Moment of Inertia

Definition: Moment of inertia of a particle of mass m about a line (called axis of rotation) is defined as

Where, r is the perpendicular distance of particle from line.
Definition: Moment of inertia of a system of a number of particles with masses m_{i}, about a line (called axis of rotation) is defined as

$$
\text { doy: Dr. Amir Aahr } A=\sum_{i} m_{i} r_{i}^{2}
$$

Where, r_{i} is the perpendicular distance of i-th particle from line.
Definition: Moment of inertia of a continuous distribution of mass, such as the solid rigid body (shown in the figure), having mass M and constant density ρ, about a line is defined as

$$
I=m r^{2}
$$

$$
I=\int_{M} r^{2} \mathrm{~d} m=\rho \int_{M} r^{2} \mathrm{~d} V
$$

Where, r is the perpendicular distance of point mass element $d m$ of the body and $d V$ is its elementary volume.

Moments of inertia with respect to Cartesian coordinate axes are defined in the following table:

Moment of inertia	Moment of inertia of a particle with respect to 3-dimensioal Cartesian coordinate system	Moment of inertia of a set of particles with respect to 3-dimensioal Cartesian coordinate system	Moment of inertia of a continuous rigid body with respect to 3-dimensioal Cartesian coordinate system
About x-axis $I_{x x}=I_{11}$	$m\left(y^{2}+z^{2}\right)$	$\sum_{i} m_{i}\left(y_{i}^{2}+z_{i}^{2}\right)$	$\int_{M}\left(y^{2}+z^{2}\right) \mathrm{d} m$
About y-axis $I_{y y}=I_{22}$	$m\left(x^{2}+z^{2}\right)$	$\sum_{i} m_{i}\left(x_{i}^{2}+z_{i}^{2}\right)$	Dr. $\int_{M}\left(x^{2}+z^{2}\right) \mathrm{d} m$
About z-axis $I_{z z}=I_{33}$	$m\left(x^{2}+y^{2}\right)$	$\sum_{i} m_{i}\left(x_{i}^{2}+y_{i}^{2}\right)$	$I_{z z}=I_{33}=\int_{M}\left(x^{2}+y^{2}\right) \mathrm{d} m$

Products of inertia with respect to Cartesian coordinate axes are defined in the following table:

Product of inertia	Product of inertia of a particle with respect to 3-dimensioal Cartesian coordinate system	Product of inertia of a set of particles with respect to 3-dimensioal Cartesian coordinate system	Product of inertia of a continuous rigid body with respect to 3-dimensioal Cartesian coordinate system
d			Amir (ahmood
$I_{x y}=I_{y x}=I_{12}=I_{21}$	-mxy Mahn	ood Primared by: D	$\text { Amir }-\int_{M} x y \mathrm{~d} m$

Mechanics Made Easy

$I_{y z}=I_{z y}=I_{23}=I_{32}$	$\mathrm{y}: \text { Dr. A myz M }$	$\text { ood Pr } \sum_{i} m_{i} y_{i} z_{i}$	$\text { Amir }-\int_{M} y z \mathrm{~d} m$
$I_{x z}=I_{z x}=I_{13}=I_{31}$	V: Dr. Amir Mahm v: Dr. Amxz Mahn	ood Pr $-\sum_{i} m_{i} x_{i} z_{i}$ ood Py: D ored by: D	$\text { Amir - } \int_{M}^{a h m o l m m o o d ~}$

Definition: Radius of gyration k of a rigid body of mass M with respect to a line l is defined as

$$
\begin{aligned}
& \text { Prepared } \\
& \text { Prepared: Dr. Amir Aahmoo } \quad \text { Dr. Amir Aehmo } \sqrt{\frac{I}{M}} P
\end{aligned}
$$

where, I is the moment of inertia of the body with respect to l.
Problem: Prove in matrix notation that $[\mathbf{L}]=[\mathbf{I}][\boldsymbol{\omega}]$, where, all the notations used have their usual meanings.
Proof: The angular momentum of a rigid body, in the form of a set of particles, about an instantaneous axis through a fixed point, is given by

$$
\begin{aligned}
& \mathbf{L}=\sum_{i} \mathbf{r}_{i} \times\left(m_{i} \mathbf{v}_{i}\right)=\sum_{i} m_{\mathrm{i}}\left(\mathbf{r}_{i} \times \mathbf{v}_{i}\right)=\sum_{i} m_{i}\left(\mathbf{r}_{i} \times\left(\boldsymbol{\omega} \times \mathbf{r}_{i}\right)\right) \\
& \text { epalanmared } \\
& =\sum_{i} m_{i}\left(\mathbf{r}_{i} \times\left(\boldsymbol{\omega} \times \mathbf{r}_{i}\right)\right)=\sum_{i} m_{i}\left[\left(\mathbf{r}_{i} \cdot \mathbf{r}_{i}\right) \boldsymbol{\omega}-\left(\mathbf{r}_{i} \cdot \boldsymbol{\omega}\right) \mathbf{r}_{i}\right]
\end{aligned}
$$

Let, $\quad \mathbf{L}=L_{x} \mathbf{i}+L_{y} \mathbf{j}+L_{z} \mathbf{k}, \quad \mathbf{\omega}=\omega_{x} \mathbf{i}+\omega_{y} \mathbf{j}+\omega_{z} \mathbf{k} \quad$ Prd $\quad \mathbf{r}_{i}=x_{i} \mathbf{i}+y_{i} \mathbf{j}+z_{i} \mathbf{k}$

$$
\begin{aligned}
& \Rightarrow \mathbf{r}_{i} \cdot \mathbf{r}_{i}=x_{i}^{2}+y_{i}^{2}+z_{i}^{2} \text { and } \mathbf{r}_{i} \cdot \boldsymbol{\omega}=x_{i} \boldsymbol{\omega}_{x}+y_{i} \omega_{y}+z_{i} \omega_{z} \\
& \Rightarrow \text { mood Prepareg } \\
& \Rightarrow L_{x} \mathbf{i}+L_{i} \mathbf{j}+L_{z} \mathbf{k}=\sum_{i} m_{i}\left[\left(x_{i}^{2}+y_{i}^{2}+z_{i}^{2}\right)\left(\omega_{x} \mathbf{i}+\omega_{y} \mathbf{j}+\omega_{z} \mathbf{k}\right)-\left(x_{i} \omega_{x}+y_{i} \omega_{y}+z_{i} \omega_{z}\right)\left(x_{i} \mathbf{i}+y_{i} \mathbf{j}+z_{i} \mathbf{k}\right)\right] d
\end{aligned}
$$

Comparing corresponding components on both sides of above vector equation, we get

$$
\begin{align*}
& L_{x}=\sum_{i} m_{i}\left[\left(x_{i}^{2}+y_{i}^{2}+z_{i}^{2}\right) \omega_{x}-\left(x_{i} \omega_{x}+y_{i} \omega_{y}+z_{i} \omega_{z}\right) x_{i}\right] \operatorname{dr}-----\rightarrow \rightarrow \tag{1}\\
& L_{y}=\sum_{i} m_{i}\left[\left(x_{i}^{2}+y_{i}^{2}+z_{i}^{2}\right) \omega_{y}-\left(x_{i} \omega_{x}+y_{i} \omega_{y}+z_{i} \omega_{z}\right) y_{i}\right] \tag{2}\\
& \mathrm{d} \rightarrow+---\mathrm{C} \rightarrow+
\end{align*}
$$

$$
\begin{equation*}
L_{z}=\sum_{i} m_{i}\left[\left(x_{i}^{2}+y_{i}^{2}+z_{i}^{2}\right) \omega_{z}+\left(x_{i} \omega_{x}+y_{i} \omega_{y}+z_{i} \omega_{z}\right) z_{i}\right] \tag{3}
\end{equation*}
$$

From Eq. (1), we get

$$
\begin{aligned}
& d \nu_{x}=\sum_{i} m_{i}\left[\left(x_{i}^{2}+y_{i}^{2}+z_{i}^{2}\right) \omega_{x}-\left(x_{i} \omega_{x}+y_{i} \omega_{y}+z_{i} \omega_{z}\right) x_{i}\right] \text { (b) } \\
& \text { dbly } \left.=\sum_{i} m_{i} x_{i}^{2} \omega_{x}+\left(y_{i}^{2}+z_{i}^{2}\right) \omega_{x}-x_{i}^{2} \omega_{x}-x_{i} y_{i} \omega_{y}-x_{i} z_{i} \omega_{z}\right] \text { Ami } \\
& \text { dy: An }
\end{aligned}
$$

$$
\begin{align*}
& =\omega_{x} \sum_{i} m_{i}\left(y_{i}^{2}+z_{i}^{2}\right)-\omega_{y} \sum_{i} m_{i} x_{i} y_{j}-\omega_{z} \sum_{i} m_{i} x_{i} z_{i} \\
& : \operatorname{Dr} \text { Anir }_{x}=I_{x x} \omega_{x}+I_{x y} \omega_{y}+I_{x z} \omega_{z} \text { repared_by: } \tag{4}
\end{align*}
$$

Similarly, from (2) and (3), we get

$$
\begin{align*}
& \text { a: Dr. } L_{y}=I_{x y} \omega_{x}+I_{y y} \omega_{y}+I_{y z} \omega_{z} \tag{5}\\
& \text { and } L_{z}=I_{x z} \omega_{x}+I_{y z} \omega_{y}+I_{z z} \omega_{z}
\end{align*}
$$

(6) Writing Eqs. (4), (5) and (6) in matrix form, we get

$$
\left(\begin{array}{l}
L_{x} \\
L_{y} \\
L_{z}
\end{array}\right)=\left(\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{x y} & I_{y y} & I_{y z} \\
I_{x z} & I_{y z} & I_{z z}
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)
$$

$$
\Rightarrow[\mathbf{L}]=[\mathbf{I}][\boldsymbol{\omega}] \quad \text { Hence proved. }
$$

For your information:

Problem: Prove that $T=\frac{1}{2} M \mathbf{v}^{2}+\frac{1}{2} \boldsymbol{\omega}$. \mathbf{L}, where all the notations used have their usual meanings.
(or) prove that $T=T_{t r}+T_{\text {rot }}$
where, $: T_{t r}=\frac{1}{2} M v^{2}=$ total translational kinetic energy of the system
and $\quad T_{\text {rot }}=\frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{L}=$ total rotational kinetic energy of the system
Proof: Consider a rigid body, in the form of a set of particles, which is in general state of motion (i.e, having both translation and rotation) with respect to a fixed (inertial) frame of reference $O x y z$. Let, $M=$ totalmass of the body $\mathbf{r}_{i}=$ position vector of i-th particle of mass m_{i} with respect to origin " 0 " $\mathbf{r}_{i}^{\prime}=$ position vector of i-th particle of mass m_{i} with respect to centre of mass " C " $\mathbf{r}=$ position vector of centre of mass " C " with respect to origin " O " $\mathbf{v}_{i}=$ velocity of i-th particle of mass m_{i} with respect to origin " O " $\mathbf{v}_{i}^{\prime}=$ velocity of i-th particle of mass m_{i} with respect to centre of mass $\mathbf{v}=$ velocity of centre of mass " C " with respect to origin " O "

$\boldsymbol{\omega}=$ instantaneous angular velocity of body about instantaneous axis through centre of mass " C "
From figure, epared by: Dr. Amir Nlah $\mathbf{r}_{i}=\mathbf{v}+\mathbf{r}_{i}^{\prime}$
Differentiating both sides with respect to time " t ", we get

$$
\mathbf{v}_{i}=\mathbf{v}+\boldsymbol{\omega} \times \mathbf{r}_{i}^{\prime} \quad \because \mathbf{v}_{i}^{\prime}=\boldsymbol{\omega} \times \mathbf{r}_{i}^{\prime}
$$

Kinetic energy of the i-th particle is
Kinetic energy of the whole body is

$$
T=\frac{1}{2} M \mathbf{v}^{2}+\mathbf{v} \cdot\left(\boldsymbol{\omega} \times \sum_{i} m_{i} \mathbf{r}_{i}^{\prime}\right)+\frac{1}{2} \boldsymbol{\omega} \cdot \sum_{i} m_{i} \mathbf{r}_{i}^{\prime} \times\left(\boldsymbol{\omega} \times \mathbf{r}_{i}^{\prime}\right)
$$

where, $M=\sum_{i} m_{i}=$ totalmass of the body
Also, $\sum_{i} m_{i} \mathbf{r}_{i}^{\prime}=\mathbf{0}$, as \mathbf{r}_{i}^{\prime} is the position vector of i th particle of mass m_{i} with respect to centre of mass " $C^{\prime \prime}$ "

$$
\begin{equation*}
\Rightarrow \quad T=\frac{1}{2} M \mathbf{v}^{2}+\frac{1}{2} \boldsymbol{\omega} \cdot \sum_{i} m_{i} \mathbf{r}_{i}^{\prime} \times\left(\boldsymbol{\omega} \times \mathbf{r}_{i}^{\prime}\right) \tag{1}
\end{equation*}
$$

But, angular momentum L of the body with respect to centre of mass " C " is given by \qquad

$$
\begin{aligned}
& \text { Prepare } \sum_{i} \mathbf{r}_{i}^{\prime} \times\left(m_{i} \mathbf{v}_{i}^{\prime}\right)=\sum_{i} \mathbf{r}_{i}^{\prime} \times\left\{m_{i}\left(\boldsymbol{\omega} \times \mathbf{r}_{i}^{\prime}\right)\right\}=\sum_{i} m_{i} \mathbf{r}_{i}^{\prime} \times\left(\boldsymbol{\omega} \times \mathbf{r}_{i}^{\prime}\right):-----(2) \\
& \text { P(1), we get }
\end{aligned}
$$

Using (2) in (1), we get

where, $T_{t r}=\frac{1}{2} M \mathbf{v}^{2}=$ total translational kinetic energy of the system
and $y: T_{r o t}=\frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{L}=$ total rotational kinetic energy of the system
Problem: Find moment of inertia of a rigid body about a given line passing through the origin and having direction cosines are (λ, μ, v).

