MathCity.org Merging man and maths

Lakore Board - Arrzal 2009 Group II

Mathematics Paper-I (Obj) , Time Allowed: 30 Mins. Marks: 20, Available online @ http://www.mathcity.org/fsc

Objective		
).1 Four possible answers to each statement are given below. Tick (\checkmark) the correct		
answer.		
$(1)\sqrt{\frac{5}{16}}$ is:		
(a) Rational Number	(b)Irrational Number	
(c) Prime number	(d)Whole Number	
(2) $\{x \mid x \in E \text{ and } 4 < x < 6\}$ equals:		
(a) $\{4\}$	(b) $\{5\}$	
(c) $\{6\}$	$(\mathbf{d})f$	
(3) The multiplicative inverse of $-i$ is :		
(a) <i>i</i>	(b) $-i$	
(c) 1	(d) - 1	
(4) If A is a matrix of order $m \times n$ then the number of elements in each row of A is: (a) M (b) N		
$(\mathbf{c})\mathbf{m} + \mathbf{n}$	$(\mathbf{d})\mathbf{m} = \mathbf{n}$	
(5) If A is a square matrix of order 3×3 then $ kA $ equals :		
(a) $k A $	(b) $k^2 A $	
(c) $k^3 A $	$(\mathbf{d}) k^4 \big A \big $	
(6) If $4^x = 2$ then x equals:		
(a) 2	(b) $\frac{-1}{2}$	
(c) $\frac{1}{2}$	(d) 1	
(7) If <i>a</i> and <i>b</i> are the roots of $3x^2 - 2x + 4 = 0$ then the equation whose roots are		
2a, 2b 1S:		
(a) $2x^2 + 6x + 8 = 0$	(b) $4x^2 - 2x + 3 = 0$	
(c) $3x^2 - 4x + 16 = 0$	$(a) 3x^2 + 16x - 4 = 0$	
(8) An infinite arithmetic series consisting of	non-zero terms is:	
(a) Convergent	(b) Divergent	
(c) Neither Convergent nor		
Divergent	(u) Oscillatory	
(9) The product of n geometric means between usual meanings:	n a and b equals A, G, H, have their	
(a) A^n	(b) H^{n}	
(c) G^n	$(\mathbf{d}) nG$	
(10) ${}^{4}P_{3}$ equals:		
(a) ${}^{4}P_{1}$	(b) ${}^{4}P_{2}$	
(c) ${}^{4}P_{4}$	$(\mathbf{d})^{5}P_{4}$	

(11) P(E) equals: (a) $1 + P(E)$ (c) $2 - P(E)$	(b) $P(E) - 1$ (d) $1 - P(E)$	
 (12) If n is a positive integer then n² + n is d (a) 2 (c) 4 	ivisible by : (b) 3 (d) 5	
(13) If n is even positive integer, then $\binom{n}{1} + \binom{n}{2^{n-1}}$	$\binom{n}{3} + \binom{n}{5} + \underbrace{\qquad} + \binom{n}{n-1} \text{ equals:}$ $\binom{\mathbf{b}}{2^{n+1}} 2^{n+1}$	
(14) If n is a positive integer and $ x < 1$ then $1 + nx + \frac{n(n-1)}{2!}x^2 + ___+ is$: (a) Arithmetic Series (b) Geometric Series		
(c) Harmonic Series	(d) Binomial Series	
 (15) Which one is true : (a) 1 radian < 1⁰ (c) 1 radian = 1⁰ 	(b) 1 radian > 1° (d) 5 radian < 2°	
(16) $Sin\left(\frac{p}{2}-q\right)$ equals :		
(a) $Cos(q)$ (c) $-Cos(q)$	 (b) Sin(q) (d) Sin(q) 	
(17) 2 Sina Cosb equals:		
(a) $Sin(a + b) - Sin(a - b)$ (c) $Sin(a + b) + Sin(a - b)$	(b) $Cos(a+b)+(a-b)$ (d) $Cos(a+b)-(a-b)$	
(18) $2Sin12^{\circ}Sin46^{\circ}$ equals:		
(a) $Cos34^{\circ} + Cos58^{\circ}$ (c) $Sin34^{\circ} + Sin58^{\circ}$	(b) $Sin34^{\circ} - Sin58^{\circ}$ (d) $Cos34^{\circ} - Cos58^{\circ}$	
(19) With usual notations for triangle R equals :		
(a) $\frac{b}{2Sina}$	(b) $\frac{a}{2Sinb}$	
(c) $\frac{c}{2Sing}$	(d) $\frac{\Delta}{5}$	
(20) The solution set of $Sin x = 0$ is given by $n \in Z$:		
(a) $\{2np\}$	(b) $\{p + 2np\}$	
(c) $\{np\}$	(\mathbf{u}) { <i>snp</i> }	

This paper is available online at http://www.mathcity.org

Provided and Composed by: Haji Asif ALI (asif.mathematics@gmail.com)

Lakore Board - Arraal 2009 Group 11

hcity.org

Mathematics Paper-I (Sub) , Time Allowed: 2.30 Hours Max. Marks: 80, Available online @ http://www.mathcity.org/fsc

