Chapter: VIII

RECTILINEAR MOTION

81 RECTILINEAR MOTION:

The motion of a body along a straight line is called its rectilinear motion.

If the motion is rectilinear, so there is no distinction between vector equation & scalar equation,

\[v = \frac{dx}{dt} \quad (i) \]

Can be expressed as:

\[v = \frac{dx}{dt} \quad (ii) \]

And

\[a = \frac{dv}{dt} = \frac{d^2x}{dt^2} \quad (iii) \]

Can be denoted as:

\[a = \frac{du}{dt} = \frac{d^2x}{dx \cdot dt} = \mu \frac{dv}{dx} \]

If \(v \) is considered as function of \(x \) so

\[a = \frac{dv}{dx} \cdot \frac{dx}{dt} = \mu \cdot \frac{dv}{dx} \]

MOTION WITH CONSTANT ACCELERATION:

Let a particle moving with constant acceleration along a straight line. Let at time \(t=0 \) the particle will be at point \(O \) and after some time \(t \) its velocity become \(v \) so acceleration \(a = \frac{du}{dt} \) \((i) \)

\[\Rightarrow \frac{dv}{dt} = a \cdot dt \quad (separating \ text \ variables) \]

Integrating with respect to \(t \):

\[\int dv = \int a \cdot dt \quad (i.e.) \]

\[v = at + c_1 \quad (ii) \]

Where \(c_1 \) is a constant of integration.

Applying condition when \(t=0 \) its velocity \(v=0 \)

So \(u = a \cdot 0 + c_1 \Rightarrow u = c_1 \)

So equation \((ii) \) become:

\[v = at + u \quad (iii) \]
We can write Equation (iii)
\[v = \frac{dx}{dt} = u + at \]

Separating the variable \(\quad \int dx = (u + at) dt \)
Integrating above
\[\int dx = \int (u + at) dt = \int ud\tau + at\,d\tau \]
\[x = ut + \frac{at^2}{2} + C_2 \quad \ldots \ldots (iv) \]

where \(C_2 \) is another constant of integration.
\[x = 0 \text{ when } t = 0 \]
\[\therefore \quad 0 = u \cdot 0 + \frac{a \cdot 0^2}{2} + C_2 \Rightarrow C_2 = 0 \]
Thus Equation (iv) takes the form
\[x = ut + \frac{1}{2} at^2 \quad \ldots \ldots (v) \]

\[a = \frac{dv}{dt} = v \frac{dv}{dx} \quad \ldots \ldots (vi) \]

Separating the variable \(\quad vdv = axdx \)
Integrating above \(\quad \int vdv = \int axdx \)
\[\Rightarrow \quad \frac{v^2}{2} = ax + C_3 \quad \ldots \ldots (vii) \]
where \(C_3 \) is a constant of integration
\[v = u \text{ at } x = 0 \]
\[\therefore \quad \frac{u^2}{2} = 0 + C_3 \Rightarrow C_3 = \frac{u^2}{2} \]
Thus Equation (vii) becomes
\[\frac{v^2}{2} = ax + \frac{u^2}{2} \]
\[v^2 = 2ax + u^2 \]
\[\left| v^2 - u^2 \right| = 2ax \quad \ldots \ldots (viii) \]

Now if the particle starts from rest \(\quad v = 0 \)
\[u = 0 \]
\[v = u + at = 0 + at \]
\[\Rightarrow \quad v = at \quad \ldots \ldots (ix) \]
\[x = ut + \frac{1}{2}at^2 = 0t + \frac{1}{2}at^2 \]
\[\Rightarrow x = \frac{1}{2}at^2 \quad (x) \]

\[v^2 - u^2 = 2ax \]
\[v^2 - 0 = 2ax \]
\[\Rightarrow v^2 = 2ax \quad (xi) \]

If the particle moves with retardation \(a' \),
we replace \(a \) by \(-a'\) so
\[v = u - a't \quad \text{so} \quad (xii) \]
\[v' = ut' - \frac{1}{2}a't' \quad (xiii) \]
\[v^2 = u^2 - 2a'x \quad (xiv) \]

The distance covered in \(nth \) second is given by
\[x_n - x_{n-1} = u + \frac{1}{2} (2n-1)a \quad (i) \]

Vertical Motion Under Gravity:

1) Downward Motion:
 - If the bodies fall freely from rest, so
 \[v = gt \quad (i) \]
 \[x = \frac{1}{2}gt^2 \quad (i) \]
 \[v^2 = 2gx \quad (iii) \]
 - Upward Motion:
 - If the body projected vertically upward with initial velocity \(u \) so body moves up with retardation and equation of up motion takes form
 \[v = u - gt \quad (i) \]
 \[x = ut - \frac{1}{2}gt^2 \quad (i) \]
 \[v^2 - u^2 = -2gx \quad (iii) \]
 \[\Rightarrow v^2 = u^2 - 2gx \quad (iv) \]

