Chapter No. 7

Important Definitions:

Kinematics: The branch of mechanics concerned with the motion of objects without reference to the forces which cause the motion.

Dynamics: The branch of mechanics concerned with the motion of objects with reference to the forces which cause the motion.
Displacement: Shortest distance between two points is called displacement, and it is a vector quantity.
Velocity: Time derivative of displacement is called velocity or time rate of change of displacement.

Acceleration: Time derivative of velocity or time rate of change of velocity.
Example: A particle is moving in such a way that its position at any time t is specified by

$$
\bar{r}=\left(t^{3}+t^{2}\right) \hat{\imath}+\left(\cos t+\sin ^{2} t\right) j+\left(e^{t}+\log t\right) k
$$

Find its velocity and acceleration.

Solution:

$$
\begin{gathered}
\bar{v}=\frac{d \bar{r}}{d t}=\left(3 t^{2}+2 t\right) i+(2 \sin t \cos t-\sin t) j+\left(e^{t}+\frac{1}{t}\right) k \\
\bar{v}=\left(3 t^{2}+2 t\right) i+(\sin 2 t-\sin t) j+\left(e^{t}+\frac{1}{t}\right) k \\
\bar{a}=\frac{d \bar{v}}{d t}=(6 t+2) i+(2 \cos 2 t-\cos t) j+\left(e^{t}-\frac{1}{t^{2}}\right) k
\end{gathered}
$$

Cartesian Components of Velocity and Acceleration:

In plane cartesian coordinates displacement of any point can be written as

$$
\begin{equation*}
\bar{r}=x i+y j \tag{1}
\end{equation*}
$$

Where $i \& j$ are the unit vectors along x and y axis.

$$
\bar{v}=\frac{d \bar{r}}{d t}=\frac{d}{d t}(x i+y j)=\frac{d x}{d t} i+\frac{d y}{d t} j
$$

$$
\begin{equation*}
\bar{v}=\frac{d x}{d t} i+\frac{d y}{d t} j \tag{2}
\end{equation*}
$$

In eq(2) $\frac{d x}{d t}$ and $\frac{d y}{d t}$ are the cartesian component of velocity along x -axis and y -axis respectively.
The magnitude of the velocity is given by

$$
v=|\bar{v}|=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}
$$

Now,

$$
\begin{equation*}
\bar{a}=\frac{d \bar{v}}{d t}=\frac{d}{d t}\left(\frac{d x}{d t} i+\frac{d y}{d t} j\right)=\frac{d^{2} x}{d t^{2}} i+\frac{d^{2} y}{d t^{2}} j \tag{3}
\end{equation*}
$$

In eq(3) $\frac{d^{2} x}{d t^{2}}$ and $\frac{d^{2} y}{d t^{2}}$ are the cartesian component of acceleration along x -axis and y axis respectively.

Example: At any time, the position of a particle in a plane, can be specified by $(a \cos \omega t, a \sin \omega t)$, where $a \& \omega$ are constants. Find components of velocity and acceleration.

Solution:

Along x -axis component of \bar{r} is

$$
x=a \cos \omega t
$$

Component of velocity along x -axis

$$
\frac{d x}{d t}=-a \omega \sin \omega t
$$

Component of acceleration along x -axis

$$
\frac{d^{2} x}{d t^{2}}=-a \omega^{2} \cos \omega t
$$

Similarly component of velocity and acceleration along y-axis are $a \omega \cos \omega t \quad$ and $\quad-a \omega^{2} \sin \omega t$ respectively.

Radial and Transverse Components:

In polar coordinates the position of a particle is specifed by radius vector \bar{r} and polar angle θ. The direction of the radius vector is known as the radial direction and that perpendicular to it in the direction of increassing θ is called the transverse direction.

Let \hat{r}, \hat{s} be the unit vector in the radial and transverse direction respectively as shown in fig.