Solution: Consider a rigid body, in the form of a set of particles. And let us take given line as z-axis, as shown in the figure.

Let,
$M=$ total mass of the body
$\mathbf{r}_{i}=x_{i} \mathbf{i}+y_{i} \mathbf{j}+z_{i} \mathbf{k}=$ position vector of i-th particle of mass m_{i} w.r.t. origin " O " $d_{i}=$ perpendicular distance of i-th particle of mass m_{i} from given line l
$\theta_{i}=$ angle between position vector \mathbf{r}_{i} and given line l
$\mathbf{e}=$ unit vector in the direction of given line l

Then, $\mathbf{e}=\lambda \mathbf{i}+\mu \mathbf{j}+v \mathbf{k}$, where, (λ, μ, v) are direction cosines of the given line l.

The required moment of inertia I_{l} is given by
$I_{l}=\sum_{i} m_{i} d_{i}^{2}=\sum_{i} m_{i}\left(\left|\mathbf{r}_{i}\right| \sin \theta_{i}\right)^{2}=\sum_{i} m_{i}\left(\left|\mathbf{e} \times \mathbf{r}_{i}\right|\right)^{2}-\square-T-(1) \quad \ddot{d} \sin \theta_{i}=\frac{d_{i}}{\left|\mathbf{r}_{i}\right|}$ and $\left|\mathbf{r}_{i}\right| \sin \theta_{i}=\left|\mathbf{e} \times \mathbf{r}_{i}\right|$

Now,

Using (2) in (1), we get

$$
\begin{aligned}
& =\sum_{i} m_{i}\left[\left(\mu^{2} z_{i}^{2}+v^{2} y_{i}^{2}-2 \mu v y_{i} z_{i}\right)+\left(v^{2} x_{i}^{2}+\lambda^{2} z_{i}^{2}-2 \lambda v x_{i} z_{i}\right)+\left(\lambda^{2} y_{i}^{2}+\mu^{2} x_{i}^{2}-2 \lambda \mu x_{i} y_{i}\right)\right] \\
& =\lambda^{2} \sum_{i} m_{i}\left(y_{i}^{2}+z_{i}^{2}\right)+\mu^{2} \sum_{i} m_{i}\left(x_{i}^{2}+z_{i}^{2}\right)+v^{2} \sum_{i} m_{i}\left(x_{i}^{2}+y_{i}^{2}\right)+2 \lambda \mu\left(-\sum_{i}^{2} m_{i} x_{i} y_{i}\right) \\
& +2 \mu v\left(-\sum_{i} m_{i} y_{i} z_{i}\right)+2 \lambda v\left(-\sum_{i} m_{i} x_{i} z_{i}\right) \\
& I_{l}=\lambda^{2} I_{x x}+\mu^{2} I_{y y}+v^{2} I_{z z}+2 \lambda \mu I_{x y}+2 \mu \nu I_{y z}+2 \lambda \nu I_{x z}
\end{aligned}
$$

This is the required moment of inertia.
Problem: Find the equation of "ellipsoid of inertia" or "momental ellipsoid" of a rigid body.
Solution: As we know that moment of inertia of a rigid body about a given line l having direction $\operatorname{cosines}(\lambda, \mu, v)$ with respect to a coordinate system $O x y z$, whose origin " O " lies on the line l, is given by

$$
I_{l}=\lambda^{2} I_{x x}+\mu^{2} I_{y y}+v^{2} I_{z z}+2 \lambda \mu I_{x y}+2 \mu \nu I_{y z}+2 \lambda v I_{x z}-----(1)
$$

On the line l, choose a point P such that $|\overrightarrow{O P}|=1 / \sqrt{I_{l}}$. If coordinates of P are (x, y, z), then

$$
\begin{align*}
& \frac{x}{|\stackrel{\rightharpoonup}{O P}|}=\lambda, \quad \frac{y}{|\stackrel{\rightharpoonup}{O P}|}=\mu, \quad \frac{z}{|\stackrel{\rightharpoonup}{O P}|}=v \\
& \lambda=x \sqrt{I_{l}}, \quad \mu=y \sqrt{I_{l}}, \quad v=z \sqrt{I_{l}} \tag{2}\\
& I_{x x} x^{2}+I_{y y} y^{2}+I_{z z} z^{2}+2 I_{x y} x y+2 I_{y z} y z+2 I_{x z} x z=1
\end{align*}
$$

Eliminating λ, μ and v from (1) and (2), we get

Since, $I_{x x}, I_{y y}$ and $I_{z z}$ are all positive, therefore, above equation represents an ellipsoid called "ellipsoid of inertia" or "momental ellipsoid" of the rigid body.

Note:

(i) The momentak ellipsoid of a rigid body contains information about moments and product of inertia of that body.
(ii) The centre of momental ellipsoid lies at the origin of the coordinate system.
(ii) If P is any point on momental ellipsoid, then

$$
\text { Prepared : Dr. Amir }|\overrightarrow{O P}|=\frac{1}{\sqrt{I_{l}}} \Rightarrow I_{l}=\frac{1}{|\overrightarrow{O P}|^{2}} \text {, }
$$

showing that moment of inertia about line $\overleftrightarrow{O P}$ is equal to the reciprocal of square of distance of point P from origin 0 .

Problem: State and prove perpendicular axis theorem for a set of particles.
Statement: The moment of inertia of a plane rigid body in the form of a set of particles about a given axis perpendicular to the plane of the body is equal to the sum of moments of inertia about two mutually perpendicular axes lying in the plane of the body and meeting at a common point on the given axis.

Proof: We choose Cartesian coordinate system $O x y z$ such that $x y$-plane lies in the plane of the body, while z-axis lies perpendicular to $i t$, which is assumed to the given axis.

Let, $\mathbf{r}_{i}=x_{i} \mathbf{i}+y_{i} \mathbf{j}$ be the position vector of i-th particle of mass m_{i} w.r.t. origin " O ". Then moment of inertia of the body about z-axis is
$I_{z z}=\sum_{i} m_{i}\left|\mathbf{r}_{i}\right|^{2}=\sum_{i} m_{i}\left(x_{i}{ }^{2}+y_{i}^{2}\right)=\sum_{i} m_{i} x_{i}^{2}+\sum_{i} m_{i} y_{i}^{2}=I_{x x}+I_{y y}$

$$
\text { Prepareat: Dr } \Rightarrow m I_{z z}=I_{x x}+I_{y y} O d \quad \text { Pence proved. }
$$

Problem: State and prove perpendicular axis theorem for a continuous mass distribution.
Statement: The moment of inertia of a plane rigid body in the form of continuous mass distribution about a given axis perpendicular to the plane of the body is equal to the sum of moments of inertia of same body about two mutually perpendicular axes lying in the plane of body and meeting at a common point on the given axis.

Proof: We choose Cartesian coordinate system $0 x y z$ such that $x y$-plane lies in the plane of the body having mass M, while z-axis lies perpendicular to it, which is assumed to the given axis.
Let, $\mathbf{r}=x \mathbf{i}+y \mathbf{j}$ be the position vector of elementary particle of body of mass $\mathrm{d} m$ w.r.t. origin " 0 ". ${ }^{y}$ Then moment of inertia of the body about z-axis is
$I_{z z}=\int_{M}|\mathbf{r}|^{2} \mathrm{~d} m=\int_{M}\left(x^{2}+y^{2}\right) \mathrm{dr} m=\int_{M} x^{2} \mathrm{~d} m+\int_{M}^{m o o d} y^{2} \mathrm{~d} m=I_{x x}+I_{y y}$
Preparedlby:

$$
\Rightarrow \quad I_{z z}=I_{x x}+I_{y y} \quad \text { Hence proved. }
$$

Problem: State and prove parallel axis theorem for the case of moment of inertia for a set of particles.
Statement: The moment of inertia of a rigid body in the form of a set of particles about a given axis is equal to the sum of moment of inertia of same body about a parallel axis (to the given axis) through the centre of mass of the body and the moment of inertia due to the total mass of the body placed at its centre of mass, about given axis.

Proof: Consider a rigid body, in the form of a set of particles. Let l be the given and l^{\prime} be an axis which is parallel to l and passing through centre of mass of the body.

Let, $M=$ total mass of the body
$\mathbf{r}_{i}=$ position vector of i-th particle of mass m_{i} with respect to origin " 0 "
$\mathbf{r}_{i}^{\prime}=$ position vector of i-th particle of mass m_{i} with respect to centre of mass " C "
$\mathbf{r}_{c}=$ position vector of centre of mass " C " with respect to origin " O "
$\theta_{i}=$ angle between position vector \mathbf{r}_{i} and given tine l
$d_{i}=$ perpendicular distance of i-th particle of mass m_{i} from given axis l
$d_{i}^{\prime}=$ perpendicular distance of i-th particle of mass m_{i} from parallel axis l^{\prime}
$d_{c}=$ perpendicular distance of centre of mass C from given axis l
$=$ perpendicular distance between l and l^{\prime}
$\mathbf{e}=$ unit vector in the direction of given line l

From figure, pared by: $\sin \theta_{i}=\frac{d_{i}}{\left|\mathbf{r}_{i}\right|} \Rightarrow d_{i}=\left|\mathbf{r}_{i}\right| \sin \theta_{i}=\left|\mathbf{e} \times \mathbf{r}_{i}\right|$
Similarly, $d_{i}^{\prime}=\left|\mathbf{e} \times \mathbf{r}_{i}^{\prime}\right|$ and $d_{c}=\left|\mathbf{e} \times \mathbf{r}_{c}\right|$ \qquad

