Objective

Q. 1 Four possible answers to each statement are given below. Tick (,) the correct answer.
(1) If $z=x+i y \quad ; x, y \in R$ then $|z|$ equals:
(a) $x^{2}+y^{2}$
(b) $\sqrt{x^{2}+y^{2}}$
(c) $\sqrt{x^{2}-y^{2}}$
(d) $\sqrt{x+y}$
(2) If U is the universal set and $A \subseteq U$ then $A \cup A^{\prime}$ equals:
(a) A
(b) U
(c) $A \cap A^{\prime}$
(d) A^{\prime}
(3) Which of the following is unary operation:
(a) Addition
(b)Multiplication
(c) Square root
(d)Division
(4) If A and B are non-singular matrices then $(A B)^{-1}$ equals:
(a) $A^{-1} B^{-1}$
(b) $\frac{1}{A B}$
(c) $B^{-1} A^{-1}$
(d) $(B A)^{-1}$
(5) The trivial solution of homogeneous linear equations is
(a) $(0,0,0)$
(b) $(1,0,0)$
(c) $(0,1,0)$
(d) $(0,0,1)$
(6) Let $f(x)=x^{3}+4 x^{2}-2 x+5$ is divided by $x-1$ then remainder equals:
(a) 0
(b) 6
(c) 7
(d) 8
(7) The product of all fourth root of unity equals:
(a) 1
(b) 0
(c) -1
(d) 2
(8) The harmonic mean between a and b equals:
(a) $\frac{a+b}{2}$
(b) $\pm \sqrt{a b}$
(c) $\frac{a-b}{2}$
(d) $\frac{2 a b}{a+b}$
(9) No term of the G.P can equals:
(a) 1
(b) 2
(c) 0
(d) -1
(10) ${ }^{n} C_{r}+{ }^{n} C_{r-1}$ equals:
(a) ${ }^{n} C_{r}$
(b) ${ }^{n-1} C_{r}$
(c) ${ }^{n+1} C_{r+1}$
(d) ${ }^{n-1} C_{r-1}$
(11) For an event E which one is true:
(a) $0 \leq P(E) \leq 1$
(b) $1 \leq P(E) \leq 2$
(c) $0 \geq P(E) \leq 1$
(d) $-1 \leq P(E) \leq 1$
(12) If n is a positive integer then $3+6+9+$ \qquad $+3 n$ equals :
(a) $3 n(n+1)$
(b) $\frac{3 n(n+1)}{2}$
(c) $\frac{3 n(n+1)}{3}$
(d) $\frac{3 n(n+1)}{4}$
(13) The number of terms in the expansion of $(a+b)^{9}$ equals:
(a) 10
(b) 11
(c) 12
(d) 5
(14) The first three terms in the expansion of $(1-x)$ are :
(a) $1+3 x+6 x^{2}$
(b) $1-3 x+6 x^{2}$
(c) $1-3 x-3 x^{2}$
(d) $1-3 x-6 x^{2}$
(15) $\operatorname{Cosec}^{2} \theta-\operatorname{Cot}^{2} \theta$ equals :
(a) 1
(b) 0
(c) 2
(d) -1
(16) $\operatorname{Cos}\left(\frac{\pi}{2}+\theta\right)$ equals :
(a) $\operatorname{Cos}(\theta)$
(b) $-\operatorname{Sin}(\theta)$
(c) $\operatorname{Sin}(\theta)$
(d) $-\operatorname{Cos}(\theta)$
(17) $2 \operatorname{Sin} 12^{\circ} \operatorname{Sin} 46^{\circ}$ equals:
(a) $\operatorname{Cos} 34^{\circ}+\operatorname{Cos} 58^{\circ}$
(b) $\operatorname{Sin} 34^{0}-\operatorname{Sin} 58^{0}$
(c) $\operatorname{Sin} 34^{\circ}+\operatorname{Sin} 58^{\circ}$
(d) $\operatorname{Cos} 34^{\circ}-\operatorname{Cos} 58^{\circ}$
(18) If the $\triangle A B C$ is the right angled triangle then the law of cosines reduces to:
(a) Law of Sines
(b) Law of Cosines
(c) Law of Tangent
(d) Pythagoras theorem
(19) With usual notation $r: R: r_{1}$:
(a) $1: 2: 4$
(b) $1: 3: 2$
(c) $1: 2: 3$
(d) $2: 3: 4$
(20) The reference angle of $\operatorname{Tan} \theta=-1$ equals:
(a) $\frac{\pi}{4}$
(b) $-\frac{\pi}{4}$
(c) $-\pi$
(d) π

This Paper is available online at http:/ / www.mathcity.org

If you have a question or query you can ask at
http:/ / forum.mathcity.org

Provided and Composed by: Haji Asif ALI
(asif.mathematics@gmail.com)