In polar coordinates the relation between x, y, r and θ is as

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

We know in cartesian coordinates

$$
\begin{array}{cc}
& \bar{r}=x i+y j \\
\Rightarrow \quad & \bar{r}=r \cos \theta i+r \sin \theta j \\
\Rightarrow \quad & \bar{r} \\
& \bar{r}=\cos \theta i+\sin \theta j \tag{1}\\
\Rightarrow \quad & \hat{r}=\cos \theta i+\sin \theta j
\end{array}
$$

Similarly for transverse components

$$
\begin{align*}
& \hat{s}=\cos \left(\frac{\pi}{2}+\theta\right) i+\sin \left(\frac{\pi}{2}+\theta\right) j \\
\Rightarrow \quad & \hat{s}=-\sin \theta i+\cos \theta j \tag{2}
\end{align*}
$$

Now

$$
\frac{d \hat{r}}{d t}=-\sin \theta \frac{d \theta}{d t} i+\cos \theta \frac{d \theta}{d t} j=(-\sin \theta i+\cos \theta j) \frac{d \theta}{d t}
$$

By using (2)

$$
\begin{equation*}
\Rightarrow \quad \frac{d \hat{r}}{d t}=\hat{s} \dot{\theta} \tag{3}
\end{equation*}
$$

$$
\frac{d \hat{s}}{d t}=-\cos \theta \frac{d \theta}{d t} i-\sin \theta \frac{d \theta}{d t} j=-(\cos \theta i+\sin \theta j) \frac{d \theta}{d t}
$$

By using (1)

$$
\begin{equation*}
\Rightarrow \quad \frac{d \hat{s}}{d t}=-\hat{r} \dot{\theta} \tag{4}
\end{equation*}
$$

Components of Velocity

$$
\begin{array}{cc}
& \bar{v}=\frac{d \bar{r}}{d t}=\frac{d}{d t}(\hat{r} r) \\
\Rightarrow \quad \bar{v}=r \frac{d \hat{r}}{d t}+\frac{d r}{d t} \hat{r}
\end{array}
$$

by using (3)

$$
\bar{v}=\dot{r} \hat{r}+r \dot{\theta} \hat{s}
$$

So radial component of velocity $v_{r}=\dot{r}$, transverse component is $v_{\theta}=r \dot{\theta}$ Components of acceleration

$$
\begin{aligned}
& \bar{a}=\frac{d \bar{v}}{d t}=\frac{d}{d t}(\dot{r} \hat{r}+r \dot{\theta} \hat{s}) \\
&=\ddot{r} \hat{r}+\dot{r} \frac{d \hat{r}}{d t}+\dot{r} \dot{\theta} \hat{s}+r \ddot{\theta} \hat{s}+r \dot{\theta} \frac{d \hat{s}}{d t} \\
&=\ddot{r} \hat{r}+\dot{r} \dot{\theta} \hat{s}+\dot{r} \dot{\theta} \hat{s}+r \ddot{\theta} \hat{s}-r \dot{\theta} \dot{\theta} \hat{r} \\
& \bar{a}=\left(\ddot{r}-r(\dot{\theta})^{2}\right) \hat{r}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \hat{s}
\end{aligned}
$$

So, $a_{r}=\ddot{r}-r(\dot{\theta})^{2}$ and $a_{\theta}=2 \dot{r} \dot{\theta}+r \ddot{\theta}$

Theorem:

The velocity of a particle at any point is along the tangent at that point.

Proof: Consider the motion of a particle along path $A B$. Suppose at times t and $t+\delta_{t}$ the particle travels the distance s and $s+\delta_{s}$ from the fixed point A to the point P and Q whose position vectors are \bar{r} and $\bar{r}+\bar{\delta}_{r}$ respectively.

If \bar{v} is the velocity of the particle at time t.
Then

$$
\bar{v}=\frac{d \bar{r}}{d t} \quad \text { and } \quad v=\frac{d s}{d t}
$$

Now

$$
\begin{align*}
\bar{v} & =\frac{d \bar{r}}{d t}=\frac{d \bar{r}}{d s} \cdot \frac{d s}{d t} \\
\bar{v} & =v \frac{d \bar{r}}{d s} \tag{1}
\end{align*}
$$

Direction of $\frac{d \bar{r}}{d s}$:

Since

$$
\frac{d \bar{r}}{d s}=\lim _{\delta_{s} \rightarrow 0}\left(\frac{1}{\delta s}\right) \bar{\delta}_{r}
$$

$\therefore \quad \frac{d \bar{r}}{d s}$ is a vector along the tangent to the path at point P .
Magnitude of $\frac{d \bar{r}}{d s}$:

$$
\left|\frac{d \bar{r}}{d s}\right|=\left|\lim _{\delta_{s} \rightarrow 0}\left(\frac{\bar{\delta}_{r}}{\delta s}\right)\right|=1
$$

Hence $\frac{d \bar{r}}{d s}$ is unit vector along tangent.
So we can say $\frac{d \bar{r}}{d s}=\hat{t}$
Eq (1) becomes

$$
\bar{v}=v \hat{t}
$$

Above equation show that velocity of a particle at point P is along the tangent at P.