Moment of inertia of the body about given axis l is given by

$$
\begin{aligned}
& I_{l}=\sum_{i} m_{i} d_{i}^{2}=\sum_{i} m_{i}\left(\left|\mathbf{e} \times \mathbf{r}_{i}\right|\right)^{2}=\sum_{i} m_{i}\left(\mathbf{e} \times \mathbf{r}_{i}\right) \cdot\left(\mathbf{e} \times \mathbf{r}_{i}\right) \\
& =\sum m_{i}\left[\mathbf{e} \times\left(\mathbf{r}_{c}+\mathbf{r}_{i}^{\prime}\right)\right] \cdot\left[\mathbf{e} \times\left(\mathbf{r}_{c}+\mathbf{r}_{i}^{\prime}\right)\right] \quad \because \mathbf{r}_{i}=\mathbf{r}_{c}+\mathbf{r}_{i}^{\prime} \text { (from figure) } \\
& \text { Prepared }=\sum_{i}^{i} m_{i}\left(\mathbf{e} \times \mathbf{r}_{c}+\mathbf{e} \times \mathbf{r}_{i}^{\prime}\right) \cdot\left(\mathbf{e} \times \mathbf{r}_{c}+\mathbf{e} \times \mathbf{r}_{i}^{\prime}\right) \\
& =\sum_{i} m_{i}\left[\left(\mathbf{e} \times \mathbf{r}_{c}\right) \cdot\left(\mathbf{e} \times \mathbf{r}_{c}\right)+2\left(\mathbf{e} \times \mathbf{r}_{c}\right) \cdot\left(\mathbf{e} \times \mathbf{r}_{i}^{\prime}\right)+\left(\mathbf{e} \times \mathbf{r}_{i}^{\prime}\right) \cdot\left(\mathbf{e} \times \mathbf{r}_{i}^{\prime}\right)\right] \\
& \text { PreparedCO }=\sum_{i}^{i} m_{i}\left[\left(\left|\mathbf{e} \times \mathbf{r}_{c}\right|\right)^{2}+2\left(\mathbf{e} \times \mathbf{r}_{c}\right) \cdot\left(\mathbf{e} \times \mathbf{r}_{i}^{\prime}\right)+\left(\left|\mathbf{e} \times \mathbf{r}_{i}^{\prime}\right|\right)^{2}\right] \\
& =\left(\sum_{i} m_{i}\right)\left(\left|\mathbf{e} \times \mathbf{r}_{c}\right|^{2}+2\left(\mathbf{e} \times \mathbf{r}_{c}\right) \cdot \sum_{i} m_{i}\left(\mathbf{e} \times \mathbf{r}_{i}^{\prime}\right)+\sum_{i} m_{i}\left(\left|\mathbf{e} \times \mathbf{r}_{i}^{\prime}\right|\right)^{2}\right. \\
& \text { Prepared }=M d_{c}{ }^{2}+2\left(\mathbf{e} \times \mathbf{r}_{c}\right) \cdot\left(\mathbf{e} \times \sum_{i} m_{i} \mathbf{r}_{i}^{\prime}\right)+\sum_{i} m_{i} d_{i}^{\prime 2} \\
& \text { Prepared by }
\end{aligned}
$$

where, $M=\sum_{i} m_{i}=$ total mass of the body
Also, $\sum_{i} m_{i} \mathbf{r}_{i}^{\prime}=\mathbf{0}$, as \mathbf{r}_{i}^{\prime} is the position vector of i th particle of mass m_{i} with respect to centre of mass " C " and $I_{l^{\prime}}=\sum_{i} m_{i} d_{i}^{\prime 2}=$ moment of inertia of the body axis l^{\prime}

Therefore,

Problem: State and prove parallel axis theorem for the case of moment of inertia for a continuous mass distribution.

Statement:The moment of inertia of a rigid body in the form of a continuous mass distribution about a given axis is equal to the sum of moment of inertia of same body about a parallel axis (to the given axis) through the centre of mass of the body and the moment of inertia due to the total mass of the body placed at its centre of mass, about given axis.

Proof: Consider a rigid body, in the form of a continuous mass distribution. Let l be the given and l^{\prime} be an axis which is parallel to l and passing through centre of mass of the body.

Let, $M=$ total mass of the body
$\mathbf{r}=$ position vector of i-th particle of mass m_{i} with respect to origin " O "
$\mathbf{r}^{\prime}=$ position vector of i-th particle of mass m_{i} with respect to centre of mass " C "

$\mathbf{r}_{c}=$ position vector of centre of mass " C " with respect to origin " O "
$\theta=$ angle between position vector \mathbf{r}_{i} and given line l

$d=$ perpendicular distance of i-th particle of mass m_{i} from given axis l
$d^{\prime}=$ perpendicular distance of i-th particle of mass m_{i} from parallel axis l^{\prime}
$d_{c}=$ perpendicular distance of centre of mass C from given axis $l=$ perpendicular distance between l and l^{\prime}
$\mathbf{e}=$ unit vector in the direction of given line $l \mathrm{a}$) mood Pragared by: Dr. AD
From figure,

$$
\sin \theta=\frac{d}{|\mathbf{r}|} \Rightarrow d=|\mathbf{r}| \sin \theta=|\mathbf{e} \times \mathbf{r}|
$$

Similarly, $d^{\prime}=\left|\mathbf{e} \times \mathbf{r}^{\prime}\right|$ and $d_{c}=\left|\mathbf{e} \times \mathbf{r}_{c}\right|$

Moment of inertia of the body about given axis l is given by

$$
\begin{aligned}
& I_{l}=\int_{M} d^{2} \mathrm{~d} m= \int_{M}(|\mathbf{e} \times \mathbf{r}|)^{2} \mathrm{~d} m=\int_{M}(\mathbf{e} \times \mathbf{r}) \cdot(\mathbf{e} \times \mathbf{r}) \mathrm{d} m \text { ared by: Dr. Amir Mah } \\
& \text { repared by: }=\int_{M}\left[\mathbf{e} \times\left(\mathbf{r}_{c}+\mathbf{r}^{\prime}\right)\right] \cdot\left[\mathbf{e} \times\left(\mathbf{r}_{c}+\mathbf{r}^{\prime}\right)\right] \mathrm{d} m \text { pared } \because \mathbf{r}=\mathbf{r}_{c}+\mathbf{r}^{\prime} \text {. Amir (from figure) } \\
& \text { repared }
\end{aligned}
$$

Also, $\int_{M} \mathbf{r}^{\prime} \mathrm{d} m=\mathbf{0}$, as \mathbf{r}^{\prime} is the position vector of mass element $\mathrm{d} m$ with respect to centre of mass " C " and $I_{l^{\prime}}=\sum_{i} m_{i} d^{\prime 2}=$ moment of inertia of the body axis l^{\prime}

$$
\Rightarrow I_{l}=I_{l^{\prime}}+M d_{c}{ }^{2} d \text { Hence proved. }
$$

Problem: Prove in matrix notation that $[\dot{\mathbf{L}}]=[\boldsymbol{\omega} \times \mathbf{L}]+[\mathbf{I}][\boldsymbol{\omega}]$, where, all the notations used have their usual meanings.

Proof: As we know that the angular momentum of a system of particles is given by

$$
\mathbf{L}=\sum_{i} \mathbf{r}_{i} \times\left(m_{i} \mathbf{v}_{i}\right)=\sum_{i} m_{i} \mathbf{r}_{i} \times \mathbf{v}_{i}
$$

Differentiating both sides with respect to time " t ", we get

$$
\begin{aligned}
& \dot{\mathbf{L}}=\sum_{i} m_{i} \dot{\mathbf{r}}_{i} \times \mathbf{v}_{i}+\sum_{i} m_{i} \mathbf{r}_{i} \times \dot{\mathbf{v}}_{i}=\sum_{i} m_{i} \mathbf{v}_{i} \times \mathbf{v}_{i}+\sum_{i} m_{i} \mathbf{r}_{i} \times \dot{\mathbf{v}}_{i} \\
& =\sum_{i} m_{i} \mathbf{r}_{i} \times \frac{\mathrm{d}}{\mathrm{~d} t}\left(\boldsymbol{\omega} \times \mathbf{r}_{i}\right) m \circ \because \mathbf{v}_{i} \times \mathbf{v}_{i}=\mathbf{0} \text { and } \dot{\mathbf{v}}_{i}=\frac{\mathrm{d} \mathbf{v}_{i}}{\mathrm{~d} t}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\boldsymbol{\omega} \times \mathbf{r}_{i}\right) \\
& \text { Prepared }=\sum_{i}^{i} m_{i} \mathbf{r}_{i} \times\left[\left(\boldsymbol{\omega} \times \dot{\mathbf{r}}_{i}\right)+\left(\dot{\boldsymbol{\omega}} \times \mathbf{r}_{i}\right)\right]=\sum_{i} m_{i} \mathbf{r}_{i} \times\left(\boldsymbol{\omega} \times \dot{\mathbf{r}}_{i}\right)+\sum_{i} m_{i} \mathbf{r}_{i} \times\left(\dot{\boldsymbol{\omega}} \times \mathbf{r}_{i}\right)
\end{aligned}
$$

Writing in matrix form, we get

$$
\begin{equation*}
[\dot{\mathbf{L}}]=\left[\sum_{i} m_{i} \mathbf{r}_{i} \times\left(\boldsymbol{\omega} \times \dot{\mathbf{r}}_{i}\right)\right]+\left[\sum_{i} m_{i} \mathbf{r}_{i} \times\left(\dot{\boldsymbol{\omega}} \times \mathbf{r}_{i}\right)\right]- \tag{1}
\end{equation*}
$$

We also know that,

$[\mathbf{L}]=[\mathbf{I}][\mathbf{\omega}]$

$$
\left[\sum_{i} \mathbf{r}_{i} \times\left(m_{i} \mathbf{v}_{i}\right)\right]=[\mathbf{I}][\omega] \text { red } \forall \mathbf{L}=\sum_{i} \mathbf{r}_{i} \times\left(m_{i} \mathbf{v}_{i}\right)
$$

$$
\left[\sum_{i} m_{i} \mathbf{r}_{i} \times \mathbf{v}_{i}\right]=[\mathbf{I}][\mathbf{\omega}]
$$

Replace ω by $\dot{\omega}$ on both sides, we get

Now consider,

$$
\sum_{i} m_{i} \mathbf{r}_{i} \times\left(\boldsymbol{\omega} \times \dot{\mathbf{r}}_{i}\right)=\sum_{i} m_{i} \mathbf{r}_{i} \times\left(\boldsymbol{\omega} \times \mathbf{v}_{i}\right)=\sum_{i} m_{i} \mathbf{r}_{i} \times\left[\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \mathbf{r}_{i}\right)\right]=\sum_{i} m_{i} \mathbf{r}_{i} \times\left[\left(\boldsymbol{\omega} \cdot \mathbf{r}_{i}\right) \boldsymbol{\omega}-(\boldsymbol{\omega} \cdot \boldsymbol{\omega}) \mathbf{r}_{i}\right]
$$

$$
=\sum_{i} m_{i}\left[\left(\boldsymbol{\omega} \cdot \mathbf{r}_{i}\right)\left(\mathbf{r}_{i} \times \boldsymbol{\omega}\right)-(\boldsymbol{\omega} \cdot \boldsymbol{\omega})\left(\mathbf{r}_{i} \times \mathbf{r}_{i}\right)\right]=\sum_{i} m_{i}\left(\boldsymbol{\omega} \cdot \mathbf{r}_{i}\right)\left(\mathbf{r}_{i} \times \boldsymbol{\omega}\right) \rightarrow(3) \quad \because \mathbf{r}_{i} \times \mathbf{r}_{i}=\mathbf{0}
$$

Further consider that
$\boldsymbol{\omega} \times\left(\mathbf{r}_{i} \times \mathbf{v}_{i}\right)=\boldsymbol{\omega} \times\left[\mathbf{r}_{i} \times\left(\boldsymbol{\omega} \times \mathbf{r}_{i}\right)\right]=\boldsymbol{\omega} \times\left[\left(\mathbf{r}_{i} \cdot \mathbf{r}_{i}\right) \boldsymbol{\omega}-\left(\mathbf{r}_{i} \cdot \boldsymbol{\omega}\right) \mathbf{r}_{i}\right]=\left(\mathbf{r}_{i} \cdot \mathbf{r}_{i}\right)(\boldsymbol{\omega} \times \boldsymbol{\omega})-\left(\mathbf{r}_{i} \cdot \boldsymbol{\omega}\right)\left(\boldsymbol{\omega} \times \mathbf{r}_{i}\right)$ $=-\left(\mathbf{r}_{i} \times \boldsymbol{\omega}\right)\left(\boldsymbol{\omega} \times \mathbf{r}_{i}\right)=\left(\boldsymbol{\omega} \cdot \mathbf{r}_{i}\right)\left(\mathbf{r}_{i} \times \boldsymbol{\omega}\right)-\square-\longrightarrow \rightarrow$ (4)
$\cdot \omega \times \omega=0$
Using (4) in (3), we get

$$
\sum_{i} m_{i} \mathbf{r}_{i} \times\left(\boldsymbol{\omega} \times \mathbf{r}_{i}\right)=\sum_{i} m_{i} \boldsymbol{\omega} \times\left(\mathbf{r}_{i} \times \mathbf{v}_{i}\right)=\boldsymbol{\omega} \times \sum_{i} \mathbf{r}_{i} \times\left(m_{i} \mathbf{v}_{i}\right)=\boldsymbol{\omega} \times \mathbf{L}: \text { Dr } \quad \because \mathbf{L}=\sum_{i} \mathbf{r}_{i} \times\left(m_{i} \mathbf{v}_{i}\right)
$$

Writing in matrix form, we get

$$
\begin{equation*}
\text { Prepared: }\left[\sum_{i} m_{i} \mathbf{r}_{i} \times\left(\mathbf{\omega} \times \dot{\mathbf{r}}_{i}\right)\right]=[\mathbf{\omega} \times \mathbf{L}] \tag{5}
\end{equation*}
$$

Using (2) and (5) in (1), we get

$$
[\dot{\mathbf{L}}]=[\omega \times \mathbf{L}]+[\mathbf{I}][\dot{\omega}] \quad \text { Hence proved. }
$$

Problem: Show that inertia matrix [\mathbf{I}] is a Cartesian tensor of rank 2.