Section – I Note: All questions are to be attempted on answer book. **Q # 2:** Write any TWENTY-FIVE short answers of the following questions: State De-Moivre's theorem. (i) Prove that $z \overline{z} = |z|^2$, $\forall z \in C$ (ii) (iii) Is there any set which has no proper subset? If so, name that set. Define order of a set. (iv) State Commutative and associative property of binary operation. **(v)** Let $p \rightarrow p$ be a given conditional logic, then find its converse and inverse. (vi) Find the inverse of the matrix $\begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix}$ (vii) Define (i) Consistent system. (ii) Inconsistent system (viii) If $A^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$, show that $A^2 = I_2$ (ix) Show that $\begin{vmatrix} 2 & 3 & 0 \\ 3 & 9 & 6 \\ 2 & 15 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 0 \\ 1 & 1 & 2 \\ 2 & 5 & 1 \end{vmatrix}$ **(x)** Prove that each complex cube root of unity is square of the other. (xi) Use factor theorem, to prove that x-a is a factor of $x^n - a^n$. (xii) If a, b are the roots of $x^2 - px - p - c = 0$ prove that (1+a)(1+b) = 1-c(xiii) Show that the roots of $(p+q)x^2 - px - q = 0$ will be rational. (xiv) If 5 and 8 are the two A.M's between a and b, find a and b. (xv) Find two G.M's between 1 and 8. (xvi) If 5 is H.M, between 2 and b, find b. (xvii) Find n if ${}^{n}P_{2} = 30$ (xviii) How many diagonals can be formed by joining the vertices of polygon having 5 sides? (xix) (xx) A fair con is tossed three times. What is the probability that no head appears. A die is thrown, what is the probability the number is prime? (xxi) Show $\frac{5^{2n}-3^{2n}}{2}$ is an integer for n = 2, 3. (xxii) Find 3rd term in the expansion of $\left(2a - \frac{x}{a}\right)^{r}$ (xxiii) Expand up to 3^{rd} term $(1-x)^{-3}$ (xxiv) Evaluate $\sqrt{17}$ up to two decimals. (xxv) Convert $\left(22\frac{1}{2}\right)^0$ to radians using p = 3.1416(xxvi) Show $(\tan q + \cot q)^2 = \sec^2 q \cos ec^2 q$ (xxvii) If a, b, g are the angles of a triangle A B C. Prove that $Cos\left(\frac{a+b}{2}\right)Sin\left(\frac{g}{2}\right)$ (xxviii) Prove that $\tan(45^{\circ} + A) \tan(45^{\circ} - A) = 1$ (xxix) Prove that $\frac{Sin3x - Sinx}{Cosx - Cos3x} = Cot 2x$ (xxx)

(**xxxi**) Write domain and range of *Cos x*.

(**xxxii**) Find the period of $Sin\frac{x}{3}$

(**xxxiii**) If $a = 3, c = 5, and a = 120^{0}$, find "a" by using law of cosine.

(**xxxiv**) Find the area of the triangle ABC, when $a = 200, b = 120, g = 150^{\circ}$

(**xxxv**) For the triangle ABC, a = 13, b = 14, c = 15 find *R*

(xxxvi) Define trigonometric equation.

(**xxxvii**) Solve the equation $Cot^2 q = \frac{1}{2}$

Section - II

Note: Attempt any THREE questions.

Q # 3 (a) Show that $\begin{vmatrix} x & 1 & 1 & 1 \\ 1 & x & 1 & 1 \\ 1 & 1 & x & 1 \\ 1 & 1 & 1 & x \end{vmatrix} = (x+3)(x-1)^3$

(b) Show that $(1+w)(1+w^2)(1+w^4)(1+w^8)$ _____ $2n \ factors = 1$

Q # **4** (**a**) Resolve into partial fractions
$$\frac{9x-7}{(x^2+1)(x+3)}$$

(**b**) Find n so that $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ may be H.M between "a" and "b".

Q # 5 (a) Find the values of n and r when ${}^{n-1}C_{r-1} : {}^{n}C_{r} = {}^{n}C_{r+1} = 3:6:11$ (b) If x is so small that its square and higher powers can be neglected, then show that

$$\frac{(9+7x)^2 - (16+3x)^{\frac{1}{4}}}{4+5x} = \frac{1}{4} - \frac{17}{384}x$$

Q # 6 (a) Prove that $Sin^6q - Cos^6q = (Sin^2q - Cos^2q)(1 - Sin^2q Cos^2q)$

(b) If a, b, g are the angles of triangle, prove that $\tan a + \tan b + \tan g = \tan a \tan b \tan g$

Q # 7 (a) Show that $\frac{1}{2rR} = \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}$

(b) Prove that $Sin^{-1}A + Sin^{-1}B = Sin^{-1} \left(A\sqrt{1-B^2} + B\sqrt{1-A^2} \right)$

This Paper is available online at http://www.mathcity.org

If you have a question; ask at http://forum.mathcity.org

Provided and Composed by: Haji Asif ALI

(asif.mathematics@gmail.com)