Tangential and normal components of velocity and acceleration:

Consider the motion of a particle along path $A B$. Suppose at times t and $t+\delta_{t}$ the particle travels the distance s and $s+\delta_{s}$ from the fixed point A to the point P and Q whose position vectors are \bar{r} and $\bar{r}+\bar{\delta}_{r}$ respectively. Clearly $\overline{P Q}=\delta \bar{r}$

If \bar{v} is the velocity of the particle at time t.
Then

$$
\bar{v}=\frac{d \bar{r}}{d t} \quad \text { and } \quad v=\frac{d s}{d t}
$$

Now

$$
\begin{gather*}
\bar{v}=\frac{d \bar{r}}{d t}=\frac{d \bar{r}}{d s} \cdot \frac{d s}{d t} \\
\bar{v}=v \frac{d \bar{r}}{d s} \tag{1}
\end{gather*}
$$

Direction of $\frac{d \bar{r}}{d s}$:

Since,

$$
\frac{d \bar{r}}{d s}=\lim _{\delta_{s} \rightarrow 0}\left(\frac{1}{\delta s}\right) \bar{\delta}_{r}
$$

$\therefore \quad \frac{d \bar{r}}{d s}$ is a vector along the tangent to the path at point P .

Magnitude of $\frac{d \bar{r}}{d s}$:

$$
\left|\frac{d \bar{r}}{d s}\right|=\left|\lim _{\delta_{s} \rightarrow 0}\left(\frac{\bar{\delta}_{r}}{\delta s}\right)\right|=1
$$

Hence $\frac{d \bar{r}}{d s}$ is unit vector along tangent.
So we can say $\frac{d \bar{r}}{d s}=\hat{t}$
Eq (1) becomes

$$
\begin{equation*}
\bar{v}=v \hat{t} \tag{2}
\end{equation*}
$$

Above equation show that velocity of a particle at point P is along the tangent at P, by above equation we can see that velocity have no component along the normal.

Components of Acceleration:

If \bar{a} is the acceleration of the particle at time, then

$$
\begin{align*}
& \bar{a}=\frac{d \bar{v}}{d t}=\frac{d}{d t}(v \hat{t}) \tag{2}\\
& \bar{a}=\left(\frac{d v}{d t}\right) \hat{t}+v \frac{d \hat{t}}{d t} \tag{3}
\end{align*}
$$

Direction of $\frac{d \hat{t}}{d t}$:
Since \hat{t} is a unit vector so

$$
\begin{gathered}
\hat{t} \cdot \hat{t}=1 \\
\frac{d}{d t}(\hat{t} \cdot \hat{t})=0
\end{gathered}
$$

$$
\begin{aligned}
& \hat{t} \cdot \frac{d \hat{t}}{d t}=0 \\
\Rightarrow \quad & \hat{t} \perp \frac{d \hat{t}}{d t}
\end{aligned}
$$

Hence $\frac{d \hat{t}}{d t}$ is along the normal. Thus if \hat{n} is a unit vector along the normal then

$$
\begin{equation*}
\frac{d \hat{t}}{d t}=\left|\frac{d \hat{t}}{d t}\right| \hat{n} \tag{4}
\end{equation*}
$$

Magnitude of $\frac{d \hat{t}}{d t}$:
Suppose at times t and $\delta_{t}+t$ the unit tangents at P and Q are \hat{t} and $\hat{t}+\delta_{\hat{t}}$ be represented by $\overline{E F}$ and $\overline{E G}$ with angle δ_{μ}.