Proof: As we know that the angular momentum of a system of particles is given by

Let, $\quad \mathbf{L}=\left(L_{1}, L_{2}, L_{3}\right), \quad \boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \quad$ and $\quad \mathbf{r}_{\alpha}=\left(x_{\alpha, 1}, x_{\alpha, 2}, x_{\alpha, 3}\right)$

Then,

$$
\boldsymbol{\omega} \cdot \mathbf{r}_{\alpha}=\omega_{1} x_{\alpha, 1}+\omega_{2} x_{\alpha, 2}+\omega_{3} x_{\alpha, 3}=\sum_{j=1}^{3} \omega_{j} x_{\alpha, j}
$$

So, (1) can be written as

$$
\left(L_{1}, L_{2}, L_{3}\right)=\sum_{\alpha} m_{\alpha}\left[\mathbf{r}_{\alpha}^{2}\left(\omega_{1}, \omega_{2}, \omega_{3}\right)-\left(\sum_{j=1}^{3} \omega_{j} x_{j, \alpha}\right)\left(x_{\alpha, 1}, x_{\alpha, 2}, x_{\alpha, 3}\right)\right]
$$

$$
\begin{aligned}
& \text { Prepareaby: Dr. Amir Alahmood Prepare } \\
& \Rightarrow L_{i}=\sum_{\alpha}^{3} m_{\alpha}\left[\mathbf{r}_{\alpha}^{2} \omega_{i}-\left(\sum_{j=1}^{3} \omega_{j} x_{\alpha, j}\right) x_{\alpha, i}\right] \text {,od } i=1,2,3
\end{aligned}
$$

$$
=\sum_{\alpha} m_{\alpha}\left[\mathbf{r}_{\alpha}^{2} \sum_{j=1}^{3} \omega_{j} \delta_{i j}-\left(\sum_{j=1}^{3} \omega_{j} x_{\alpha, j}\right) x_{\alpha, i}\right] \text { ren } \because \omega_{i}=\sum_{j=1}^{3} \omega_{j} \delta_{i j}
$$

$$
=\sum_{\alpha} m_{\alpha} \sum_{j=1}^{3}\left[\mathbf{r}_{\alpha}^{2} \delta_{i j}-x_{\alpha, j} x_{\alpha, i}\right] \omega_{j}=\sum_{j=1}^{3} \omega_{j} \sum_{\alpha} m_{\alpha}\left[\mathbf{r}_{\alpha}^{2} \delta_{i j}-x_{\alpha, i} x_{\alpha, j}\right]
$$

$$
\begin{equation*}
=\sum_{\alpha} m_{\alpha} \sum_{j=1}^{3}\left[\mathbf{r}_{\alpha}^{2} \delta_{i j}-x_{\alpha, j} x_{\alpha, i}\right] \omega_{j}=\sum_{j=1}^{3} \omega_{j} \sum_{\alpha} m_{\alpha}\left[\mathbf{r}_{\alpha}^{2} \delta_{i j}-x_{\alpha, i} x_{\alpha, j}\right]=\sum_{j=1}^{3} \omega_{j} I_{i j} \tag{2}
\end{equation*}
$$

where, Pre $I_{i j}=\sum_{\alpha} m_{\alpha}\left[\mathbf{r}_{\alpha}^{2} \delta_{i j}-x_{\alpha, i} x_{\alpha, j}\right]=i j^{\prime}$ th component of inertia tensor

Since, both the angular velocity $\boldsymbol{\omega}=\left(\omega_{j}\right)$ and the angular momentum $\mathbf{L}=\left(L_{i}\right)$ are known to be vectors (i.e., Cartesian tensors of rank 1), it follows from equation (2) and quotient theorem that the inertia tensor $[\mathbf{I}]=\left(I_{i j}\right)$ is a Cartesian tensor of rank 2.

Problem: Express angular momentum in tensor notation.
Solution: As we know that the angular momentum of a system of particles is given by

$$
\begin{aligned}
& \mathbf{L}=\sum_{\alpha} \mathbf{r}_{\alpha} \times\left(m_{\alpha} \mathbf{v}_{\alpha}\right)=\sum_{\alpha} m_{\alpha}\left(\mathbf{r}_{\alpha} \times \mathbf{v}_{\alpha}\right)=\sum_{\alpha} m_{\alpha}\left(\mathbf{r}_{\alpha} \times\left(\boldsymbol{\omega} \times \mathbf{r}_{\alpha}\right)\right) \text { : Dr: } \because \mathbf{v}_{\alpha}=\boldsymbol{\omega} \times \mathbf{r}_{\alpha} \\
& \text { Prepared } \\
& \mathbf{L}=\sum_{\alpha} m_{\alpha}\left[\left(\mathbf{r}_{\alpha} \cdot \mathbf{r}_{\alpha}\right) \boldsymbol{\omega}-\left(\mathbf{r}_{\alpha} \cdot \boldsymbol{\omega}\right) \mathbf{r}_{\alpha}\right]=\sum_{\alpha} m_{\alpha}\left[\mathbf{r}_{\alpha}^{2} \boldsymbol{\omega}-\left(\boldsymbol{\omega} \cdot \mathbf{r}_{\alpha}\right) \mathbf{r}_{\alpha}\right]--D-\mathbb{A} \cdot-\rightarrow(1)
\end{aligned}
$$

Let, $\quad \mathbf{L}=\left(L_{1}, L_{2}, L_{3}\right), \quad \boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \quad$ and $\quad \mathbf{r}_{\alpha}=\left(x_{\alpha, 1}, x_{\alpha, 2}, x_{\alpha, 3}\right)$

$$
\begin{aligned}
& \mathbf{L}=\sum_{\alpha} \mathbf{r}_{\alpha} \times\left(m_{\alpha} \mathbf{v}_{\alpha}\right)=\sum_{\alpha} m_{\alpha}\left(\mathbf{r}_{\alpha} \times \mathbf{v}_{\alpha}\right)=\sum_{\alpha} m_{\alpha}\left(\mathbf{r}_{\alpha} \times\left(\boldsymbol{\omega} \times \mathbf{r}_{\alpha}\right)\right): D r . \quad \because \mathbf{v}_{\alpha}=\boldsymbol{\omega} \times \mathbf{r}_{\alpha} \\
& \mathbf{L}=\sum_{\alpha} m_{\alpha}\left[\left(\mathbf{r}_{\alpha} \cdot \mathbf{r}_{\alpha}\right) \boldsymbol{\omega}-\left(\mathbf{r}_{\alpha} \cdot \boldsymbol{\omega}\right) \mathbf{r}_{\alpha}\right]=\sum_{\alpha} m_{\alpha}\left[\mathbf{r}_{\alpha}^{2} \boldsymbol{\omega}-\left(\boldsymbol{\omega} \cdot \mathbf{r}_{\alpha}\right) \mathbf{r}_{\alpha}\right]--\square--\rightarrow \rightarrow \text { (1) }
\end{aligned}
$$

Then,

$$
\boldsymbol{\omega} \cdot \mathbf{r}_{\alpha}=\omega_{1} x_{\alpha, 1}+\omega_{2} x_{\alpha, 2}+\omega_{3} x_{\alpha, 3}=\sum_{j=1}^{3} \omega_{j} x_{\alpha, j}
$$

So, (1) can be written as
where,

$$
I_{i j}=\sum_{\alpha} m_{\alpha}\left[\mathbf{r}_{\alpha}^{2} \delta_{i j}-x_{\alpha, i} x_{\bar{\alpha}, j}\right]=i j \text { th component of inertia tensor }
$$

Equation (2) is required tensor form of angular momentum.
Problem: Express rotational kinetic energy in tensor notation.
Solution: As we know that the rotational kinetic energy of a system is given by

$$
=\frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{L}
$$

Let, $\quad \boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$,

$$
\mathbf{L}=\left(L_{1}, L_{2}, L_{3}\right)
$$

$$
\Rightarrow T_{\text {rot }}=\frac{1}{2}\left(\omega_{1} L_{1}+\omega_{2} L_{2}+\omega_{3} L_{3}\right)=\frac{1}{2} \sum_{i=1}^{3} \omega_{i} L_{i}
$$

$$
=\frac{1}{2} \sum_{i=1}^{3} \omega_{i}\left(\sum_{j=1}^{3} \omega_{j} \sum_{\alpha} m_{\alpha}\left[\mathbf{r}_{\alpha}^{2} \delta_{i j}-x_{\alpha, i} x_{\alpha, j}\right]\right) \text { egre } \cdot L_{i}=\sum_{j=1}^{3} \omega_{j} \sum_{\alpha} m_{\alpha}\left[\mathbf{r}_{\alpha}^{2} \delta_{i j} \mid-x_{\alpha, i} x_{\alpha, j}\right]
$$

$$
\begin{equation*}
\mathrm{a}=\frac{1}{2} \sum_{i=1}^{3} \omega_{i} \sum_{j=1}^{3} \omega_{j}\left(\sum_{\alpha} m_{\alpha}\left[\mathbf{r}_{\alpha}^{2} \delta_{i j}-x_{\alpha, i} x_{\alpha, j}\right]\right)=\frac{1}{2} \sum_{i, j=1}^{3} \omega_{i} \omega_{j} I_{i j} \quad \rightarrow+\cdots \rightarrow(1 \tag{1}
\end{equation*}
$$

where, (D): $D I_{i j}=\sum_{\alpha} m_{\alpha}\left[\mathbf{r}_{\alpha}^{2} \delta_{i j}-x_{\alpha, i} x_{\alpha, j}\right]=i j$ th component of inertia tensor
Equation (1) is required tensor form of rotational kinetic energy.
Problem: Express parallel axis theorem in tensor notation.

Solution: Consider a rigid body, in the form of a set of particles. Let, C be the centre of mass of the body. We consider two parallel coordinate systems $O x y z$ and $C x^{\prime} y^{\prime} z^{\prime}$, as shown in the figure.

$$
\begin{align*}
& \left(L_{1}, L_{2}, L_{3}\right)=\sum_{\alpha} m_{\alpha}\left[r_{\alpha}^{2}\left(\omega_{1}, \omega_{2}, \omega_{3}\right)-\left(\sum_{j=1}^{3} \omega_{j} x_{j, \alpha}\right)\left(x_{\alpha, 1}, x_{\alpha, 2}, x_{\alpha, 3}\right)\right] \\
& \Rightarrow L_{i}=\sum_{\alpha} m_{\alpha}\left[\mathbf{r}_{\alpha}^{2} \omega_{i}-\left(\sum_{j=1}^{3} \omega_{j} x_{\alpha, j}\right) x_{\alpha, i}\right] \text { ood } i=1,2,3 \\
& =\sum_{\alpha} m_{\alpha}\left[\mathbf{r}_{\alpha}^{2} \sum_{j=1}^{3} \omega_{j} \delta_{i j}+\left(\sum_{j=1}^{3} \omega_{j} x_{\alpha, j}\right) x_{\alpha, i}\right] \text { Preän } \omega_{i}=\sum_{j=1}^{3} \omega_{j} \delta_{i j} \\
& =\sum_{\alpha} \frac{m_{\alpha}}{\sum_{j=1}^{3}}\left[\mathbf{r}_{\alpha}^{2} \delta_{i j}-x_{\alpha, j} x_{\alpha, i}\right] \omega_{j}=\sum_{j=1}^{3} \omega_{j} \sum_{\alpha} m_{\alpha}\left[\mathbf{r}_{\alpha}^{2} \delta_{i j}-x_{\alpha, i} x_{\alpha, j}\right]=\sum_{j=1}^{3} \omega_{j} I_{i j} \tag{2}
\end{align*}
$$

Let, $M=$ total mass of the body
$\mathbf{r}_{\alpha}=$ position vector of α-th particle of mass m_{α} with respect to origin " 0 "
$\mathbf{r}_{\alpha}^{\prime}=$ position vector of α-th particle of mass m_{α} with respect to centre of mass " C "
$\mathbf{r}_{c}=$ position vector of centre of mass " C " with respect to origin " O "
From figure,

$$
\mathbf{r}_{\alpha}=\mathbf{r}_{c}+\mathbf{r}_{\alpha}^{\prime}---\neg-\square(1)
$$

