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Abstract

A function is convex if the line segment joining two points on the graph lies above the
graph. These functions have important properties and applications in mathematics.
Specially, they are very important in optimization and minimization problems. Also
these functions are used in statistic and functional analysis. A positive function f
is logarithmic convex if log f is convex. It would seem that log convex functions
unremarkable because they are so simply related to convex functions. But they have
some surprising properties.

we consider the difference due to the difference in Giaccardi’s inequality, and prove
the logarithmic convexity and Lyapunov type inequality of these functionals for differ-
ent classes of functions.

In the first chapter, we organize some basic notions and results.

In the second chapter we consider the difference of Giaccardi’s type inequality for
convex functions and prove the logarithmic convexity and Lyapunov type inequality of
this functional by considering the class of convex functions

In the third chapter we consider the difference of Giaccardi’s type inequality for star-
shaped functions and prove the logarithmic convexity and Lyapunov type inequality
of this functional by considering the class of star-shaped functions

In the fourth chapter we generalize results for logarithmic convexity of Giaccardi’s

difference for classes of functions with the help of divided difference.
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Notations

The notation and concepts used in this monograph are more or less specified. The
reader is assumed to be familiar with the elements of Mathematical Analysis, as well
as General Algebra, Matrix Theory and Topology, and since the standard notation and
concepts were used, it was believed unnecessary to define all of them.

We give some of the Notation used in the Monograph.

7 the set of integer

N the set of positive integer
Q the set of rational numbers
R

the set of real numbers

X



Chapter 1
Introduction

(i) First item
(ii) Second item
(iii) Third item
(iv) Fourth item

|
lim vb? — 4acL

z—00 rl(n—r)!
: /12 n! n!  —btvbi—4dac /32 _
zh—>ngo b 4acr!(n—r)! rl(n—r)! 2a b dac

In this chapter we will give the notions and definitions of monotone function, convex

function, some important inequalities and properties which will frequently use in the

rest of chapters to proof our results.

1.1 Monotone function

The monotone function are such function which maintain the order of inequalities. It

is often defined on the interval I, where I is also an order set (see [10, 24]).

Definition 1.1.1. A function f : I — R is said to be nondecreasing (respectively
nonincreasing) if x; < zo implies f(x1) < f(x2) (respectively f(zy) > f(xq)) for

x1, xo € I. We say that f is increasing (respectively decreasing) if x1 < zo implies

f(z1) < f(xe) (respectively f(z1) > f(z2)) for all xy, x4 € I.

Example 1.1.2. The function f : [0,00) — R given by f(z) = z? is increasing on

0, 00), while f: (—00,0] — R given by f(z) = z? is decreasing on (—o0, 0]

1



Definition 1.1.3. A function is said to be monotone on an interval I, if it is either

increasing or decreasing.

The following criteria is often used to investigate the monotonicity of function (see

22, 23)).

Proposition 1.1.4. Suppose that a function f is continuous on the closed interval

la,b] and has a derivative at each point of the open interval (a,b).
1. If f'(x) is positive for all  in (a,b), then f is increasing function on [a,b).

2. If f'(x) is negative for all x in (a,b), then f is decreasing function on |a,b].

1.2 Convex function

Convex geometry as a new field of mathematics takes it origin from the publication
of the book by Minkowski [19]. This book influenced the formation of a new field
in mathematics, viz., functional analysis [12]. Convex function are closely related to
the theory of inequalities, and many important inequalities are the consequence of
the application of convex function. For example, the important Arithmetic mean-
Geometric mean inequality [8] or the general inequality between between means of r
and s, such as Holder’s [21] and Minkowski’s inequality, are all consequence of Jensen
inequality [6] for convex function [19]. In [15] the following definition of convex function

is given.

Definition 1.2.1. A function f : I — R is said to be convex if

fltz+ (1 —t)y) <if(x)+ (1 =) f(y) (1.2.1)

for all z,y € I and t € [0, 1].
A function f is said to strictly convex on I if (1.2.1) is strict for z # y.

If f is convex function on I, then for x; < xo < z3 the inequality

f(xy) — f(x2) < f(xa) — f(x3)

Ty — T2 To — T3

(1.2.2)

holds.

Lemma 1.2.2. This is an example of lemma x + 2y and this is good.



Proposition 1.2.3. This is an example of proposition x + 2y and this is good.
Theorem 1.2.4. This is an ezample of thorem x + 2y and 2x — y and this is good.
Corollary 1.2.5. This is an example of thorem x + 2y and 2x — y and this is good.
(1) This is first

(2) This is second

(3) This is third

Here is one more.

