tan^2 \frac{\pi}{4} = 2$
(xxviii)	Without using tables, evaluate $\cot(-855^{\circ})$
(xxix)	Prove that $\frac{\sin 2\alpha}{1 + \cos 2\alpha} = \tan \alpha$
(xxx)	Express $\cos 12^{\circ} + \cos 48^{\circ}$ as product.

(xxxi) Write down the domain and range of $y = \cos x$ (xxxii) Find the period of $\sin \frac{x}{5}$ (xxxiii) Find the unknown angles and sides of the right angled triangle in which $\gamma = 90^{\circ}$; $\beta = 50^{\circ}10'$; c = 0.832(xxxiv) Find the greatest angle of the triangle if sides of the triangle are 16, 20, 33 (xxxv) Find the area of the triangle ABC if a = 48; $\alpha = 83^{\circ}42'$; $\gamma = 37^{\circ}12'$ (xxxvi) Solve $\cot \theta = \frac{1}{\sqrt{3}}$ *if* $\theta \in [0, 2\pi]$ (xxxvii) Solve the equation $\sin 2x = \cos x in[0, 2\pi]$

Section - II

Note:	Attempt	any	THREE	questions.
-------	---------	-----	-------	------------

 $\mathbf{Q \# 3} (\mathbf{a}) \text{ Find } A^{-1} \text{ if } A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 0 & -1 & 1 \end{bmatrix}$ (b) Show that roots of $(mx + c)^2 = 4ax$ will be equal if $c = \frac{a}{m}, m \neq 0$ $\mathbf{Q \# 4} (\mathbf{a}) \text{ Resolve } \frac{9x - 7}{(x^2 + 1)(x + 3)} \text{ in to partial fraction.}$

 $(x^2 + 1)(x + 3)$ (b) Show that the sum of *n* A.Ms. between *a* and *b* is equal to n times their A.M.

Q # 5 (a) Find the values of n and r when ${}^{n}C_{r} = 35 and {}^{n}P_{r} = 210$

(**b**) Find the coefficient of x^5 in the expansion of $\left(x^2 - \frac{3}{2x}\right)^{10}$

Q # 6 (a) If $\tan \theta = \frac{1}{\sqrt{7}}$ and terminal arm of the angle is not in the III rd quadrant find the values of $\frac{\cos ec^2 \theta - \sec^2 \theta}{\cos ec^2 \theta + \sec^2 \theta}$

(b) Reduce $\sin^4 \theta$ to an expression involving only function of multiple of θ raised to first power.

Q # 7 (a) Prove that using usual notation $r = s \tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$	5
(b) Prove that $\sin^{-1} \frac{77}{85} - \sin^{-1} \frac{3}{5} = \cos^{-1} \frac{15}{17}$	5

Available online at http://www.MathCity.org

For more news and updates visit http://www.mathcity.org

If you have a question; ask at http://forum.mathcity.org

If you found any error submit at http://www.MathCity.org/error

Composed by: Haji Asif ALI (<u>asif.mathematics@gmail.com</u>) LECTURER IN MATHEMATICS, SUPERIOR GROUP OF COLLEGES SHEIKHUPURA 5

5

5

5

5

5

5

5