Let, $\mathbf{r}_{\alpha}=\left(x_{\alpha, 1}, x_{\alpha, 2}, x_{\alpha, 3}\right), \quad \mathbf{r}_{c}=\left(x_{c, 1}, x_{c, 2}, x_{c, 3}\right)$ and $\mathbf{r}_{\alpha}^{\prime}=\left(x_{\alpha, 1}^{\prime}, x_{\alpha, 2}^{\prime}, x_{\alpha, 3}^{\prime}\right)$
Equation (1) becomes

$$
\left(x_{\alpha, 1}, x_{\alpha, 2}, x_{\alpha, 3}\right)=\left(x_{c, 1}, x_{c, 2}, x_{c, 3}\right)+\left(x_{\alpha, 1}^{\prime}, x_{\alpha, 2}^{\prime}, x_{\alpha, 3}^{\prime}\right)
$$

$$
\Rightarrow \quad x_{\alpha, i}=x_{c, i}+x_{\alpha, i}^{\prime}, \quad i=1,2,3
$$

As we know that

Now,$d \sum_{\alpha} m_{\alpha}\left[\mathbf{r}_{c}^{2} \delta_{i j}-x_{\alpha, i}^{\prime} x_{\alpha, j}^{\prime}\right]=I_{i j}^{\prime}=i j$ th component of inertia tensor with respect to $C x^{\prime} y^{\prime} z^{\prime}$ system Also, $\sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha}^{\prime}=\mathbf{0}$, as $\mathbf{r}_{\alpha}^{\prime}$ is the position vector of α-th particle ofmass m_{α} with respect to centre of mass " $C^{\prime \prime}$

$$
\sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha}^{\prime}=\mathbf{0} \Rightarrow D \sum_{\alpha} m_{\alpha}\left(x_{\alpha, 1}^{\prime}, x_{\alpha, 2}^{\prime}, x_{\alpha, 3}^{\prime}\right)=(0,0,0) \Leftrightarrow \sum_{\alpha} m_{\alpha} x_{\alpha, i}^{\prime}=0, i=1,2,3
$$

And, $\sum_{\alpha} m_{\alpha}=M=$ total mass of the body

So equation (3) becomes

$$
\text { Prepared by: Dr. An } \quad i I_{i j}=I_{i j}^{\prime}+M \mathbf{r}_{c}^{\prime 2} \delta_{i j}-M x_{c, i} x_{c, j}
$$

$$
\begin{align*}
& I_{i j}=\sum_{\alpha} m_{\alpha}\left[\mathbf{r}_{\alpha}^{2} \delta_{i j}-x_{\alpha, i} x_{\alpha, j}\right] \\
& =\sum m_{\alpha}\left[\left(\left(\mathbf{r}_{c}+\mathbf{r}_{\alpha}^{\prime}\right) \cdot\left(\mathbf{r}_{c}+\mathbf{r}_{\alpha}^{\prime}\right)\right) \delta_{i j}-\left(x_{c, i}+x_{\alpha, i}^{\prime}\right)\left(x_{c, j}+x_{\alpha, j}^{\prime}\right)\right] \quad \text { (by using (1) and (2)) } \\
& =\sum_{\alpha} m_{\alpha}\left[\left(\mathbf{r}_{c} \cdot \mathbf{r}_{c}+2 \mathbf{r}_{c} \cdot \mathbf{r}_{\alpha}^{\prime}+\mathbf{r}_{\alpha}^{\prime} \cdot \mathbf{r}_{\alpha}^{\prime}\right) \delta_{i j}-x_{c, i} x_{c, j}-x_{c, i} x_{\alpha, j}^{\prime}-x_{c, j} x_{\alpha, i}^{\prime}-x_{\alpha, i}^{\prime} x_{\alpha, j}^{\prime}\right] \\
& =\sum_{\alpha} m_{\alpha}\left[\left(\mathbf{r}_{c}^{2}+2 \mathbf{r}_{c} \cdot \mathbf{r}_{\alpha}^{\prime}+\mathbf{r}_{\alpha}^{\prime 2}\right) \delta_{i j}-x_{c, i} x_{c, j}-x_{c, i} x_{\alpha, j}^{\prime}-x_{c, j} x_{\alpha, i}^{\prime}-x_{\alpha, i}^{\prime} x_{\alpha, j}^{\prime}\right] \\
& =\sum_{\alpha} m_{\alpha}\left[\mathbf{r}_{\alpha}^{\prime 2} \delta_{i j}^{D}-x_{\alpha, i}^{\prime} x_{\alpha, j}^{\prime}\right]+2 \mathbf{r}_{c} \cdot\left(\sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha}^{\prime}\right) \delta_{i j}+\left(\sum_{\alpha} m_{\alpha}\right) \mathbf{r}_{c}^{\prime 2} \delta_{i j}-\left(\sum_{\alpha} m_{\alpha}\right) x_{c, i} x_{c, j} \\
& -\left(\sum_{\alpha} m_{\alpha} x_{\alpha, j}^{\prime}\right) x_{c, i}-\left(\sum_{\alpha} m_{\alpha} x_{\alpha, i}^{\prime}\right) x_{c, j} \tag{3}
\end{align*}
$$

This is required tensor form of parallel axis theorem.
Problem: State and prove parallel axis theorem for the case of products of inertia for a set of particles.
Statement: Consider a rigid body, in the form of a set of particles. Let, C be the centre of mass of the body. If $O X y z$ and $C x^{\prime} y^{\prime} z^{\prime}$ be two parallel coordinate systems as shown in the figure, then we have

$$
I_{i j}=I_{i j}^{\prime}-M x_{c, i} x_{c, j}, \quad i \neq j, \quad i, j \in\{1,2,3\}
$$

$I_{i j}=$ product of inertia with respect to $O x y z$-system
$I_{i j}^{\prime}=$ product of inertia with respect to $C x^{\prime} y^{\prime} z^{\prime}$-system $\left(x_{c, 1}, x_{c, 2}, x_{c, 3}\right)=$ position vector of centre of mass " C " with respect to origin " O " $M=$ total mass of the body

Proof: Consider a rigid body, in the form of a set of particles.
Let, $\quad \mathbf{r}_{\alpha}=$ position vector of α-th particle of mass m_{α} with respect to origin " O "
$\mathbf{r}_{\alpha}^{\prime}=$ position vector of α-th particle of mass m_{α} with respect to centre of mass " C "
$\mathbf{r}_{c}=$ position vector of centre of mass " C " with respect to origin " O "
From figure,
Let, $\mathbf{r}_{\alpha}=\left(x_{\alpha, 1}, x_{\alpha, 2}, x_{\alpha, 3}\right), \quad \mathbf{r}_{c}=\left(x_{c, 1}, x_{c, 2}, x_{c, 3}\right)$ and $\mathbf{r}_{\alpha}^{\prime}=\left(x_{\alpha, 1}^{\prime}, x_{\alpha, 2}^{\prime}, x_{\alpha, 3}^{\prime}\right)$
So, equation (1) becomes $\left(x_{\alpha, 1}, x_{\alpha, 2}, x_{\alpha, 3}\right)=\left(x_{c, 1}, x_{c, 2}, x_{c, 3}\right)+\left(x_{\alpha, 1}^{\prime}, x_{\alpha, 2}^{\prime}, x_{\alpha, 3}^{\prime}\right)$

$$
\begin{equation*}
\Rightarrow x_{\alpha, i}=x_{c, i}+x_{\alpha, i}^{\prime}, \quad \text { Amir } 1,2,3 \tag{2}
\end{equation*}
$$

$$
\mathrm{mood} P=-\mathrm{P} \rightarrow
$$

\square
Now consider for $i \neq j, \quad I_{i j}=-\sum_{\alpha} m_{\alpha} x_{\alpha, i} x_{\alpha, j}=-\sum_{\alpha} m_{\alpha}\left(x_{c, i}+x_{\alpha, i}^{\prime}\right)\left(x_{c, j}+x_{\alpha, j}^{\prime}\right)$

$$
\begin{equation*}
=-\left(\sum_{\alpha} m_{\alpha}\right) x_{c, i} x_{c, j}-\left(\sum_{\alpha} m_{\alpha} x_{\alpha, j}^{\prime}\right) x_{c, i}-\left(\sum_{\alpha} m_{\alpha} x_{\alpha, i}^{\prime}\right) x_{c, j}-\sum_{i} m_{\alpha} x_{\alpha, i}^{\prime} x_{\alpha, j}^{\prime} \tag{3}
\end{equation*}
$$

where, $\quad \sum_{\alpha} m_{\alpha}=M=$ total mass of the body,

Also, $\overline{\mathrm{P}} \sum_{i} m_{\alpha} x_{\alpha, i}^{\prime} x_{\alpha, j}^{\prime}=I_{i j}^{\prime}=$ product of inertia with respect to $C x^{\prime} y^{\prime} z^{\prime}$-system $\sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha}^{\prime}=\mathbf{0} \Rightarrow \sum_{\alpha} m_{\alpha}\left(x_{\alpha, 1}^{\prime}, x_{\alpha, 2}^{\prime}, x_{\alpha, 3}^{\prime}\right)=(0,0,0) \Rightarrow \sum_{\alpha} m_{\alpha} x_{\alpha, i}^{\prime}=0, \quad i=1,2,3$
So equation (3) gives

$$
\mathbf{r}_{\alpha}=\mathbf{r}_{c}+\mathbf{r}_{\alpha}^{\prime}-\square-\square-\square \text { (1) }
$$

Prepa

Problem: State and prove parallel axis theorem for the case of products of inertia for a continuous mass distribution.

Statement: Consider a rigid body, in the form of a continuous mass distribution. Let, C be the centre of mass of the body. If $O x y z$ and $C x^{\prime} y^{\prime} z^{\prime}$ be two parallel coordinate systems as shown in the figure, then we have

$$
I_{i j}=I_{i j}^{\prime}-M x_{c, i} x_{c, j}, \quad i \neq j, i, j \in\{1,2,3\}
$$

$I_{i j}=$ product of inertia with respect to $O x y z$-system
$I_{i j}^{\prime}=$ product of inertia with respect to $C x^{\prime} y^{\prime} z^{\prime}$-system $\left(x_{c, 1}, x_{c, 2}, x_{c, 3}\right)=$ position vector of centre of mass " C " with respect to origin " O " $M=$ total mass of the body

Proof: Consider a rigid body, in the form of a set of particles.
$\mathbf{r}=$ position vector of elementary mass $\mathrm{d} m$ with respect to origin " 0 "

$\mathbf{r}^{\prime}=$ position vector of elementary mass $\mathrm{d} m$ with respect to centre of mass " C "
$\mathbf{r}_{c}=$ position vector of centre of mass " C " with respect to origin " O "
From figure,

$$
\mathbf{r}=\mathbf{r}_{c}+\mathbf{r}^{\prime}-1
$$

Let, $\mathbf{r}=\left(x_{1}, x_{2}, x_{3}\right), \quad \mathbf{r}_{c}=\left(x_{c, 1}, x_{c, 2}, x_{c, 3}\right)$ and $\mathbf{r}^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$
So, equation (1) becomes $\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{c, 1}, x_{c, 2}, x_{c, 3}\right)+\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$

$$
\begin{equation*}
\Rightarrow \mathrm{p} x_{i}=x_{c, i}+x_{i}^{\prime}, \quad i=1,2,3 \tag{2}
\end{equation*}
$$

Now consider for $i \neq j, \quad I_{i j}=-\int_{M} x_{i} x_{j} \mathrm{~d} m=-\int_{M}\left(x_{c, i}+x_{i}^{\prime}\right)\left(x_{c, j}+x_{j}^{\prime}\right) \mathrm{d} m$

$$
=-\left(\int_{M} \mathrm{~d} m\right) x_{c, i} x_{c, j}-\left(\int_{M} x_{j}^{\prime} \mathrm{d} m\right) x_{c, i}-\left(\int_{M} x_{i}^{\prime} \mathrm{d} m\right) x_{c, j}-\int_{M} x_{i}^{\prime} x_{j}^{\prime} \mathrm{d} m
$$

where, $\operatorname{Pre} \int \mathrm{d} m=M=$ total mass of the body,
$\begin{array}{ll}\text { Also, } & -\int_{M} x_{i}^{\prime} x_{j}^{\prime} \mathrm{d} m=I_{i j}^{\prime}=\text { product of inertia with respect to } C x^{\prime} y^{\prime} z^{\prime} \text {-system } \\ \text { mood Pred }\end{array}$

And $\int_{M} \mathbf{r}^{\prime} \mathrm{drepare}=\int_{\text {Prepare }}\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) \mathrm{d} m=\left(\int_{M} x_{1}^{\prime} \mathrm{d} m, \int_{M}^{\circ} x_{2}^{\prime} \mathrm{d} m, \int_{M} x_{2}^{\prime} \mathrm{d} m\right)=(0,0,0) \Rightarrow \int_{M}^{D} x_{i}^{\prime} \mathrm{d} m=0, i=1,2,3$
So equation (3) gives

$$
\text { Prepared } I_{i j}=I_{i j}^{\prime}-M x_{c, i} x_{c, j}, i \neq j, \quad i, j \in\{1,2,3\} \quad \text { Hence proved. }
$$

Example 1: Find the moment of inertia of a (uniform) rigid rod of length l about an axis perpendicular to the rod and passing through one of its end points. Solution: Let M, l and λ, respectively, be the mass, length and linear mass density of the rod. We choose x-axis and y-axis as shown in the figure, so that we have to find moment of inertia of the rod about y axis. We divide rod into large number of elements of infinitesimal width. One typical element of mass $\mathrm{d} m$ and length $\mathrm{d} x$, at distance x from the origin, is shown in the figure.

