Lakore Board - Arraal 2008 Group II Mathematics Paper-I(Obj), Time Allowed: 30 Mints Max. Marks: 20, Available online @ http://www.mathcity.org/fsc

Q.1 Four possible answers to each statement are given below. Tick (\checkmark) the correct answer

(i) $\sqrt{3}$ is

MathCity.org

Merging man and maths

- (a) Odd no. (b) Complex no (c) Rational (d) Irrational number (ii) Inverse of $p \rightarrow q$ is: (a) ~ $p \rightarrow q$ (b) $p \rightarrow \sim q$ (c) $\sim p \rightarrow q$ (d) ~ $q \rightarrow p$ (iii) [0] is a: (a) Square matrix (b) Unit matrix (c) Rectangular matrix (d) Scalar matrix (iv) For a square matrix |A| equals: (c) $-|A^t|$ (b) $|A^t|$ (a) A^t (d) $-A^{t}$ (v) If $4^x = 2$ then x equals: (a) $-\frac{1}{2}$ (d) $\frac{1}{2}$ (b) 2 (c) -2 (vi) If α , β are the roots of $ax^2 + bx + c = 0$, $a \neq 0$ then $\alpha\beta$ is equal to: (b) $\frac{b}{a}$ (a) $-\frac{a}{b}$ (d) $-\frac{b}{a}$ (c) $\frac{c}{a}$ (**vii**) $\frac{x^4}{(1-x^4)}$ is
- (a) Proper fraction (b) Improper fraction (c) Decimal (d) Equation (viii) If nth term of A.P is 3n-1, then first term equals to: (b) 4 (a) -1 (c) 2 (d) -4 (ix) The Sequence 3, 6, 12, ... is: (b) G.P (a) A.P (c) H.P (d) Finite (x) 1+2+3+4+...+n equals (b) $\frac{n(n+1)}{2}$ (a) $\frac{n(n-1)}{2}$ (c) $\frac{(n+1)}{2}$ (d) $\frac{n(n+1)^2}{2}$

(xi) With usual notation ${}^{n}C_{r}$ eq	juals:		
(a) ${}^{n}C_{r-n}$	(b) ${}^{r}C_{n}$	(c) ${}^{n}C_{n-r}$	(d) $^{n-r}C_n$
(xii) If $n(S) = 20$, $n(B) = 2$ then	n P(B) equals:		
(a) 10	(b) $\frac{1}{10}$	(c) $-\frac{1}{10}$	(d) 1
(xiii) The number of terms in th	the expansion of $(a+2h)$	5	
(a) 4	(b) 5	(c) 6	(d) 7
(xiv) 1^0 equals			
(a) $\frac{\pi}{180}$ radian	(b) $\frac{180}{\pi}$	(c) $\frac{\pi}{90}$	(d) $\frac{\pi}{360}$
(xv) $Sin2\theta$ equals			
(a) $Sin\theta Cos\theta$	(b) $2Sin\theta Cos\theta$	(c) $1-2Sin^2\theta$	(d) $2Cos^2\theta - 1$
(xvi) Period of sine function is:			
(a) π	(b) <i>-</i> π	(c) 2 <i>π</i>	(d) 0
(xvii) In a right triangle no ang	le is greater than:		
(a) 90°	(b) 80°	(c) 60°	(d) 45°
(xviii) With usual notation cos	$\frac{\partial}{2}$ equals:		
(a) $\sqrt{\frac{s(s-b)}{bc}}$	(b) $\sqrt{\frac{s(s-c)}{bc}}$	(c) $\sqrt{\frac{s(s-a)}{bc}}$	(d) $\sqrt{\frac{s(s-a)}{ac}}$
(xix) $Sin(sin^{-1}(\frac{1}{2}))$ equals:			
(a) $\frac{1}{2}$	(b) $-\frac{1}{2}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{6}$
(xx) Reference angle lies in qua	adrant:		
(a) I (c) III		(b) II (d) IV	

Available online at <u>http://www.MathCity.org</u> For more news and updates visit <u>http://www.mathcity.org</u> If you have a question; ask at <u>http://forum.mathcity.org</u> If you found any error submit at <u>http://www.MathCity.org/error</u>

Composed by: Haji Asif ALI (<u>asif.mathematics@gmail.com</u>) LECTURER IN MATHEMATICS, SUPERIOR GROUP OF COLLEGES SHEIKHUPURA

Lakore Board - Arrzal 2008 Group 11

Mathematics Paper-I(Sub), Time Allowed: 2:30 Hours Max. Marks: 80, Available online @ <u>http://www.mathcity.org/fsc</u>

Section – I

Note: Write any Twenty-Five (25) short answers. While writing answer write its part number carefully. Each part carries two marks. 50

(i) Prove that
$$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$$
, where a, b, c are real numbers.

(ii) Simplify i^{101}

MathCity.org

Merging man and maths

- (iii) Define a function also give one example of a function.
- (iv) Write the converse and inverse of $q \rightarrow p$
- (v) Define a group.
- (vi) If A is a square matrix of order 3, show that $A + A^t$ symmetric.

(vii) Without expanding show that
$$\begin{vmatrix} 2 & 3 & 0 \\ 3 & 9 & 6 \\ 2 & 15 & 1 \end{vmatrix} = 9 \begin{vmatrix} 2 & 1 & 0 \\ 1 & 1 & 2 \\ 2 & 5 & 1 \end{vmatrix}$$

(viii) If matrices A and B are symmetric and AB = BA, Show that AB is symmetric.

