Lakore Board - Arrzal 2009 Group I

Mathematics Paper-I (Obj) , Time Allowed: 30 Mins. Marks: 20, Available online @ http://www.mathcity.org/fsc

MathCity.org Merging man and maths

Obje	ective		
Q.1 Four possible answers to each statemer answer.	nt are given below. Tick (Ü) the correct		
(1) If $z = x + iy$; $x, y \in R$ then $ z $ equa	ls:		
(a) $x^2 + y^2$	(b) $\sqrt{x^2 + y^2}$		
(c) $\sqrt{x^2 - y^2}$	(b) $\sqrt{x^2 + y^2}$ (d) $\sqrt{x + y}$		
(2) If U is the universal set and $A \subseteq U$ then $A \cup A'$ equals:			
(a) A	(b) U		
(c) $A \cap A'$	(d) A'		
(3) Which of the following is unary oper	ration:		
(a) Addition	(b)Multiplication		
(c) Square root	(d)Division		
(4) If <i>A</i> and <i>B</i> are non-singular matrices	then $(AB)^{-1}$ equals:		
(4) If <i>A</i> and <i>B</i> are non-singular matrices (a) $A^{-1}B^{-1}$			
	$(\mathbf{b})\frac{1}{AB}$		
(c) $B^{-1} A^{-1}$	$(\mathbf{d}) (BA)^{-1}$		
(5) The trivial solution of homogeneous	linear equations is		
(3) The utivity solution of homogeneous $(\mathbf{a})(0,0,0)$	(b) $(1,0,0)$		
$(\mathbf{c}) (0,0,0)$ $(\mathbf{c}) (0,1,0)$	$(\mathbf{d})(0,0,1)$		
(6) Let $f(x) = x^3 + 4x^2 - 2x + 5$ is divided by	by $x-1$ then remainder equals:		
(a) 0	(b) 6		
(c) 7	(d)8		
(7) The product of all fourth root of unit	y equals:		
(a) 1	(b)0		
(c) -1	(d)2		
(8) The harmonic mean between <i>a</i> and <i>b</i> equals:			
(a) $\frac{a+b}{2}$	(b) $\pm \sqrt{ab}$		
	2 ab		
(c) $\frac{a-b}{2}$	$(\mathbf{d})\frac{2ab}{a+b}$		
(9) No term of the G.P can equals:			
(a) 1	(b) 2		
(a) 1 (c) 0	(d)-1		
(10) n_{C} $+$ n_{C} $ \alpha_{m}$ α_{m}			
(10) ${}^{n}C_{r} + {}^{n}C_{r-1}$ equals:	(\mathbf{h}) $n=1$		
(a) ${}^{n}C_{r}$	(b) $^{n-1}C_r$		
(c) $^{n+1}C_{r+1}$	$(\mathbf{d})^{n-1}C_{r-1}$		
(11) For an event E which one is true:			

	$(\mathbf{a}) \ 0 \le P(E) \le 1$	(b) $1 \le P(E) \le 2$		
	$(\mathbf{c}) 0 \ge P(E) \le 1$	$(\mathbf{d}) -1 \le P(E) \le 1$		
(12)	(12) If n is a positive integer then $3 + 6 + 9 + ___+ 3n$ equals :			
	(a) $3n(n+1)$	(b) $\frac{3n(n+1)}{2}$		
	(c) $\frac{3n(n+1)}{3}$	(d) $\frac{3n(n+1)}{4}$		
	3	4		
(10)				
(13)	The number of terms in the expansion of			
	(a) 10	(b)11 (b)5		
	(c) 12	(d)5		
(1.4)	(14) The first three terms in the surger size of (1) and (1)			
(14)	The first three terms in the expansion of (1)	-		
	(a) $1+3x+6x^2$	(b) $1-3x+6x^2$ (d) $1-3x-6x^2$		
	(c) $1 - 3x - 3x^2$	$(\mathbf{u}) 1 - 3x - 6x^2$		
(15)	$C_{assoc}^2 a$ $C_{ass}^2 a$ equals:			
(15)	$Co \sec^2 q - Cot^2 q$ equals : (a) 1	(b) 0		
	(c) 2	(d) - 1		
	(0) 2			
(16)	(16) $Cos\left(\frac{p}{2}+q\right)$ equals :			
	(a) $Cos(q)$	$(\mathbf{b}) - Sin(q)$		
	(c) $Sin(q)$	$(\mathbf{d}) - Cos(q)$		
(17)	(17) $2Sin12^{\circ} Sin46^{\circ}$ equals:			
	(a) $Cos34^{\circ} + Cos58^{\circ}$	(b) $Sin34^{\circ} - Sin58^{\circ}$		
	(c) $Sin34^{\circ} + Sin58^{\circ}$	(d) $Cos34^{\circ} - Cos58^{\circ}$		
(18)	(18) If the $\triangle ABC$ is the right angled triangle then the law of cosines reduces to:			
()	(a) Law of Sines	(b) Law of Cosines		
	(c) Law of Tangent	(d) Pythagoras theorem		
(19)	(19) With usual notation $r: R: r_1$:			
	(a) 1:2:4	(b) 1:3:2		
	(c) 1:2:3	(d) 2:3:4		
(20)	(20) The reference angle of $Tanq = -1$ equals:			
	(a) $\frac{p}{4}$	$(\mathbf{b}) - \frac{p}{4}$		
	т	+		
	$(\mathbf{c}) - p$	$(\mathbf{d})p$		