Now

$$
\begin{gathered}
\overline{E F}+\overline{F G}=\overline{E G} \\
\overline{F G}=\overline{E G}-\overline{E F} \\
\overline{F G}=\delta_{\hat{t}} \\
\left|\frac{d \hat{t}}{d t}\right|=\lim _{\delta_{t} \rightarrow 0}\left|\frac{\delta \hat{t}}{\delta t}\right|=\lim _{\substack{\delta_{t \rightarrow 0} \\
\delta_{\mu} \rightarrow 0 \\
\delta_{s} \rightarrow 0}}\left|\frac{\delta \hat{t}}{\delta_{\mu}} \cdot \frac{\delta_{\mu}}{\delta_{s}} \cdot \frac{\delta_{s}}{\delta \hat{t}}\right|
\end{gathered}
$$

Here $\lim _{\delta_{\mu} \rightarrow 0}\left|\frac{\delta \hat{t}}{\delta_{\mu}}\right|=1, \quad \lim _{\delta_{s} \rightarrow 0}\left|\frac{\delta_{\mu}}{\delta_{s}}\right|=\kappa, \quad \lim _{\delta_{t} \rightarrow 0}\left|\frac{\delta_{s}}{\delta \hat{t}}\right|=\frac{d s}{d t}=v$
So

$$
\begin{aligned}
&\left|\frac{d \hat{t}}{d t}\right|=\kappa v=\frac{1}{\rho} v \\
& \Rightarrow \quad \frac{d \hat{t}}{d t}=\frac{v}{\rho} \hat{n} \\
& \Rightarrow \quad \bar{a}=\left(\frac{d v}{d t}\right) \hat{t}+\left(\frac{v^{2}}{\rho}\right) \hat{n}
\end{aligned}
$$

Where $\rho=\frac{\left(1+\left(\frac{d y}{d x}\right)^{2}\right)^{\frac{3}{2}}}{\frac{d^{2} x}{d y^{2}}}$

Example:

A particle is moving along the parabola $x^{2}=4 a y$ with constant speed.
Determine the tangential and normal components of its acceleration when it reaches the point whose abscissa is $\sqrt{5} a$.

Solution:

$$
\begin{equation*}
x^{2}=4 a y \tag{1}
\end{equation*}
$$

Put $x=\sqrt{5} a$ in (1) we get $y=\frac{5 a}{4}$, thus the point will be $p\left(\sqrt{5} a \frac{5 a}{4}\right)$,
We know $\bar{a}=\frac{d v}{d t} \hat{t}+\frac{v^{2}}{\rho} \hat{n}$
$a_{t}=\frac{d v}{d t}=0 \quad \mathrm{v}$ is constant.
For ρ

$$
\begin{gather*}
x^{2}=4 a y \\
2 x=4 a \frac{d y}{d x} \\
\Rightarrow \frac{d y}{d x}=\frac{x}{2 a} \tag{2}\\
\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{1}{2 a}
\end{gather*}
$$

Hence

$$
\left(\frac{d y}{d x}\right)_{p}=\frac{\sqrt{5}}{2} \quad \text { and } \quad\left(\frac{d^{2} y}{d x^{2}}\right)_{p}=\frac{1}{2 a}
$$

$$
\begin{gathered}
\rho=\frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}}{\frac{d^{2} y}{d x^{2}}}=\frac{\left[1+\frac{5}{4}\right]^{\frac{3}{2}}}{\frac{1}{2 a}} \\
=2 a \cdot\left(\frac{9}{4}\right)^{\frac{3}{2}}=\frac{27}{4} a
\end{gathered}
$$

So $a_{n}=\frac{v^{2}}{\rho}=\frac{4 v^{2}}{27 a}$

Example:

A particle moves in a plane in such a way that at any time t its distance from a fixed point o , is $r=a t+b t^{2}$ and the line connecting o and p makes an angle is $\theta=c t^{\frac{3}{2}}$ with a fixed line. Find radial and transverse components of velocity and acceleration at $\mathrm{t}=1$.

Solution:

Here

$$
\begin{array}{r}
r=a t+b t^{2} \\
\Rightarrow \quad \dot{r}=a+2 b t \\
\Rightarrow \quad \ddot{r}=2 b \\
\theta=c t^{\frac{3}{2}} \\
\Rightarrow \quad \dot{\theta}=\frac{3}{2} c t^{\frac{1}{2}} \\
\Rightarrow \quad \ddot{\theta}=\frac{3}{4} c \frac{1}{\sqrt{t}}
\end{array}
$$

at $t=1$,

$$
\begin{aligned}
& r=a+b, \quad \dot{r}=a+2 b, \quad \ddot{r}=2 b \\
& \theta=c, \quad \dot{\theta}=\frac{3}{2} c, \quad \ddot{\theta}=\frac{3}{4} c
\end{aligned}
$$