Moment of inertia of typical mass element about y-axis is given by

$$
\mathrm{d} I_{y y}=x^{2} \mathrm{~d} m
$$

Thus, moment of inertia of rod about y-axis is

Example 2: Find the moment of inertia of a (uniform) rigid rod of length l about an axis perpendicular to the rod and passing through its centre. Solution: Let M, l and λ, respectively, be the mass, length and linear mass density of the rod. Choose y-axis as axis
 of rotation, as shown in the figure. We divide rod into large number of elements of infinitesimal width. One typical element of mass $\mathrm{d} m$ and length $\mathrm{d} x$, at distance x from the origin, is shown in the figure.

Moment of inertia of typical element about y axis is given by

$$
\mathrm{d} I_{y y}=x^{2} \mathrm{~d} m
$$

\triangle

Thus, moment of inertia of rod about y-axis is

$$
\begin{aligned}
& \quad \mathrm{d} I_{y y}=x^{2} \mathrm{~d} m \\
& \text { ment of inertia of rod about } y \text {-axis is } \\
& I_{y y}=\int_{\text {Rod }} x^{2} \mathrm{~d} m \\
& =\lambda \int_{\text {Rod }} x^{2} \mathrm{~d} x \\
& =\frac{M}{l} \int_{x=-l / 2}^{l / 2} x^{2} \mathrm{~d} x=\frac{M}{l}\left(\frac{l^{3}}{12}\right)=\frac{1}{12} M l^{2} \\
& \because \lambda=\frac{\mathrm{d} m}{\mathrm{~d} x}=\text { constant } \\
&
\end{aligned}
$$

Example 3: Find the moment of inertia of a (uniform) circular ring of radius a about
(i) an axis passing through its centre and perpendicular to its plane,
(ii) its diameter.

Solution: (i) Moment of inertia about central axis:
Let M, a and λ, respectively, be the mass, radius and linear mass density of the ring. Choose coordinate axes as shown in the figure. We divide ring into large number of elements of infinitesimal width. One typical element of mass $\mathrm{d} m$ and length $\mathrm{d} s$ is shown in the figure.

Moment of inertia of typical element about z-axis is given by

Thus, moment of inertia of ring about z-axis is

$$
\begin{array}{rlrl}
I_{z z} & =a^{2} \int_{\text {Ring }} \mathrm{d} m & \\
& =\lambda a^{2} \int_{\text {Ring }} \mathrm{d} s & & \because \lambda=\frac{\mathrm{d} m}{\mathrm{~d} s}=\text { constant } \\
& =\frac{M a}{2 \pi} \int_{s=0}^{2 \pi a} \mathrm{~d} s=\frac{M a}{2 \pi}(2 \pi a)=M a^{2} & & \because \lambda=\frac{M}{2 \pi a} \text { (for ring) }
\end{array}
$$

(ii) Moment of inertia about diameter:

By perpendicular axis theorem

$$
I_{z z}=I_{x x}+I_{y y}=2 I_{x x}
$$

$$
\Rightarrow I_{x x}=\frac{1}{2} M a^{2}
$$

Example 4: Find the moment of inertia of a (uniform) circular disc of Mass M and radius a about
(i) an axis passing through its centre and perpendicular to its plane,
(ii) its diameter.

Solution: (i) Moment of inertia about central axis: Let M, a and σ, respectively, be the mass, radius and surface (areal) mass density of the disc. Choose axis of rotation as z-axis, as shown in figure.

We divide dise into large number of concentric circular rings of infinitesimal width. One typical elementary ring of mass dm, radius r, width $\mathrm{d} r$ and area $\mathrm{d} A$ is shown in the figure.

$$
\mathrm{d} I_{z z}=r^{2} \mathrm{~d} m
$$

Thus, moment of inertia of disc about z-axis is

$$
\begin{align*}
I_{z z} & =\int_{\text {Disc }} r^{2} \mathrm{~d} m \\
& =2 \pi \sigma \int_{\text {Disc }} r^{3} \mathrm{~d} r \\
& =\frac{2 M}{a^{2}} \int_{r=0}^{a} r^{3} \mathrm{~d} r=\frac{2 M}{a^{2}}\left(\frac{a^{4}}{4}\right)=\frac{1}{2} M a^{2} \quad \because \sigma=\frac{\mathrm{d} m}{\mathrm{~d} A}=\frac{\mathrm{d} m}{(2 \pi r) \mathrm{d} r}=\text { constant } \tag{1}\\
& \because \sigma=\frac{M}{\pi a^{2}} \text { (for disc) }
\end{align*}
$$

(ii) Moment of inertia about diameter:

By perpendicutar axis theorem

Example 5: Find the moment of inertia of a (uniform) elliptical plate with semi-major axis and semi minor axis a and b, respectively about
(i) major axis, \qquad
(ii) minor axis,
(iii) an axis passing through centre of plate and perpendicular to its plane.
Solution: Consider an elliptical plate in $x y$ plane whose boundary curve is given by

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \quad a>b
$$

Let M and σ, respectively, be the mass and surface (areal) mass density of the elliptical plate. To find moment of inertia about major axis (x-axis), we proceed as follows. We divide plate into large number of elementary rectangular pieces of infinitesimal area with sides parallel to x and y axis. One typical area element having mass $\mathrm{d} m$, area $\mathrm{d} S$, length $\mathrm{d} x$ and width $\mathrm{d} y$ is shown in the figure at point (x, y).

Moment of inertia of typical area element about x-axis is given by

mom

Thus, moment of inertia of elliptical plate about x-axis is

$$
\begin{array}{rlr}
I_{x x} & =\int_{\text {Elliptical plate }} y^{2} \mathrm{~d} m & \\
& =\sigma \int_{\text {Elliptical plate }} y^{2} \mathrm{~d} x \mathrm{~d} y & \left.\ddots \sigma=\frac{\mathrm{d} m}{\mathrm{~d} S}=\frac{\mathrm{d} m}{\mathrm{~d} x \mathrm{~d} y}\right)=\text { constant } \\
& =\frac{M}{\pi a b} \int_{\text {Elliptical plate }} y^{2} \mathrm{~d} x \mathrm{~d} y & \ddots \sigma=\frac{M}{\pi a b} \quad \text { (for elliptical plate) } \\
& =\frac{M}{\pi a b} \int_{x=-a}^{a}\left(\int_{y=-\frac{b}{a} \sqrt{a^{2}-x^{2}}}^{\frac{b}{a} \sqrt{a^{2}-x^{2}}} y^{2} \mathrm{~d} y\right) \mathrm{d} x & \\
& =\frac{M}{\pi a b}\left(\frac{2 b^{3}}{3 a^{3}}\right) \int_{x=-a}^{a}\left(a^{2}-x^{2}\right)^{3 / 2} \mathrm{~d} x &
\end{array}
$$

$$
I_{x x}=\frac{4 M b^{2}}{3 \pi a^{4}} \int_{x=0}^{a}\left(a^{2}-x^{2}\right)^{3 / 2} \mathrm{~d} x
$$

\because integrand is even
Put $x=a \sin \theta \Rightarrow \mathrm{~d} x=a \cos \theta \mathrm{~d} \theta, x=0 \Rightarrow \theta=0, x=a \Rightarrow \theta=\pi / 2$

$$
I_{x x}=\frac{4 M b^{2}}{3 \pi a^{4}} \int_{x=0}^{\pi / 2} a^{4} \cos ^{4} \theta \mathrm{~d} \theta
$$

Using Wallis cosine formula, we get

$$
\begin{equation*}
I_{x x}=\frac{4 M b^{2}}{3 \pi}\left(\frac{3}{4}\right)\left(\frac{1}{2}\right)\left(\frac{\pi}{2}\right)=\frac{1}{4} M b^{2} \tag{3}
\end{equation*}
$$

Similarly, moment of inertia about minor axis is
\square

$$
I_{y y}=\frac{1}{4} M a^{2} D
$$

By perpendicular axis theorem, the moment of inertia about the axis passing through centre of the elliptieal plate and perpendicular to its plane, is

$$
\begin{equation*}
I_{z z}=I_{x x}+I_{y y}=\frac{1}{4} M\left(a^{2}+b^{2}\right) \tag{4}
\end{equation*}
$$

Corollary: The moment of inertia of a (uniform) circular disc of radius a about (i) its diameter and (ii) an axis passing through its centre and perpendicular to its plane can be obtained by putting $b=a$ in (3) and (4), to give (respectively)
and

$$
\begin{align*}
I_{x x} & =\frac{1}{4} M a^{2} \tag{5}\\
I_{z z} & =\frac{1}{2} M a^{2}
\end{align*}
$$

Note that, the results obtained in (5) and (6) are in accordance (as they should be) with the results, obtained in (2) and (1), respectively.

Example 6: Find the moment of inertia of a (uniform) triangular lamina (i.e., two dimensional triangular plate) of mass M about one of its sides.
Solution: Let M and σ, respectively, be the mass and surface (areal) mass density of the triangular lamina in $x y$-plane. Choose x-axis and y-axis as shown in figure. We divide lamina into large number of strips of infinitesimal width parallel to the base AB of lamina. One typical elementary strip DE of mass $\mathrm{d} m$, width $\mathrm{d} y$ and area $\mathrm{d} S$ is shown in the figure.

Moment of inertia of typical elementary strip about side AB (x-axis) is given by

$$
\mathrm{d} I_{x x}=y^{2} \mathrm{~d} m
$$

Thus, moment of inertia of triangular lamina about x-axis is

$$
\begin{aligned}
I_{x x} & =\int_{\text {Triangular lamina }} y^{2} \mathrm{~d} m \\
& =\sigma \int_{\text {Triangular lamina }} y^{2}|\mathrm{DE}| \mathrm{d} y \\
& =\frac{2 M}{h} \int_{\text {Triangular lamina }} y^{2} \frac{|\mathrm{DE}|}{|\mathrm{AB}|} \mathrm{d} y
\end{aligned}
$$

$\because \sigma=\frac{M}{\frac{1}{2}|\mathrm{AB}| h}$ (for tiangular lamina)

From equivalent triangles ABC and DEC , we have are equivalent triangles, therefore

$$
\begin{gathered}
\frac{|\mathrm{DE}|}{|\mathrm{AB}|}=\frac{\text { height of } \mathrm{DEC}}{\text { height of } \mathrm{ABC}}=\frac{h-y}{h} \\
\Rightarrow I_{x x}=\frac{2 M}{h} \int_{\text {Triangular lamina }} y^{2}\left(\frac{h-y}{h}\right) d y \\
=\frac{2 M}{h^{2}} \int_{y=0}^{h} y^{2}(h-y) d y=\frac{2 M}{h^{2}}\left(\frac{h^{4}}{3}-\frac{h^{4}}{4}\right)=\frac{1}{6} M h^{2}
\end{gathered}
$$

Example 7: Calculate the inertia ma-

 trix of a (uniform solid) rectangular box (rectangular parallelopiped or cuboid) of mass $M a t$ one of its corners, by taking coordinate axes along its edges.Solution: Let M and ρ, respectively, be the mass and volume mass density of the rectangular box. Let the lengths of adjacent edges be a, b and c. Choose coordinate axis along the edges of box, as shown in figure. We divide lamina into large number of elementary rectangular boxes of infinitesimal volume. One typical elementary volume element
 of mass $\mathrm{d} m$, volume $\mathrm{d} V$ and dimensions $\mathrm{d} x, \mathrm{~d} y$ and $\mathrm{d} z$, is shown in the figure.

