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Abstract

A function is convex if the line segment joining two points on the graph lies above

the graph. These functions have important properties and applications in math-

ematics. Specially, they are very important in optimization and minimization

problems. Also these functions are used in statistic and functional analysis. A

positive function f is logarithmic convex if log f is convex. It would seem that

log convex functions unremarkable because they are so simply related to convex

functions. But they have some surprising properties.

In the first chapter we generalize results for logarithmic convexity of Giaccardi’s

difference for classes of functions with the help of divided difference.
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Chapter 1

Introduction

In this chapter we will give the notions and definitions of monotone function,

convex function, some important inequalities and properties which will frequently

use in the rest of chapters to proof our results.

1.1 Monotone function

• J. E. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings

and Statistical Applications, Academic Press, New York, 1992.

The monotone function are such function which maintain the order of inequal-

ities. It is often defined on the interval I, where I is also an order set (see [?, ?]).

Definition 1.1.1. A function f : I → R is said to be nondecreasing (respectively

nonincreasing) if x1 < x2 implies f(x1) ≤ f(x2) (respectively f(x1) ≥ f(x2)) for

x1, x2 ∈ I. We say that f is increasing (respectively decreasing) if x1 < x2 implies

f(x1) < f(x2) (respectively f(x1) > f(x2)) for all x1, x2 ∈ I.

Example 1.1.2. The function f : [0,∞) → R given by f(x) = x2 is increasing on

[0,∞), while f : (−∞, 0] → R given by f(x) = x2 is decreasing on (−∞, 0]

Definition 1.1.3. A function is said to be monotone on an interval I, if it is either

increasing or decreasing.

The following criteria is often used to investigate the monotonicity of function

(see [?, ?]).
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Proposition 1.1.4. Suppose that a function f is continuous on the closed interval

[a, b] and has a derivative at each point of the open interval (a, b).

1. If f ′(x) is positive for all x in (a, b), then f is increasing function on [a, b].

2. If f ′(x) is negative for all x in (a, b), then f is decreasing function on [a, b].

1.2 Convex function

Figure 1.1:

f(x1)− f(x2)

x1 − x2

≤ f(x2)− f(x3)

x2 − x3

(1.1)

Convex geometry as a new field of mathematics takes it origin from the publication

of the book by Minkowski [?]. This book influenced the formation of a new field

in mathematics, viz., functional analysis [?]

Definition 1.2.1. A function f : I → R is said to be convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) (1.2)

for all x, y ∈ I and t ∈ [0, 1].

A function f is said to strictly convex on I if (1.2) is strict for x ̸= y.

If f is convex function on I, then for x1 < x2 < x3 the inequality

f(x1)− f(x2)

x1 − x2

≤ f(x2)− f(x3)

x2 − x3

(1.3)

holds.
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Lemma 1.2.2. This is an example of lemma x+ 2y and this is good.

Proposition 1.2.3. This is an example of proposition x+ 2y and this is good.

Theorem 1.2.4. This is an example of thorem x+2y and 2x−y and this is good.

Corollary 1.2.5. This is an example of thorem x+2y and 2x−y and this is good.

(1) This is first

(2) This is second

(3) This is third

Here is one more.

A- This is first

B- This is second

C- This is third
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Chapter 2

Title of 2nd chap

good

good

very good

2.1 Title 1st Section

x2 (2.1)

y2 (2.2)

2.2 Title of 2nd Section

z2 (2.3)

[1] [2] [3] [4]
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