This Paper is available online at http://www.mathcity.org

If you have a question or query you can ask at http://forum.mathcity.org

Provided and Composed by: Haji Asif ALI

(asif.mathematics@gmail.com)

Lakore Board - Arraal 2009 Group I

Mathematics Paper-I (Sub) , Time Allowed: 2.30 Hours Max. Marks: 80, Available online @ http://www.mathcity.org/fsc

Section – I

Note: All questions are to be attempted on answer book. Q # 2: Write any TWENTY-FIVE short answers of the following questions:

- (i) Show that $\sqrt{3}$ is an irrational number.
- (ii) Simplify $(i)^{101}$
- (iii) Is there any set which has no proper set?
- (iv) Define an on-to function.
- (v) Show that addition is not a binary operation on $A = \{1, 2, 3, ..., 10\}$
- (vi) Show that $p \rightarrow p \lor q$ is a tautology.
- (vii) If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, find values of a and b.
- (viii) If A is symmetric or skew symmetric, show that A^2 is symmetric.

(ix) If
$$B = \begin{bmatrix} 5 & -2 & 5 \\ 1 & -1 & 4 \\ -2 & 1 & -2 \end{bmatrix}$$
; find B_2

(x) If A is square matrix has two identical rows show that
$$|A| = 0$$

(xi) Prove that
$$(-1+\sqrt{-3})^4 + (-1-\sqrt{-3})^4 = -1$$

- (xii) Show that x+a is a factor of $x^n + a^n$ where n is odd positive integer.
- (xiii) Find the equation whose roots are 2 and 3.
- (xiv) Discuss the nature of roots of the quadratic equation $2x^2 + 5x 1 = 0$
- (xv) Find the next two terms of the sequence 1,6, 20, 56, ____, ____,
- (xvi) If $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in G.P, show that common ratio is $\pm \sqrt{\frac{a}{c}}$
- (xvii) Find H.M between -2 and -8.
- (xviii) Find n, when ${}^{11}P_n = 11 \times 10 \times 9$
 - (xix) Define circular Permutation.
 - (xx) A dice is rolled. Find the probability that top shows 3 or 4.
 - (xxi) There are 5 green and 3 red balls in a box, one ball is taken out, what is the probability that ball is green?
- (xxii) State principal of mathematical induction.
- (xxiii) If "x" is so small that its square and higher powers may be neglected, show that $\frac{1-x}{\sqrt{1-x}} \approx 1 - \frac{3}{2}N.$
- (xxiv) State binomial series.
- (xxv) What are binomial co-efficient in the expansion of $(a + x)^n$.
- (xxvi) Convert 21.56° to the $D^{\circ}M'S''$ form.
- (xxvii) Derive the fundamental identity $Sin^2q + Cos^2q = 1$
- (xxviii) Prove that $Cos(270^{\circ} + q) = Sinq$

(xxix) Show
$$Sin\left(q + \frac{p}{6}\right) + Cos\left(q + \frac{p}{3}\right) = Cosq$$

- (xxx) Write Cos(7q) Cosq as product.
- (xxxi) Write the domain and range of the function y = Cos(x)
- (xxxii) Find the period of the function $Tan\left(\frac{x}{2}\right)$

(xxxii) State law of cosines in solution of triangles (xxxiv) Find the area of Δ whose sides are a = 18, b = 24, c = 30(xxxv) For a $\Delta ABC a = 13, b = 14, c = 15$ find circum radius R. (xxxvi) Show that $Cos^{-1}\left(\frac{12}{13}\right) = Sin^{-1}\left(\frac{5}{13}\right)$

(xxxvii) Find the general solution of $Cos(2x) = \frac{\sqrt{3}}{2}$

Section - II

Note: Attempt any THREE questions.

Q # 3 (a) Solve the system of linear equation by Cramer's rule. 2x+2y+z=3 3x-2y-2z=1 5x+y-3z=2(b) For what value of m, the root of the equation $x^2 - 2(1+3m)x + 7(3+2m) = 0$ will be equal. Q # 4 (a) Resolve $\frac{4x}{(x+1)^2(x-1)}$ into partial fractions. (b) Sum the series 3+5-7+9+11-13+15+17-19+... to 3n terms. Q # 5 (a) Prove that ${}^{n}P_{r} = {}^{n-1}P_{r+r} \cdot {}^{n-1}P_{r-1}$

(b) If x is very nearly equal to 1, then prove that $px^{p} - qx^{q} = (p - q)x^{p+q}$

Q # 6 (a) If $Cotq = \frac{5}{2}$ and terminal arm of angle is in the 1st quadrant, find the value of $\frac{3Sinq + 4Cosq}{Cosq - Sinq}$

(**b**) Prove that $\frac{Cos 8^{\circ} - Sin 8^{\circ}}{Cos 8^{\circ} + Sin 8^{\circ}} = Tan 37^{\circ}$

Q # 7 (a) Prove that $r_1r_2 + r_2r_3 + r_3r_1 = S^2$

(b) Prove that $Sin^{-1}\frac{77}{85} - Sin^{-1}\frac{3}{5} = Cos^{-1}\frac{15}{17}$

This Paper is available online at http://www.mathcity.org

If you found any error submit at http://www.mathcity.org/error If you have a question; ask at http://forum.mathcity.org

Provided and Composed by: Haji Asif ALI

(asif.mathematics@gmail.com)

This paper was also send by:

Momin Ali moeminali@hotmail.com Fazaia Degree College, Peshawar.