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Abstract

A function is convex if the line segment joining two points on the graph lies above

the graph. These functions have important properties and applications in math-

ematics. Specially, they are very important in optimization and minimization

problems. Also these functions are used in statistic and functional analysis. A

positive function f is logarithmic convex if log f is convex. It would seem that

log convex functions unremarkable because they are so simply related to convex

functions. But they have some surprising properties.

In the first chapter we generalize results for logarithmic convexity of Giaccardi’s

difference for classes of functions with the help of divided difference.
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Notations

The notation and concepts used in this monograph are more or less specified. The

reader is assumed to be familiar with the elements of Mathematical Analysis, as

well as General Algebra, Matrix Theory and Topology, and since the standard

notation and concepts were used, it was believed unnecessary to define all of them.

We give some of the Notation used in the Monograph.

Z the set of integer

N the set of positive integer

Q the set of rational numbers

R the set of real numbers
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Chapter 1

Introduction

1.1 Monotone functions

Let x, y, z ∈ R

Definition 1.1.1. If a function f is either increasing or decreasing on I, then f

is called a monotone function on I.

In practice we often use the following criterion for monotonicity:

Theorem 1.1.2. If f is a differentiable function on I, it is monotone on I if and

only if the sign of f ′ remains the same throughout I. In particular, if f ′(x) > 0,

except maybe on a set of points of I which does not contain any interval of I, then

and only then f is an strictly increasing function; if f ′(x) ≥ 0, then f is increasing;

if f ′(x) < 0 on I, then f is a strictly decreasing function and for f ′(x) ≤ 0, is

increasing.

∞∂ ±
∑

dfd
√
b2 − 4ac (1.1)

∞∂ ±
∑

(1.2)

From equation 1.2, we have One can note that if f and g are monotone in same

direction then f ◦ g is increasing and if f and g are monotone in opposite direction

then f ◦ g is decreasing in their respective domains.
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1.2 Convex functions

The fundamental work of Jensen in the years 1905, 1906 is the starting point of

the systematic study of convex functions. Even before Jensen, the literature shows

results which refer to convex functions.

In fact the roots of such functions can be found in the work of Hölder in 1889

and J. Hadamard in 1893, although these roots were not explicitly specified in

their works. The general theory of convex functions is the origin of powerful tools

for the study of problems in analysis. Inequalities involving convex functions are

the most efficient tools in the development of several branches of mathematics and

has been given considerable attention in the literature.
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Chapter 2

Inequalities of Hadamard’s Type

for Lipschitzian Mappings.

In this chapter, we give some inequalities of Hadamard’s type for M-Lipschitzian

function. Some application which are connected with log functions, exponential

functions etc., for two positive numbers are also given. It is given in [3].

Definition 2.0.1. A function f : I → R defined on a closed interval I = [a, b] is

said to satisfy a Lipschitz condition if for any constant M and for points x, y ∈ [a, b]

|f(x)− f(y)| ≤M |x− y| .

2.1 Hadamard’s type inequalities

We are a good a student.

We are a good

a student.

We are a good

a student.

We are a good

a student.

We will start with the following theorem containing two inequalities of Hadamard’s
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type for M -Lipschitzian mapping. We need the following Lemma to prove the the-

orem.

Lemma 2.1.1. ∫ 1

0

|2t− 1| dt =
1

2
. (2.1)

Proof. As

|2t− 1| =

+(2t− 1) if t ≥ 1
2

−(2t− 1) if t < 1
2

so ∫ 1

0
|2t− 1| dt =

∫ 1
2

0
(−(2t− 1))dt+

∫ 1
1
2
(2t− 1)dt.

Now as∫ 1
2

0
(−(2t− 1))dt = 1

4
and

∫ 1
1
2
(2t− 1)dt = 1

4
.

Therefore∫ 1

0
|2t− 1| dt = 1

4
+ 1

4
= 1

2
.

Theorem 2.1.2. Let f : I ⊆ R → R be an M-Lipschitzian mapping on I and

a, b ∈ I with a < b. Then we have the inequalities∣∣∣∣f (a+ b

2

)
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣ ≤ M

4
(b− a) (2.2)

and ∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣ ≤ M

3
(b− a). (2.3)

Proof. Let t ∈ [0, 1]. Then we have, for all a, b ∈ I,

|tf(a) + (1− t)f(b)− f(ta+ (1− t)b)|

= |t(f(a)− f(ta+ (1− t)b)) + (1− t)(f(b)− f(ta+ (1− t)b))|

≤ t |f(a)− f(ta+ (1− t)b)|+ (1− t) |f(b)− f(ta+ (1− t)b)|

≤ tM |a− (ta+ (1− t)b)|+ (1− t)M |b− (ta+ (1− t)b)|

= 2t(1− t)M |b− a| .

(2.4)

If we choose

t =
1

2
,

we have ∣∣∣∣f(a) + f(b)

2
− f

(
a+ b

2

)∣∣∣∣ ≤ M

2
|b− a| . (2.5)

4



If we put ta+(1−t)b instead of a and (1−t)a+tb instead of b in (2.5) respectively,

then we have∣∣∣∣f(ta+ (1− t)b) + f((1− t)a+ tb)

2
− f

(
a+ b

2

)∣∣∣∣ ≤ M |2t− 1|
2

|b− a| . (2.6)

for all t ∈ [0, 1].

If we integrate the inequality (2.6) on [0,1], we have

∣∣∣∣12
[∫ 1

0

f(ta+ (1− t)b)dt+

∫ 1

0

f((1− t)a+ tb)dt

]
− f

(
a+ b

2

)∣∣∣∣ ≤ M |b− a|
2

∫ 1

0

|2t− 1| dt.

(2.7)

Also we have

∫ 1

0

f(ta+ (1− t)b)dt =

∫ 1

0

f((1− t)a+ tb)dt =
1

b− a

∫ b

a

f(x)dx. (2.8)

Now using equation (2.8) and from Lemma 2.1.1 in equation (2.7), we have

∣∣∣∣ 1

b− a

∫ b

a

f(x)dx− f
(
a+ b

2

)∣∣∣∣ ≤ M |b− a|
4

(2.9)

∣∣∣∣f (a+ b

2

)
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣ ≤ M |b− a|
4

, (2.10)

which is required inequality.

From equation (2.4), we have

|tf(a) + (1− t)f(b)− f(ta+ (1− t)b)| ≤ 2t(1− t)M(b− a)

for all t ∈ [0, 1] and a, b ∈ I with a < b. Integrating on [0,1], we have

∣∣∣∣f(a)

∫ 1

0

tdt+ f(b)

∫ 1

0

(1− t)dt−
∫ 1

0

f(ta+ (1− t)b)dt
∣∣∣∣ ≤ 2M(b−a)

∫ 1

0

t(1−t)dt

Hence, from ∫ 1

0

tdt =

∫ 1

0

(1− t)dt =
1

2

and

∫ 1

0

f (ta+ (1− t)b) dt =
1

b− a

∫ b

a

f(x)dx,
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we have

∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ 1

0

f(x)dt

∣∣∣∣ ≤ M(b− a)

3
,

which is our required equation.

From [?] and [?].

From [1] and [2]. ∂z
∂x

n∑
i=1

1

n
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