Section - I

Note: All questions are to be attempted on answer book.
Q \# 2: Write any TWENTY-FIVE short answers of the following questions:
(i) Show that $\sqrt{3}$ is an irrational number.
(ii) Simplify $(i)^{101}$
(iii) Is there any set which has no proper set?
(iv) Define an on-to function.
(v) Show that addition is not a binary operation on $A=\{1,2,3, \ldots, 10\}$
(vi) Show that $p \rightarrow p \vee q$ is a tautology.
(vii) If $A=\left[\begin{array}{ll}1 & 2 \\ a & b\end{array}\right]$ and $A^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, find values of a and b .
(viii) If A is symmetric or skew symmetric, show that A^{2} is symmetric.
(ix) If $B=\left[\begin{array}{ccc}5 & -2 & 5 \\ 1 & -1 & 4 \\ -2 & 1 & -2\end{array}\right]$; find B_{21}
(x) If A is square matrix has two identical rows show that $|A|=0$
(xi) Prove that $(-1+\sqrt{-3})^{4}+(-1-\sqrt{-3})^{4}=-1$
(xii) Show that $x+a$ is a factor of $x^{n}+a^{n}$ where n is odd positive integer.
(xiii) Find the equation whose roots are 2 and 3 .
(xiv) Discuss the nature of roots of the quadratic equation $2 x^{2}+5 x-1=0$
(xv) Find the next two terms of the sequence $1,6,20,56$, \qquad
(xvi) If $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in G.P, show that common ratio is $\pm \sqrt{\frac{a}{c}}$
(xvii) Find H.M between -2 and -8 .
(xviii) Find n , when ${ }^{11} P_{n}=11 \times 10 \times 9$
(xix) Define circular Permutation.
(xx) A dice is rolled. Find the probability that top shows 3 or 4.
(xxi) There are 5 green and 3 red balls in a box, one ball is taken out, what is the probability that ball is green?
(xxii) State principal of mathematical induction.
(xxiii) If " x " is so small that its square and higher powers may be neglected, show that $\frac{1-x}{\sqrt{1-x}} \approx 1-\frac{3}{2} N$.
(xxiv) State binomial series.
(xxv) What are binomial co-efficient in the expansion of $(a+x)^{n}$.
(xxvi) Convert 21.56° to the $D^{0} M^{\prime} S^{\prime \prime}$ form.
(xxvii) Derive the fundamental identity $\operatorname{Sin}^{2} \theta+\operatorname{Cos}^{2} \theta=1$
(xxviii) Prove that $\operatorname{Cos}\left(270^{\circ}+\theta\right)=\operatorname{Sin} \theta$
(xxix) Show $\operatorname{Sin}\left(\theta+\frac{\pi}{6}\right)+\operatorname{Cos}\left(\theta+\frac{\pi}{3}\right)=\operatorname{Cos} \theta$
(xxx) Write $\operatorname{Cos}(7 \theta)-\operatorname{Cos} \theta$ as product.
(xxxi) Write the domain and range of the function $y=\operatorname{Cos}(x)$
(xxxii) Find the period of the function $\operatorname{Tan}\left(\frac{x}{2}\right)$
(xxxiii) State law of cosines in solution of triangles
(xxxiv) Find the area of Δ whose sides are $a=18, b=24, c=30$
(xxxv) For a $\triangle A B C a=13, b=14, c=15$ find circum radius R.
(xxxvi) Show that $\operatorname{Cos}^{-1}\left(\frac{12}{13}\right)=\operatorname{Sin}^{-1}\left(\frac{5}{13}\right)$
(xxxvii) Find the general solution of $\operatorname{Cos}(2 x)=\frac{\sqrt{3}}{2}$

Section - II

Note: Attempt any THREE questions.
Q \# 3 (a) Solve the system of linear equation by Cramer's rule.

$$
\begin{aligned}
& 2 x+2 y+z=3 \\
& 3 x-2 y-2 z=1 \\
& 5 x+y-3 z=2
\end{aligned}
$$

(b) For what value of m, the root of the equation $x^{2}-2(1+3 m) x+7(3+2 m)=0$ will be equal.

Q \# 4 (a) Resolve $\frac{4 x}{(x+1)^{2}(x-1)}$ into partial fractions.
(b) Sum the series $3+5-7+9+11-13+15+17-19+\ldots$ to $3 n$ terms.

Q \# 5 (a) Prove that ${ }^{n} P_{r}={ }^{n-1} P_{r+r}{ }^{n-1} P_{r-1}$
(b) If x is very nearly equal to 1 , then prove that $p x^{p}-q x^{q}=(p-q) x^{p+q}$

Q \# 6 (a) If $\operatorname{Cot} \theta=\frac{5}{2}$ and terminal arm of angle is in the $1^{\text {st }}$ quadrant, find the value of

$$
\frac{3 \operatorname{Sin} \theta+4 \operatorname{Cos} \theta}{\operatorname{Cos} \theta-\operatorname{Sin} \theta}
$$

(b) Prove that $\frac{\operatorname{Cos} 8^{0}-\operatorname{Sin} 8^{0}}{\operatorname{Cos} 8^{0}+\operatorname{Sin} 8^{0}}=\operatorname{Tan} 37^{\circ}$

Q \# 7 (a) Prove that $r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}=S^{2}$
(b) Prove that $\operatorname{Sin}^{-1} \frac{77}{85}-\operatorname{Sin}^{-1} \frac{3}{5}=\operatorname{Cos}^{-1} \frac{15}{17}$

This Paper is available online at http:/ / www.mathcity.org

If you found any error submit at http:/ / www.mathcity.org/ error If you have a question; ask at http:/ / forum.mathcity.org

Provided and Composed by: Haji Asif ALI

(asif.mathematics@gmail.com)
This paper was also send by:

Momin Ali

moeminali@hotmail.com
Fazaia Degree College, Peshawar.