(ix) Convert the equation
$$\frac{x}{x+1} + \frac{x+1}{x} = \frac{5}{2}$$
 to a quadratic equation.

(x) Show that
$$\left(\frac{-1-\sqrt{3}i}{2}\right) = \frac{-1+\sqrt{3}i}{2}$$

- (xi) Show that x-a is a factor of $x^n a^n$, n is a positive integer.
- (xii) Discuss the nature of roots of the equation $9x^2 12x + 4 = 0$

(xiii) Resolve
$$\frac{7x+25}{(x+3)(x+4)}$$
 into partial fractions

- (xiv) Which term of the A.P.5, 2, -1, ... is -85?
- (**xv**) Define an identity.
- (xvi) Find the geometric mean between a and b, find a and b when a = -3 and b = -9
- (xvii) If 5,8 are two A.M.s between a and b ,find *a* and *b*
- (**xviii**) Find nth term of the series $1 \times 1 + 2 \times 4 + 3 \times 7 + ...$
- (xix) Find the value of n, when ${}^{n}P_{2} = 30$
- (xx) How many diagonals can be formed by joining the vertices of the polygon having 5 sides?
- (xxi) If a sample space = $\{1, 2, 3, \dots, 9\}$ event $A = \{2, 4, 6, 8\}$ and $B = \{1, 3, 5\}$ find $P(A \cup B)$
- (xxii) How many necklaces can be made from 6 beads of different colours?

(**xxiii**) Prove that
$$1+5+9+...(4n-3) = n(2n-1)$$
 for $n=1,2$

(**xxiv**) Use binomial theorem to expand $\left[3a - \frac{x}{3a}\right]^4$

(xxv) Neglecting square and higher powers, show that
$$\frac{\sqrt{1+2x}}{\sqrt{1-x}} = 1 + \frac{3x}{2}$$

(xxvi) Show that the area of a circular region of radius r is
$$\frac{1}{2}r^2\theta$$
 where θ is central angle of the sector.

(**xxvii**) Show that
$$2\sin 45^{\circ} - \frac{1}{2}\cos ec 45^{\circ} = \frac{3}{\sqrt{2}}$$

(**xxviii**) Without using calculator find the value of $Sin75^{\circ}$

(xxix)	If $Cos\alpha = \frac{3}{5}$ find value of $Cos\alpha$, $0 < \alpha < \frac{7}{5}$	τ 2
--------	---	--------

(xxx) Express $\sin 5\theta + \sin 3\theta$ as product

(**xxxi**) Find the period of $Sin(\frac{x}{5})$

(xxxii) A ladder leaning against a vertical wall makes an angle of 24° with the wall. Its foot is 5m from the wall. Find its length.

- (**xxxiii**) Prove $\cos \frac{\alpha}{2} = \sqrt{\frac{s(s-a)}{bc}}$ in any triangle ABC
- (**xxxiv**) Prove $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$ in any triangle ABC
- (**xxxv**) Prove $r = (s-b)\tan(\frac{\beta}{2})$

(**xxxvi**) Find the value of $\tan(\cos^{-1}\frac{\sqrt{3}}{2})$

(**xxxvii**) Find the solution of
$$x = -\frac{\sqrt{3}}{2}$$
 which lies in $[0, 2\pi]$

Section – II

Note: Attempt any THREE questions.

Q # 3 (a) Show that the $\{1, \omega, \omega^2\}$ in an abelian group w.r.t. ordinary multiplication.	
(b) Solve the system of linear equation by Cramer's rule:	
2x + 2y + z = 3	
3x - 2y - 2z = 1	
5x + y - 3z = 2	

Q # **4** (a) Use synthetic division to find the values of p and q if x+1 and x-2 are the fraction of the polynomial $x^3 + px^2 + qx + 6$.

(b) Find the 12th term of the sequence 1+i, 2i, -2+2i -----

Q # 5 (a) How many signals can be given by 6 flags of different colours when any number of flags can be used at a time?
(b) Using mathematical induction, prove that

 $1 \times 3 + 2 \times 5 + 3 \times 7 + \dots + n \times (2n+1) = \frac{n(n+1)(4n+5)}{6}$

 $\mathbf{Q \# 6} \text{ (a) If } Cot\theta = \frac{5}{2} \text{ and the terminal arm of the angle is in 1 quard.find the values of} 5$ $\frac{3\sin\theta + 4\cos\theta}{\cos\theta - \sin\theta}$ (b) Prove that $\sin 10^{\circ} . \sin 30^{\circ} . \sin 50^{\circ} . \sin 70^{\circ} \frac{1}{16}$ 5 $\mathbf{Q \# 7} \text{ (a) Prove that } r_1 + r_2 + r_3 - r = 4R \text{ (With usual notations)} 5$ (b) Prove that $\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{3}{5} + \tan^{-1} \frac{8}{19} = \frac{\pi}{4}$ 5

Available online at <u>http://www.MathCity.org</u>

Composed by: Haji Asif ALI (<u>asif.mathematics@gmail.com</u>) LECTURER IN MATHEMATICS, SUPERIOR GROUP OF COLLEGES SHEIKHUPURA 5

5