Math #8.3 Motion with Variable Acceleration:

Case (i) : Time-Dependent Acceleration
\[a = f(t) \quad (i) \]
\[\Rightarrow \frac{du}{dt} = a = f(t) \]
\[\Rightarrow \text{Separating the variable}\ & \text{then integrating:} \]
\[\int du = \int f(t) \, dt \]
\[v = \int f(t)\,dt + C_1 \quad (ii) \]

where \(C_1 \) is a constant of integration.

\[\frac{dx}{dt} = f(t) + C \]

\[\int dx = \int [f(t) + C]\,dt \quad \text{i.e.,} \]

\[x = \int f(t)\,dt + C_1 + C_2 \quad (iii) \]

where \(C_2 \) is another constant of integration.

The values of \(C_1 \) & \(C_2 \) can be determined by applying initial conditions of motion.

Case (ii): Distance-Dependent Acceleration

\[a = f(x) \quad (i) \]

\[\Rightarrow \quad v \cdot \frac{dv}{dx} = a = f(x) \quad \text{i.e.,} \]

\[\int v \cdot dv = \int f(x)\,dx \]

\[\Rightarrow \quad \frac{v^2}{2} = \int f(x)\,dx + C_1 \quad (ii) \]

where \(C_1 \) is a constant of integration.

\[\Rightarrow \quad v^2 = 2\psi(x) + 2C_1 \quad \text{i.e.,} \]

\[\frac{dx}{dt} = v = \pm \sqrt{2\psi(x) - 2C_1} \]

\[\int dt = \pm \int \frac{1}{\sqrt{2\psi(x) - 2C_1}}\,dx \]

\[\Rightarrow \quad t = \pm \int \frac{dx}{\sqrt{2\psi(x) + 2C_1}} + C_2 \quad (iii) \]

where \(C_2 \) is another constant of integration.

Case (iii): Velocity-Dependent Acceleration

\[a = f(v) \quad (i) \]

\[\Rightarrow \quad \frac{dv}{dt} = a = f(v) \quad \text{i.e.,} \]

\[v \cdot \frac{dv}{dx} = a = f(x) \]

Seperating the variable \(x \) and then integrating.
\[
\int t \, dt = \int \frac{dv}{f(v)} \quad \text{i.e.,}
\]
\[
t = \int \frac{dv}{f(v)} + c_1 \quad \text{i.e.,}
\]
where \(c_1 \) is the constant of integration.

\[& \quad \int dx = \int \frac{vdv}{f(v)} \quad \text{i.e.,}
\]
\[
x = \int \frac{vdv}{f(v)} + c_2
\]
where \(c_2 \) is another constant of integration.

Graphical Solution of Rectilinear Problems:

Area \(\int_{x_1}^{x_2} y \, dx \)

\[
v = \frac{dx}{dt}
\]

\[
\alpha = \frac{dv}{dt}
\]

\[
\therefore \quad v = \frac{dx}{dt} \Rightarrow dx = v \, dt
\]

Integrating above

\[
\int_{t_1}^{t_2} dx = \int_{t_1}^{t_2} v \, dt
\]

\[
[x]_{t_1}^{t_2} = \int_{t_1}^{t_2} v \, dt \quad \text{i.e.,}
\]

\[
t_2 - t_1 = \int_{t_1}^{t_2} v \, dt
\]

The slope of velocity-time curve of a particle
moving in a straight line gives its acceleration and area under curve denotes distance and area under curve denotes distance covered by particle during some interval.

8.6 SIMPLE HARMONIC MOTION :-

The particle is said to move with S.H.M if it moves in a straight line with an acceleration which is proportional to its distance from fixed pt. and is always directed toward fixed pt.

\[X^\prime \quad O \quad X \]

Let \(ox \) be a straight line along which particle is moving and fixed pt. \(O \) on line can be taken as origin. Consider \(P \) the position of particle at any time \(t \), where \(OP = x \). So the acceleration at \(P \) is proportional to \(x \) and hence become \(2kx \) in magnitude. It is known that acceleration is directed toward \(O \) and is in opposite direction in which \(x \) increases, so the equation of motion takes the form,

\[
\frac{dx}{dt^2} = -kx \quad (i)
\]

or \[
\frac{dv}{dx} = -kx \quad (ii)
\]

Separating the variable and integrating \((ii) \)

\[
\int dx = -k \int x \, dx \quad \Rightarrow \quad \frac{v^2}{2} = -\frac{x^2}{2} + c_1 \quad (iii)
\]

where \(c_1 \) is a constant of integration.