Moment of inertia of typical elementary volume element about x-axis is given by

$$
\bigcirc \mathrm{d} I_{x x}=\left(y^{2}+z^{2}\right) \mathrm{d} m
$$

Thus, moment of inertia of triangular lamina about x-axis is

$$
\begin{aligned}
I_{x x} & =\int_{\text {Rectangular box }}\left(y^{2}+z^{2}\right) \mathrm{d} m \\
& =\rho \int_{\text {Rectangular box }}\left(y^{2}+z^{2}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \\
& =\frac{M}{a b c} \int_{\text {Rectangular box }}\left(y^{2}+z^{2}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \\
& =\frac{M}{a b c} \int_{z=0}^{c} \int_{y=0}^{b} \int_{x=0}^{a}\left(y^{2}+z^{2}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \\
& =\frac{M}{a b c}\left[\int_{x=0}^{a} \mathrm{~d} x\right]\left[\int_{z=0}^{c} \int_{y=0}^{b}\left(y^{2}+z^{2}\right) \mathrm{d} y \mathrm{~d} z\right]
\end{aligned}
$$

Similarly,

$$
I_{x x}=\frac{M}{b c} \int_{z=0}^{c} \int_{y=0}^{b}\left(y^{2}+z^{2}\right) \mathrm{d} y \mathrm{~d} z
$$

$$
=\frac{M}{b c} \int_{z=0}^{c}\left(\frac{b^{3}}{3}+b z^{2}\right) \mathrm{d} z
$$

O

$$
=\frac{M}{b c}\left(\frac{b^{3} c}{3}+\frac{b c^{3}}{3}\right)=\frac{M}{3}\left(b^{2}+c^{2}\right)
$$

$$
\begin{gathered}
I_{y y}=\frac{M}{3} a^{2}+ \\
x y \mathrm{~d} m
\end{gathered}
$$

$=\frac{M}{b c}\left(\frac{b^{3} c}{3}+\frac{b c^{3}}{3}\right)=\frac{M}{3}\left(b^{2}+c^{2}\right)$
$\left(a^{2}+c^{2}\right)$ and $I_{z z}=\frac{M}{3}\left(a^{2}+b^{2}\right.$
For product of inrtia

$$
I_{x y}=\int_{\text {Rectangular box }} x y \mathrm{~d} m
$$

$$
\begin{gathered}
=\frac{M}{a b c} \int_{z=0}^{c} \int_{y=0}^{b} \int_{x=0}^{a} x y \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=-\frac{M}{a b c}\left(\frac{a^{2}}{2}\right)\left(\frac{b^{2}}{2}\right) \varepsilon=-\frac{1}{4} M a b \\
I_{y z}=-\frac{1}{4} M b c \quad \text { and } \quad I_{x z}=-\frac{1}{4} M a c
\end{gathered}
$$

The required inertia matrix is given by

Example 8: Calculate the inertia matrix of a (uniform solid) cube of mass M at one of its corners, by taking coordinate axes along its edges. -
Solution: Repeat example 7 for $a=b=c$ and get

$$
\left[I_{O}\right]=\frac{1}{12} M a^{2}\left[\begin{array}{ccc}
8 & -3 & -3 \\
-3 & 8 & -3 \\
-3 & -3 & 8
\end{array}\right]
$$

Example 9: Find the moment of inertia

 of a (uniform solid) hemisphere of mass M about(i) its axis of symmetry
(ii) an axis perpendicular to the axis of symmetry and passing through the centre of the base.

Solution:

(i) Moment of inertia about axis of symmetry:

Let M, a and ρ, respectively, be the mass, radius and
volume mass density of the hemisphere. Choose coordinate axes as shown in figure. \qquad \square

Moment of inertia of typical volume element of hemisphere, with mass $\mathrm{d} m$ and volume $\mathrm{d} V$, about z-axis is given by

$$
\mathrm{d} I_{z z}=\left(x^{2}+y^{2}\right) \mathrm{d} m
$$

Thus, moment of inertia of hemisphere about z-axis is

$$
\begin{aligned}
I_{z z} & =\int_{\text {Hemisphere }}\left(x^{2}+y^{2}\right) \mathrm{d} m \\
& =\rho \int_{\text {Hemisphere }}\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \\
& =\frac{3 M}{2 \pi a^{3}} \int_{\text {Hemisphere }}\left(y^{2}+z^{2}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z
\end{aligned}
$$

To make the computation simpler, we transform the problem from Cartesian coordinates to spherical coordinates (r, θ, ϕ) by using

$$
\begin{align*}
& x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi, \quad z=r \cos \theta \\
& \mathrm{~d} V=\mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\mathrm{d} r(r \mathrm{~d} \theta)(r \sin \theta d \phi)=r^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi \\
& x^{2}+y^{2}=r^{2}\left(\sin ^{2} \theta \cos ^{2} \phi+\sin ^{2} \theta \sin ^{2} \phi\right)=r^{2} \sin ^{2} \theta\left(\cos ^{2} \phi+\sin ^{2} \phi\right)=r^{2} \sin ^{2} \theta \\
& \text { For hemisphere }: 0 \leq r \leq a, \quad 0 \leq \theta \leq \pi / 2, \quad 0 \leq \phi<2 \pi \\
& \Rightarrow \quad I_{z z}=\frac{3 M}{2 \pi a^{3}} \int_{r=0}^{a} \int_{\theta=0}^{\pi / 2} \int_{\phi=0}^{2 \pi} r^{4} \sin ^{3} \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi=\frac{3 M}{2 \pi a^{3}} \int_{r=0}^{a} r^{4} \mathrm{~d} r \int_{\theta=0}^{\pi / 2} \sin ^{3} \theta \mathrm{~d} \theta \int_{\phi=0}^{2 \pi} \mathrm{~d} \phi \\
& \text { Where, } \tag{7}\\
& \int_{\theta=0}^{\pi / 2} \sin ^{3} \theta \mathrm{~d} \theta=\frac{1}{4} \int_{\theta=0}^{\pi / 2}(3 \sin \theta-\sin 3 \theta) \\
& \quad=\frac{1}{4}\left(-3 \cos \theta+\frac{1}{3} \cos 3 \theta\right) \left\lvert\, \begin{array}{l}
\pi / 2 \\
\theta=0=\frac{1}{4}\left(3-\frac{1}{3}\right)=\frac{2}{3}
\end{array}\right.
\end{align*}
$$

Using (8) in (7), we get

$$
I_{z z}=\frac{3 M}{2 \pi a^{3}}\left(\frac{a^{5}}{5}\right)\left(\frac{2}{3}\right)(2 \pi)=\frac{2}{5} M a^{2}
$$

(ii) Moment of inertia about a diameter through the base:

$$
I_{x x}=\int_{\text {Hemisphere }}\left(y^{2}+z^{2}\right) \mathrm{d} m=\frac{3 M}{2 \pi a^{3}} \int_{\text {Hemisphere }}\left(y^{2}+z^{2}\right) \mathrm{d} V
$$

Transforming problem in spherical coordinates (r, θ, ϕ), we get

$$
\begin{align*}
I_{x x} & =\frac{3 M}{2 \pi a^{3}} \int_{r=0}^{a} \int_{\theta=0}^{\pi / 2} \int_{\phi=0}^{2 \pi} r^{4}\left(\sin ^{3} \theta \sin ^{2} \phi+\cos ^{2} \theta \sin \theta\right) \mathrm{d} r \mathrm{~d} \theta \mathrm{~d} \phi \\
& =\frac{3 M}{2 \pi a^{3}} \int_{r=0}^{a} r^{4} \mathrm{~d} r\left(\int_{\theta=0}^{\pi / 2} \sin ^{3} \theta \mathrm{~d} \theta \int_{\phi=0}^{2 \pi} \sin ^{2} \phi \mathrm{~d} \phi+\int_{\theta=0}^{\pi / 2} \cos ^{2} \theta \sin \theta \mathrm{~d} \theta \int_{\phi=0}^{2 \pi} \mathrm{~d} \phi\right) \tag{9}
\end{align*}
$$

Where,

$$
\begin{equation*}
\int_{\phi=0}^{2 \pi} \sin ^{2} \phi \mathrm{~d} \phi=\frac{1}{2} \int_{\phi=0}^{2 \pi}(1-\cos 2 \phi) \mathrm{d} \phi=\left.\frac{1}{2}\left(\phi-\frac{1}{2} \sin 2 \phi\right)\right|_{\phi=0} ^{2 \pi}=\frac{1}{2}(2 \pi)=\pi \tag{10}
\end{equation*}
$$

and

$$
\left.\int_{\theta=0}^{\pi / 2} \cos ^{2} \theta \sin \theta \mathrm{~d} \theta=-\frac{1}{3} \cos ^{3} \theta \right\rvert\, \begin{align*}
& \pi / 2 \tag{11}\\
& \theta=0
\end{align*}=\frac{1}{3}
$$

Using (8), (10) and (11), (9) gives

$$
I_{x x}=\frac{3 M}{2 \pi a^{3}}\left(\frac{a^{5}}{5}\right)\left(\frac{2 \pi}{3}+\frac{2 \pi}{3}\right)=\frac{3 M}{2 \pi a^{3}}\left(\frac{a^{5}}{5}\right)\left(\frac{4 \pi}{3}\right)=\frac{2}{5} M a^{2}
$$

Example 10: Find three products of inertia of a (uniform) solid hemisphere of mass M with respect to coordinate axes as in figure of example 9.

Solution:

$$
\begin{aligned}
I_{x y} & =-\int_{\text {Hemisphere }} x y \mathrm{~d} m=\frac{3 M}{2 \pi a^{3}} \int_{\text {Hemisphere }} x y \mathrm{~d} V \\
& =-\frac{3 M}{2 \pi a^{3}} \int_{r=0}^{a} \int_{\theta=0}^{\pi / 2} \int_{\phi=0}^{2 \pi} r^{4} \sin ^{2} \theta \sin \phi \cos \phi \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi \\
& =-\frac{3 M}{2 \pi a^{3}} \int_{r=0}^{a} r^{4} \mathrm{~d} r \int_{\theta=0}^{\pi / 2} \sin ^{2} \theta \mathrm{~d} \theta \int_{\phi=0}^{2 \pi} \sin \phi \cos \phi \mathrm{~d} \phi
\end{aligned}
$$

But

$$
\int_{\phi=0}^{2 \pi} \sin \phi \cos \phi d \phi=\left.\frac{1}{2} \sin ^{2} \phi\right|_{\phi=0,0} ^{2 \pi} \quad \Longrightarrow \quad I_{x y}=0
$$

Now,

$$
I_{x z}=-\int_{\text {Hemisphere }} x z \mathrm{~d} m=\frac{3 M}{2 \pi a^{3}} \int_{\text {Hemisphere }} x y \mathrm{~d} V
$$

But

$$
\underbrace{0}_{0}
$$

$$
=-\frac{3 M}{2 \pi a^{3}} \int_{r=0}^{a} \int_{\theta=0}^{\pi / 2} \int_{\phi=0}^{2 \pi} r^{4} \sin \theta \cos \theta \cos \phi \mathrm{~d} r \mathrm{~d} \bar{\theta} \mathrm{~d} \phi
$$

O

$$
=-\frac{3 M}{2 \pi a^{3}} \int_{r=0}^{a} r^{4} \mathrm{~d} r \int_{\theta=0}^{\pi / 2} \sin \theta \cos \theta \mathrm{~d} \theta \int_{\phi=0}^{2 \pi} \cos \phi \mathrm{~d} \phi
$$

$$
\int_{\phi=0}^{2 \pi} \cos \phi \mathrm{~d} \phi=\left.\sin \phi\right|_{\phi=0} ^{2 \pi}=0 \Longrightarrow \quad I_{x z}=0=I_{y z}
$$

Thus,

$$
I_{x y}=I_{x z}=I_{y z}=0
$$

Example 11: Find the moments and products

 of inertia of a (uniform solid) sphere of mass M and radius a with respect to its axes of symmetry.Solution: (i) Moment of inertia about axis of symmetry: Let M, a and ρ, respectively, be the mass, radius and volume mass density of the sphere. Choose coordinate axes as shown in figure.