Radial and transverse Components of velocity:

$$
\begin{gathered}
v_{r}=\dot{r}=a+2 b \\
v_{\theta}=r \dot{\theta}=\frac{3}{2} c(a+b)
\end{gathered}
$$

Radial and transverse Components of acceleration:

$$
\begin{gathered}
a_{r}=\ddot{r}-r \dot{\theta}^{2} \\
=2 b-(a+b)\left(\frac{3}{2} c\right)^{2}
\end{gathered}
$$

$$
\begin{gathered}
a_{r}=2 b-\frac{9}{4} c^{2}(a+b) \\
a_{\theta}=r \ddot{\theta}+2 \dot{r} \dot{\theta} \\
=(a+b) \cdot \frac{3}{4} c+2(a+2 b) \cdot \frac{3}{2} c \\
a_{\theta}=\frac{3}{4} c(5 a+9 b)
\end{gathered}
$$

Exercise

Q\#1 A particle starts from O at $t=0$. Find its velocity and acceleration.
i. $\quad \bar{r}=\left(t^{3}+2 t\right) i+\left(5 t^{2}-7\right) j$

$$
\begin{gathered}
\bar{v}=\frac{d \bar{r}}{d t}=\left(3 t^{2}+2\right) i+10 t j \\
\bar{a}=\frac{d \bar{v}}{d t}=6 t i+10 j
\end{gathered}
$$

ii. $\quad \bar{r}=a t^{2} i+4 a t j$
iii. $\quad \bar{r}=a \cos t i+b \sin t j$
iv. $\quad \bar{r}=a(t-\cos t) i+a(1+\sin t) j$

Q\#2 The position of a particle moving along an ellipse is given by $\bar{r}=a \cos t i+b \sin t j \mathrm{a}>\mathrm{b}$. Find the position of the particle where its velocity has a maximum or minimum magnitude.

Solution:

$$
\begin{gathered}
\bar{r}=a \cos t i+b \sin t j \\
\bar{v}=\frac{d \bar{r}}{d t}=-a \sin t i+b \cos t j \\
v=\sqrt{(-a \sin t)^{2}+(b \cos t)^{2}} \\
v=\sqrt{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t} \\
v=\sqrt{a^{2}\left(1-\cos ^{2} t\right)+b^{2} \cos ^{2} t} \\
v=\sqrt{a^{2}-\left(a^{2}-b^{2}\right) \cos ^{2} t}
\end{gathered}
$$

Now v is minimum if $\cos ^{2} t=1$ or $\cos t= \pm 1 \Rightarrow t=0, \pi$
Thus for min v

$$
\begin{gathered}
\bar{r}=a \cos 0 i+b \sin 0 j=a i \\
\bar{r}=a \cos \pi i+b \sin \pi j=-a i
\end{gathered}
$$

Now v is maximum if $\cos ^{2} t=0 \quad$ or $t=\frac{\pi}{2}, \frac{3 \pi}{2}$
Thus for maximum v

$$
\bar{r}=a \cos \frac{\pi}{2} i+b \sin \frac{\pi}{2} j=b j
$$

$$
\bar{r}=\mathrm{a} \cos \frac{3 \pi}{2} i+b \sin \frac{3 \pi}{2} j=-b j
$$

Q\#3
A particle moving with uniform speed v along the curve $x^{2} y=a\left(x^{2}+\frac{a^{2}}{\sqrt{5}}\right)$. Show that its acceleration has maximum value $\frac{10 v^{2}}{9 a}$.

Solution:

We know that $\bar{a}=\frac{d v}{d t} \hat{t}+\frac{v^{2}}{\rho} \hat{n}$
Here $\frac{d v}{d t}=0$, because v is constant.
Let

$$
\begin{gathered}
x^{2} y=a\left(x^{2}+\frac{a^{2}}{\sqrt{5}}\right) \\
x^{2} y-a x^{2}=\frac{a^{3}}{\sqrt{5}} \\
y-a=\frac{a^{3}}{\sqrt{5}} \frac{1}{x^{2}}
\end{gathered}
$$

Taking derivative

$$
\begin{aligned}
& \frac{d y}{d x}=-\frac{2 a^{3}}{\sqrt{5} x^{3}} \\
& \frac{d^{2} y}{d x^{2}}=\frac{6 a^{3}}{\sqrt{5} x^{4}}
\end{aligned}
$$