The particle is moving away from \(O \) and acceleration is towards \(O \), i.e., opposite direction.

So its velocity becomes zero at some pt. \(A \) (say) where \(OA = a \), i.e., \(v = 0 \) at \(x = a \), put values in \((iii) \)

So \(0 = -k \frac{a^2}{2} + c_1 \quad \Rightarrow \quad c_1 = -\frac{ka^2}{2} \)
The Eq (iii) become:

\[v^2 = \frac{-\lambda}{2} \cdot \frac{a^2 - x^2}{x} + \frac{\lambda a}{2} \]

\[v^2 = \lambda \left(a^2 - x^2 \right) \frac{2}{x} \]

\[v = \pm \sqrt[4]{\lambda \left(a^2 - x^2 \right)} \]

It gives velocity at any displacement \(x \).

If particle is moving towards right and as \(t \) increases, \(x \) also increases so \(\frac{dx}{dt} \) is true.

and we get

\[v = \frac{dx}{dt} = \sqrt[4]{\lambda \left(a^2 - x^2 \right)} \] \(\text{(v)} \)

Separating the variables and then integrating

\[\int \frac{dx}{\sqrt[4]{\lambda \left(a^2 - x^2 \right)}} = \int \sqrt[4]{\lambda} \cdot 1 \cdot dt \]

\[\Rightarrow \sin^{-1} \frac{x}{a} = \sqrt[4]{\lambda} \cdot t + c_2 \] \(\text{(vi)} \)

where \(c_2 \) is another constant of integration.

Applying condition i.e. \(t = 0 \) if time is measured from instant when particle is at \(A \) where \(x = a \)

\[\sin^{-1} \left(\frac{x}{a} \right) = \sqrt[4]{\lambda} \cdot 0 + c_2 = c_2 \]

\[c_2 = \sin^{-1} \frac{a}{a} = \frac{\pi}{2} \]

Put value of \(c_2 \) in \(\text{vi} \), so

\[\sin^{-1} \frac{x}{a} = \sqrt[4]{\lambda} \cdot t + \frac{\pi}{2} \]

\[\Rightarrow \frac{x}{a} = \sin \left(\sqrt[4]{\lambda} \cdot t + \frac{\pi}{2} \right) = \cos \sqrt[4]{\lambda} \cdot t \]

If \(t \) is measured from fixed pt. \(0 \)

\[x = 0 \text{ at } t = 0 \]

\[\sin^{-1} \frac{x}{a} = \sqrt[4]{\lambda} \cdot 0 + c_2 = c_2 \]

\[c_2 = \sin^{-1} 0 = 0 \]

Putting \(c_2 = 0 \) in \(\text{vi} \) we have \n
\[\sin^{-1} \frac{x}{a} = \sqrt[4]{\lambda} \cdot t + 0 = \sqrt[4]{\lambda} \cdot t \]

\[\Rightarrow \frac{x}{a} = \sin \sqrt[4]{\lambda} \cdot t \]

\[x = a \sin \sqrt[4]{\lambda} \cdot t \] \(\text{(vii)} \)

The Equation (vii) & (viii) give displacement of particle from fixed pt. \(0 \) according as time is measured from end pt. or fixed pt. \(0 \).
8-1 NATURE OF S.H.M:

If the particle is at pt. A i.e. \(t = 0 \), so S.H.M is given by

\[x = a \cos \sqrt{\frac{a}{k}} t \] (i)

Differentiate \(w.r.t. t \),

\[\frac{dx}{dt} = a(- \sin \sqrt{\frac{a}{k}} t) \sqrt{\frac{a}{k}} t \]

\[\Rightarrow \frac{dx}{dt} = v = -a \sqrt{\frac{a}{k}} \sin \sqrt{\frac{a}{k}} t \] (ii)

Now, the distance of particle at any time \(t \) is given by

\[x = a \cos \sqrt{\frac{a}{k}} t \]

\[= a \cos (\sqrt{\frac{a}{k}} t + 2\pi) \quad \Rightarrow \cos \theta = \cos (2\pi + \theta) \]

\[= a \cos (\sqrt{\frac{a}{k}} (t + 4\pi)) \]

\[\text{or} \quad x = a \cos \sqrt{\frac{a}{k}} (t + 2\pi) \]

\[= a \cos \sqrt{\frac{a}{k}} (t + 4\pi) \]