Moment of inertia of typical volume element of sphere, with mass $\mathrm{d} m$ and volume $\mathrm{d} V$, about z-axis is given by

$$
\square \mathrm{d} I_{z z}=\left(x^{2}+y^{2}\right) \mathrm{d} m
$$

Thus, moment of inertia of sphere about z-axis is

$$
\begin{aligned}
I_{z z} & =\int_{\text {Sphere }}\left(x^{2}+y^{2}\right) \mathrm{d} m \\
& =\rho \int_{\text {Sphere }}\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \\
& =\frac{3 M}{4 \pi a^{3}} \int_{\text {Sphere }}\left(y^{2}+z^{2}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z
\end{aligned}
$$

To make the computation simpler, we transform the problem from Cartesian coordinates to spherical coordinates (r, θ, ϕ) by using

$$
\begin{gathered}
x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi, \quad z=r \cos \theta \\
\mathrm{~d} V=\mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\mathrm{d} r(r \mathrm{~d} \theta)(r \sin \theta d \phi)=r^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi \\
x^{2}+y^{2}=r^{2}\left(\sin ^{2} \theta \cos ^{2} \phi+\sin ^{2} \theta \sin ^{2} \phi\right)=r^{2} \sin ^{2} \theta\left(\cos ^{2} \phi+\sin ^{2} \phi\right)=r^{2} \sin ^{2} \theta \\
\text { For sphere : } 0 \leq r \leq a, \quad 0 \leq \theta \leq \pi, \quad 0 \leq \phi<2 \pi \\
\Rightarrow \quad I_{z z}=\frac{3 M}{2 \pi a^{3}} \int_{r=0}^{a} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} r^{4} \sin ^{3} \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi=\frac{3 M}{2 \pi a^{3}} \int_{r=0}^{a} r^{4} \mathrm{~d} r \int_{\theta=0}^{\pi} \sin ^{3} \theta \mathrm{~d} \theta \int_{\phi=0}^{2 \pi} \mathrm{~d} \phi
\end{gathered}
$$

Where,

$$
\begin{aligned}
\int_{\theta=0}^{\pi} \sin ^{3} \theta \mathrm{~d} \theta & =\frac{1}{4} \int_{\theta=0}^{\pi}(3 \sin \theta-\sin 3 \theta) \\
& =\frac{1}{4}\left(-3 \cos \theta+\frac{1}{3} \cos 3 \theta\right) \left\lvert\, \begin{array}{l}
\pi \\
\theta=0=\frac{1}{4}\left[\left(3-\frac{1}{3}\right)-\left(-3+\frac{1}{3}\right)\right]=\frac{4}{3}
\end{array}\right.
\end{aligned}
$$

Thus,

Similarly,

$$
I_{z z}=\frac{3 M}{4 \pi a^{3}}\left(\frac{a^{5}}{5}\right)\left(\frac{4}{3}\right)(2 \pi)=\frac{2}{5} M a^{2}
$$

$$
I_{x x}=I_{y y}=\frac{2}{5} M a^{2}
$$

(ii) Products of inertia with respect to axes of symmetry:

But

Example 12: Find the moments and products of inertia of a (uniform) solid ellipsoid

Similarly,

Solution: (i) Moment of inertia about axis of symmetry:

Let M and ρ, respectively, be the mass and volume mass density of the ellipsoid. Choose coordinate axes as shown in figure.

Moment of inertia of typical volume element of ellipsoid, with mass $\mathrm{d} m$ and volume $\mathrm{d} V$, about z-axis is given by

$$
\mathrm{d} I_{z z}=\left(x^{2}+y^{2}\right) \mathrm{d} m
$$

Thus, moment of inertia of ellipsoid about z-axis is

$$
\begin{aligned}
I_{z z} & =\int_{\text {Ellipsoid }}\left(x^{2}+y^{2}\right) \mathrm{d} m \\
& =\rho \int_{\text {Ellipsoid }}\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \\
& =\frac{3 M}{4 \pi a b c} \int_{\text {Sphere }}\left(y^{2}+z^{2}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z
\end{aligned}
$$

$\because \rho=\frac{M}{\frac{4}{3} \pi a b c}$ (for ellipsoid)

$$
\begin{equation*}
I_{z z}=\int_{\text {Ellipsoid }}\left(x^{2}+y^{2}\right) \mathrm{d} m \tag{12}
\end{equation*}
$$

Let us substitute

$$
\begin{gathered}
x / a=x^{\prime}, \quad y / a=y^{\prime}, \quad z / a=z^{\prime} \\
\Rightarrow \quad \mathrm{d} x / a=\mathrm{d} x^{\prime}, \quad \mathrm{d} y / a=\mathrm{d} y^{\prime}, \quad \mathrm{d} z / a=\mathrm{d} z^{\prime}, \quad \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=a b c \mathrm{~d} x^{\prime} \mathrm{d} y^{\prime} \mathrm{d} z^{\prime}
\end{gathered}
$$

Under the above transformation, the given ellipsoid is transformed into the unit sphere

To make the computation simpler, we transform the problem from Cartesian coordinates (x^{\prime}, y^{\prime}, z^{\prime}) to spherical coordinates (r, θ, ϕ) by using

$$
\begin{gathered}
x^{\prime}=r \sin \theta \cos \phi, \quad y^{\prime}=r \sin \theta \sin \phi, \quad z^{\prime}=r \cos \theta \\
\mathrm{~d} V=\mathrm{d} x^{\prime} \mathrm{d} y^{\prime} \mathrm{d} z^{\prime}=\mathrm{d} r(r \mathrm{~d} \theta)(r \sin \theta d \phi)=r^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi
\end{gathered}
$$

For unit sphere,

$$
0 \leq r \leq 1, \quad 0 \leq \theta \leq \pi, \quad 0 \leq \phi<2 \pi
$$

$$
\Rightarrow \quad I_{z z}=\frac{3 M\left(a^{2}+b^{2}\right)}{4 \pi} \int_{r=0}^{1} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} r^{4} \sin ^{3} \theta \cos ^{2} \phi \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi
$$

๓

$$
=\frac{3 M\left(a^{2}+b^{2}\right)}{4 \pi} \int_{r=0}^{1} r^{4} \mathrm{~d} r \int_{\theta=0}^{\pi} \sin ^{3} \theta \mathrm{~d} \theta \int_{\phi=0}^{2 \pi} \cos ^{2} \phi \mathrm{~d} \phi
$$

Where,

$$
\begin{aligned}
& \int_{\theta=0}^{\pi} \sin ^{3} \theta \mathrm{~d} \theta=\frac{1}{4} \int_{\theta=0}^{\pi}(3 \sin \theta-\sin 3 \theta) \\
&=\frac{1}{4}\left(-3 \cos \theta+\frac{1}{3} \cos 3 \theta\right) \sin ^{\pi} 3 \theta=3 \sin \theta-4 \sin ^{3} \theta \\
& \theta=0=\frac{1}{4}\left[\left(3-\frac{1}{3}\right)-\left(-3+\frac{1}{3}\right)\right]=\frac{4}{3}
\end{aligned}
$$

and

$$
\begin{gathered}
\left.\int_{\phi=0}^{2 \pi} \cos ^{2} \phi \mathrm{~d} \phi=\frac{1}{2} \int_{\phi=0}^{2 \pi}(1+\cos 2 \phi) \mathrm{d} \phi=\frac{1}{2}\left(\phi+\frac{1}{2} \sin 2 \phi\right) \right\rvert\, \begin{array}{l}
2 \pi \\
\phi=0 \\
2
\end{array}(2 \pi)=\pi \\
\Rightarrow I_{z z}=\frac{3 M\left(a^{2}+b^{2}\right)}{4 \pi}\left(\frac{1}{5}\right)\left(\frac{4}{3}\right)(\pi)=\frac{1}{5} M\left(a^{2}+b^{2}\right)
\end{gathered}
$$

Similarly,

$$
I_{x x}=\frac{1}{5} M\left(b^{2}+c^{2}\right) \quad \text { and } \quad I_{y y}=\frac{1}{5} M\left(a^{2}+c^{2}\right)
$$

(ii) Products of inertia with respect to axes of symmetry:

But

Corollary: The moment and product of inertia of a (uniform) solid sphere of mass M and radius a with respect to its axis of symmetry can be obtained by putting $a=b=c$ in results of above example 12. The obtained results are in accordance (as they should be) with the results of example 11.
Example 13: Find the moment of inertia of a (uniform) right circular solid cone about
(i) its axis of symmetry and \square
(ii) any diameter of the base.

Solution: (i) Moment of inertia about axis of symmetry:
Let M, h, a and ρ, respectively, be the mass, height, radius of base and volume mass density of a (uniform) right circular solid cone. Choose coordinate axes as shown in figure. Let us divide cone into large number of elementary solid discs parallel to the base of the cone. One such elementäry disc of radius r, mass $\mathrm{d} m$, thickness $\mathrm{d} z$ and volume $\mathrm{d} V$ is shown in the figure, at a distance z from the base of the cone.

Moment of inertia of elementary disc about z-axis is given by

$$
\square \mathrm{d} I_{z z}=\frac{1}{2} r^{2} \mathrm{~d} m
$$

Thus, moment of inertia of cone about z-axis is

$$
\begin{aligned}
I_{z z} & =\frac{1}{2} \int_{\text {Cone }} r^{2} \mathrm{~d} m \\
& =\frac{\rho}{2} \int_{\text {Cone }} r^{2}\left(\pi r^{2}\right) \mathrm{d} z \\
& =\frac{3 M}{2 a^{2} h} \int_{\text {Cone }} r^{4} \mathrm{~d} z
\end{aligned}
$$

From similar triangles $A O C$ and $D B C$
—

$$
\begin{aligned}
\frac{r}{a} & =\frac{h-z}{h} \quad \text { or } \quad r=\frac{a(h-z)}{h} \\
\Rightarrow I_{z z} & =\frac{3 M}{2 a^{2} h} \int_{\text {Cone }}\left[\frac{a(h-z)}{h}\right]^{4} \mathrm{~d} z \\
& =\frac{3 M a^{2}}{2 h^{5}} \int_{z=0}^{h}(h-z)^{4} \mathrm{~d} z \\
& =-\left.\frac{3 M a^{2}}{10 h^{5}}(h-z)^{5}\right|_{z=0} ^{h}=\frac{3}{10} M a^{2} \\
& =
\end{aligned}
$$

(ii) Moment of inertia about diameter of the base:

In this case, the moment of inertia of the elementary disc of mass $\mathrm{d} m$ about a diameter, along $D B$, is given by

We note that the diameter passes through the center (which is also the centroid) of the elementary disc. Hence, by parallel axis theorem, the moment of inertia of the elementary disc about a parallel axis along $A O$ (through the centre of the base of cone) is given by

$$
\begin{aligned}
\mathrm{d} I_{y y} & =\mathrm{d} I_{o}+(\mathrm{d} m) z^{2} \\
& =\frac{1}{4} r^{2} \mathrm{~d} m+(\mathrm{d} m) z^{2}=\left(\frac{1}{4} r^{2}+z^{2}\right) \mathrm{d} m \\
& =\frac{3 M}{a^{2} h}\left(\frac{1}{4} r^{4}+r^{2} z^{2}\right) \mathrm{d} z, \quad \because \mathrm{~d} m=\rho \mathrm{d} V=\frac{3 M}{a^{2} h}\left(r^{2} \mathrm{~d} z\right)
\end{aligned}
$$

Therefore, the moment of inertia of whole cone about diameter of the base is given by

$$
\begin{aligned}
I_{y y} & =\frac{3 M}{a^{2} h} \int_{z=0}^{h}\left[\frac{1}{4}\left(\frac{a(h-z)}{h}\right)^{4}+\left(\frac{a(h-z)}{h}\right)^{2} z^{2}\right] \mathrm{d} z \\
& =\frac{3 M}{a^{2} h} \int_{z=0}^{h}\left[\frac{a^{4}}{4 h^{4}}(h-z)^{4}+\frac{a^{2}}{h^{2}}\left(h^{2} z^{2}-2 h z^{3}+z^{4}\right)\right] \mathrm{d} z \\
& =\frac{3 M}{a^{2} h}\left[-\frac{a^{4}}{20 h^{4}}(h-z)^{5}+\frac{a^{2}}{h^{2}}\left(h^{2} \frac{z^{3}}{3}-h\left(\frac{z^{4}}{2}+\frac{z^{5}}{5}\right)\right] \left\lvert\, \begin{array}{l}
h \\
z=0 \\
\\
\end{array}=\frac{3 M}{a^{2} h}\left[\frac{a^{4} h}{20}+\frac{a^{2}}{h^{2}}\left(\frac{h^{5}}{3}-\frac{h^{5}}{2}+\frac{h^{5}}{5}\right)\right]=\frac{3 M}{a^{2} h}\left[\frac{a^{4} h}{20}+a^{2} h^{3}\left(\frac{10-15+6}{30}\right)\right]\right.\right. \\
& =\frac{3 M}{a^{2} h}\left[\frac{a^{4} h}{20}+\frac{a^{2} h^{3}}{30}\right]=\frac{3 M}{a^{2} h}\left[\frac{3 a^{4} h+2 a^{2} h^{3}}{60}\right]=\frac{1}{20} M\left(3 a^{2}+2 h^{2}\right)
\end{aligned}
$$