We know

$$
\begin{aligned}
\rho & =\frac{\left(1+\left(\frac{d y}{d x}\right)^{2}\right)^{\frac{3}{2}}}{\frac{d^{2} y}{d x^{2}}} \\
& \Rightarrow \quad \rho=\frac{\left(1+\frac{4 a^{6}}{5 x^{6}}\right)^{\frac{3}{2}}}{\frac{6 a^{3}}{\sqrt{5} x^{4}}} \\
& =\left(\frac{5 x^{6}+4 a^{6}}{5 x^{6}}\right)^{\frac{3}{2}} \frac{\sqrt{5} x^{4}}{6 a^{3}} \\
\rho & =\frac{\left(5 x^{6}+4 a^{6}\right)^{\frac{3}{2}}}{30 a^{3} x^{5}} \\
a_{n} & =\frac{v^{2}}{\rho}=\frac{v^{2} 30 a^{3} x^{5}}{\left(5 x^{6}+4 a^{6}\right)^{\frac{3}{2}}}
\end{aligned}
$$

For maximum acceleration check (Hint: Second Derivative Rule FSc. Part II Ex. 2.9)
Differentiation w.r.t.x

$$
\begin{gathered}
\frac{d a}{d x}=30 a^{3} v^{2} \frac{\left(\left(5 x^{6}+4 a^{6}\right)^{\frac{3}{2}} \cdot 5 x^{4}-x^{5} \frac{3}{2}\left(5 x^{6}+4 a^{6}\right)^{\frac{1}{2}} 30 x^{5}\right)}{\left(5 x^{6}+4 a^{6}\right)^{3}} \\
=30 a^{3} v^{2}\left(5 x^{6}+4 a^{6}\right)^{\frac{1}{2}}\left(\frac{\left(5 x^{6}+4 a^{6}\right) 5 x^{4}-45 x^{10}}{\left(5 x^{6}+4 a^{6}\right)^{3}}\right) \\
\frac{d a}{d x}=600 a^{3} v^{2}\left[\frac{x^{4}\left(a^{6}-x^{6}\right)}{\left(5 x^{6}+4 a^{6}\right)^{\frac{5}{2}}}\right]
\end{gathered}
$$

Again

$$
\frac{d^{2} a}{d t^{2}}=\left[\frac{4 x^{3}\left(a^{6}-x^{6}\right)}{\left(5 x^{6}+4 a^{6}\right)^{\frac{5}{2}}}+\frac{x^{4}\left(-6 x^{5}\right)}{\left(5 x^{6}+4 a^{6}\right)^{\frac{5}{2}}}+\frac{x^{4}\left(a^{6}-x^{6}\right)\left(-\frac{5}{2}\right)\left(30 x^{5}\right)}{\left(5 x^{6}+4 a^{6}\right)^{\frac{7}{2}}}\right]
$$

Taking $\frac{d a}{d t}=0$

$$
\begin{gathered}
600 a^{3} v^{2}\left[\frac{x^{4}\left(a^{6}-x^{6}\right)}{\left(5 x^{6}+4 a^{6}\right)^{\frac{5}{2}}}\right]=0 \\
x^{4}\left(a^{6}-x^{6}\right)=0 \\
\Rightarrow \quad x^{4}=0, \quad a^{6}-x^{6}=0 \\
\Rightarrow \quad x=0, \quad\left(a^{2}-x^{2}\right)\left(a^{4}+x^{4}+a^{2} x^{2}\right)=0 \\
a^{2}-x^{2}=0, \quad a^{4}+x^{4}+a^{2} x^{2}=0
\end{gathered}
$$

Let $a^{2}-x^{2}=0$, other due to imaginary

$$
x= \pm a
$$

Hence

$$
\left(\frac{d^{2} 2}{d x^{2}}\right)_{x=a}=600 a^{3} v^{2}\left[-\frac{6 a^{9}}{\left(5 x^{6}+4 a^{6}\right)^{\frac{5}{2}}}\right]<0
$$

So acceleration will be maximum at $\mathrm{x}=\mathrm{a}$

$$
\begin{gathered}
a=\frac{v^{2} 30 a^{3} x^{5}}{\left(5 x^{6}+4 a^{6}\right)^{\frac{3}{2}}} \\
a=\frac{30 v^{2} a^{8}}{\left(9 a^{6}\right)^{\frac{3}{2}}}=\frac{30 v^{2} a^{8}}{\left(3 a^{3}\right)^{3}}=\frac{10 v^{2}}{9 a}
\end{gathered}
$$