A- This is first

B- This is second

C- This is third



Chapter 2

This is a 2nd chapter

Here we can write.

2.1 Introduction

Let I =[0,a) C R be an interval, (zy,...,z,) € I" and (p1,...,p,) be a non-negative
n-tuple such that

Zpixinj for j=1,...,n and Zpi:cief. (2.1.1)
i=1 i=1

If f:I — R be a convex function, then

f(zpzxz) < szf(ﬂfl) + (1 — sz> f(0). (2.1.2)

The above inequality is known as Petrovi¢ inequality [20] (see also [19, p. 154]). There
is a lot of literature available on Petrovi¢ inequality, for example, (see [19, 9]).
The generalization of Petrovi¢ inequality is given by F. Giaccardi [19]. It is given

in the following theorem.

Lemma 2.1.1. Let f : I — R, where I C R is an interval , (p1,...,pn) be a non-
negative n-tuple, (1, ..., T,) be n-tuple in I" and xo € I such that T, := ,_, pxti € I
and

(x; —x0) (B — ;) >0 for i=1,...,n, &, # x. (2.1.3)

If f is a convex function, then
> ok (k) < Af (0) + B (x0), (2.1.4)
k=1

4



holds, where

s =

Tn — Zo Tn — Zo

A= b= P = w0) o Qg Pe— 1) @0 (2.1.5)

2.1.1 This is a subsection

If f is a convex function, then

> pef (wr) < Af (E,) + Bf (20), (2.1.6)
k=1
holds, where . . .
Ty, — Xo ITn — o

Notation 2.1.2. This is notation and I like it N

2.2 1st section

Gdgasdfg adsklfjasdlkf jlkasdjf lkja sdlfjlkasdj flkasd

2.2.1 Sub section

adfasdfsad fa fsdaf sdafasdfds fds

2.2.1.1 Sub sub section

adsfasdf adf asdf adsf df daf asdfs



Chapter 3

Properties of Giaccardi’s difference

for star-shaped function

3.1 Introduction

In this chapter we consider the Giaccardi’s type inequality under conditions, which

are weaker than the conditions given in the previous chapter. In [18], the following

Giaccardi’s type inequality is given.

Theorem 3.1.1. Let f : I — R, where I is an interval. Let (p1,...,pn) be a positive

n-tuple and (z1,...,x,) be a real n-tuple, xo, %, = > o ,px € I such that x; # x,

(i=1,..,n) and

(z; — o) (Zn —x;) >0 for i=1,...,n, &, # xo.

If L9 s increasing function for x € 1 \ {x0}, then

r—xQ

> pef () < Af (i)

holds, where

A — 2= Pk — 20).

Tn — X
Proof. Let x,y € I, with x < y. Then
f(x)

r — Xy Yy—=xp

this gives

(y —z0) f(z) < (¥ — 20) [(y)-

(3.1.1)

(3.1.2)

(3.1.3)

(3.1.4)

(3.1.5)



Take © = xy, y = T, where z¢y < x} < T,, we have

(Zn = o) f (k) < (24 — 20) f(Zn)-

This implies that

or

This is equivalent to (3.1.2).

Now take z = %, y = g, i.e T, < T < o in (3.1.5), we have

Since T,, — xg < 0, therefore above inequality takes the form
(QJk - 550) -
< ——2f(7,). 3.1.7

This implies that

Zpkf 2r) Zk L Pk — wO)f(xn).

.T — 2o

By using the value of A deﬁned in (3.1.3), we have the result. O

3.2 Main results

In this section we consider a functional due to the difference for Giaccardi’s type
inequality (3.1.2). We consider different classes of star-shaped type functions to prove
logarithmic convexity of the functional. Also we derive Lyapunov type inequality for
that functional.

Let f: I — R, where [ is an interval. Let p = (p1, ..., pn) be a positive n-tuple and
x = (21, ..., ;) be a real n-tuple.

Let us consider the following Giaccardi’s difference.
V(x;p; f) = Af(2,) Zpkf (zk)- (3.2.1)

Remark 3.2.1. Let f: I — R, where [ is an mterval. Let p = (p1, ..., pn) be a positive
n-tuple and x = (21, ..., z,,) be a real n-tuple, zo,Z, = Y ,_, pr € I such that z; # x¢
(t=1,...,n) and (3.1.1) satisfied. If f_(—z)o is increasing function for x € I\ {z¢}, then

U(x;p; f) > 0. (3.2.2)
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