It shows that after time \(t + 2\frac{2\pi}{\sqrt{\frac{a}{k}}} \), \(t + 4\frac{2\pi}{\sqrt{\frac{a}{k}}} \), \ldots is same as at time \(t \). It means particle occupied some position after every \(2\frac{2\pi}{\sqrt{\frac{a}{k}}} \) sec. now

\[\frac{dx}{dt} = -a \sqrt{\frac{a}{k}} \sin (t + 2\pi) \]

\[= -a \sqrt{\frac{a}{k}} \sin (\sqrt{\frac{a}{k}} t + 4\pi) \] (iii)

\[\text{or} \quad \frac{dx}{dt} = -a \sqrt{\frac{a}{k}} \sin \sqrt{\frac{a}{k}} (t + \frac{4\pi}{\sqrt{\frac{a}{k}}} \) \]

\[\Rightarrow \text{at time } t + 2\frac{2\pi}{\sqrt{\frac{a}{k}}} \]

\[\Rightarrow \text{time period of oscillation (or motion) and denoted by } T \]

Thus we find that if at some time \(t \), the particle is at some pt. moving with velocity \(V \) in some direction, so after \(2\frac{2\pi}{\sqrt{\frac{a}{k}}} \) units of time, it is again at \(t \) same pt. moving with same velocity \(V \) in same direction. Therefore, the motion is such that is repeats itself after \(2\frac{2\pi}{\sqrt{\frac{a}{k}}} \) unit of time and time is known as time period of oscillation (or motion) and denoted by \(T \).

Hence the particle oscillates once about pt. A in...
in the term

\[T = \frac{2\pi}{\lambda} \]

The particle moves with \(x = a \) & \(x = -a \) so displacement of particle on either side of fixed pt O is called amplitude.

The number of vibrations completed by particle in a unit of time is called frequency denoted by \(\nu \)

Thus if \(\nu \) is frequency so

\[\nu \cdot T = 1 \]

\[\therefore \nu = \frac{1}{T} = \frac{\sqrt{3}}{2\pi} \]

8.8 GEOMETRICAL REPRESENTATION:

The motion of particle with uniform speed along a circle along a circle has relation with S.H.M. as motion is repeated every time the path has been directed completely.

Let a particle \(Q \) be moving along circle of radius \(a \) with uniform speed \(v \) so its angular velocity is \(w = \frac{v}{a} \) The particle moves around circle once in \(\frac{2\pi}{w} \) units of time, whereas \(OP \) is projection of \(Q \) on \(x \)-axis passing through centre \(O \) of circle.

The particle \(Q \) repeats its motion after every \(\frac{2\pi}{w} \) units of time and motion of \(P \) is also periodic having period \(\frac{2\pi}{w} \). The acceleration of \(P \) is same as that of \(Q \) \(\parallel \) to \(x \)-axis. The particle has acceleration \(a_{x_0} \) along \(\overrightarrow{OP} \) so it can be expressed as \(w^2 \overrightarrow{a_0} \).

\[w^2 \overrightarrow{a} = w^2 (\overrightarrow{OP} + \overrightarrow{PO}) \]

\[\therefore w^2 \overrightarrow{a} = 0 \]
So acceleration of P is \(\omega^2 \vec{r}_0\), i.e. acceleration of P is proportionate to its distance from fixed pt (i.e. centre of circle) and is directed toward centre.

Hence P executes S.H.M. whose time period is \(\frac{2\pi}{\omega}\).

Let \(\vec{r}_0 P = x_0 \hat{a} = \theta\) & \((x,y)\) be the cartesian co-ordinates of pt \(P\), so \(\frac{OP}{OA} = \cos \theta \Rightarrow \frac{x}{a} = \cos \theta\) \(\Rightarrow \theta\).

\[x = a \cos \theta \quad \text{and} \quad y = a \sin \theta\]

The pt \(P\) lies on \(x\)-axis so its co-ordinate are \((x,0)\) or \((a \cos \theta,0)\)

Then velocity and acceleration of P along \(x\)-axis are given by

\[
\dot{x} = \frac{dx}{dt} \quad \omega (-\sin \theta) \quad \dot{\omega} = -a \omega^2 \sin \theta.
\]

\[a \cos \theta \quad \frac{d^2x}{dt^2} = \frac{d}{dt} \left(\frac{dx}{dt} \right) \frac{d\theta}{dt} = \frac{d^2x}{d\theta^2} \frac{d\theta}{dt} \]

\[\Rightarrow \ddot{x} = \frac{d^2x}{dt^2} = -a \omega^2 \cos \theta \quad \frac{d\theta}{dt} = -a \omega^2 \cos \theta \Rightarrow -\omega^2 (a \cos \theta).
\]

\[\dddot{x} = -\omega^4 x \quad \text{(iii)}
\]

The last equation implies that P executes S.H.M. about \(O\) with time period \(\frac{2\pi}{\omega}\).

Available at
www.mathcity.org