Q\#4 Find the tangential and normal components of acceleration of a point describing the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with uniform speed V when the particle is at $(0, b)$

Solution:

Since

$$
\begin{gathered}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
\Rightarrow \quad b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}
\end{gathered}
$$

Taking derivative

$$
\begin{gathered}
2 b^{2} x+2 a^{2} y \frac{d y}{d x}=0 \\
\frac{d y}{d x}=-\frac{b^{2}}{a^{2}} \frac{x}{y} \\
\frac{d^{2} y}{d x^{2}}=-\frac{b^{2}}{a^{2}}\left[\frac{y-x \frac{d y}{d x}}{y^{2}}\right] \\
\left(\frac{d y}{d x}\right)_{(0, b)}=0
\end{gathered}
$$

So

$$
\begin{gathered}
\left(\frac{d^{2} y}{d x^{2}}\right)_{(0, b)}=-\frac{b^{2}}{a^{2}} \frac{b}{b^{2}}=-\frac{b}{a^{2}} \\
\rho=\frac{\left(1+\left(\frac{d y}{d x}\right)^{2}\right)^{\frac{3}{2}}}{\frac{d^{2} y}{d x^{2}}} \\
\rho=\frac{\frac{1}{-b}}{a^{2}}=-\frac{a^{2}}{b} \\
\bar{a}=\frac{d v}{d t} \hat{t}+\frac{v^{2}}{\rho} \hat{n} \\
\bar{a}=0-\frac{b v^{2}}{a} \hat{n} \\
\bar{a}=-\frac{b v^{2}}{a} \hat{n}
\end{gathered}
$$

Q\#5 Find the radial and transverse components of velocity of a particle moving at curve

$$
\begin{equation*}
a x^{2}+b y^{2}=1 \tag{1}
\end{equation*}
$$

At any time t. if polar angle is $\theta=c t^{2}$.

Solution:

We know $x=r \cos \theta, y=r \sin \theta \quad$ put in (1)

$$
\begin{gathered}
a r^{2} \cos ^{2} \theta+b r^{2} \sin ^{2} \theta=1 \\
r^{2}=\frac{1}{a \cos ^{2} \theta+b \sin ^{2} \theta} \\
r=\left(a \cos ^{2} \theta+b \sin ^{2} \theta\right)^{-\frac{1}{2}}
\end{gathered}
$$

Also $\theta=c t^{2} \Rightarrow \quad \dot{\theta}=2 c t$

$$
\begin{gathered}
\dot{r}=\frac{c t(a-b) \sin 2 \theta}{\left(a \cos ^{2} \theta+b \sin ^{2} \theta\right)^{\frac{3}{2}}} \\
v_{r}=\dot{r}=\frac{c t(a-b) \sin 2 \theta}{\left(a \cos ^{2} \theta+b \sin ^{2} \theta\right)^{\frac{3}{2}}} \\
v_{\theta}=r \dot{\theta}=\frac{2 c t}{\left(a \cos ^{2} \theta+b \sin ^{2} \theta\right)^{\frac{1}{2}}}
\end{gathered}
$$

Q\#6 Find the radial and transverse components of acceleration along $x^{2}+y^{2}=a^{2}$ with constant angular velocity.

Solution:

$$
\begin{equation*}
x^{2}+y^{2}=a^{2} \tag{1}
\end{equation*}
$$

We know $x=r \cos \theta, \quad y=r \sin \theta \quad$ put in (1)

$$
\begin{gathered}
r^{2}=a^{2} \\
r=a, \quad \text { and } \quad \dot{\theta}=c \\
\Rightarrow \dot{r}=0, \ddot{r}=0, \quad \ddot{\theta}=0 \\
a_{r}=\ddot{r}-r \dot{\theta}^{2}=-a c^{2} \\
a_{\theta}=a \dot{r} \dot{\theta}+r \ddot{\theta}=0
\end{gathered}
$$

Note: These notes are written for the Chapter no. 7 of the book Mechanics by Q.K. Ghori.

Written by: Umair Sabi Ullah

Head of Mathematics Department

Controller Examination
ORION COLLEGE, PAKPATTAN
For any suggestions feel free to contact
Email: umairmughal70@gmail.com
Mob: +923136504842

