

Superior College Sargodha

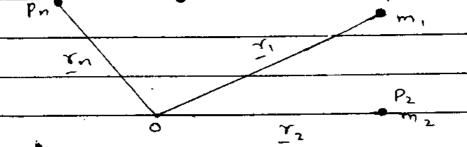
Mechanics Centre of Mass Chapter # 4

Prof. M.Tanveer

Student Name

Superior Book Shop Campus 3 & 4

The Superior Group of College Sargodha


Available at MathCity.org

CHAPTER #4:-

Centres of mass and Gravity.

-: Centre of masc:

m, m, m, place at P, P2, ---, Pn with position vectors r, T2, T3, ---, Y, recp

Then the linear moment of set of particles is

 $\sum_{i=1}^{n} m_i \underline{r}_i = m_i \underline{r}_i + m_2 \underline{r}_{2+\cdots} + m_n \underline{r}_n$

Example #1:-

 $m_1 = 1lb$ $m_2 = 2lb$

 $\underline{x}_1 = \underline{\dot{z}} - 2\underline{\dot{j}} \qquad , \quad \underline{x}_2 = 3\underline{\dot{z}}$

 $\sum_{i=1}^{n} m_{i} \tau_{i} = m_{i} \tau_{i} + m_{2} \tau_{2}$ i = 1 (i - 2i) + 2(3i)

 $\left(\frac{2}{2}-2d\right)TQ\left(\frac{32}{2}\right)$

$= \dot{2} - 2\dot{j} + 6\dot{i}$
= 7i - 2i
Centre mass: (C.m)
c.m is the point wirt which
the linear moment of the set of
particles is zero.
Theorem:-
1:- Every set of particles has one
and only one cm?
OR
2:- Find centre of mass of set of
particles?
Solution:
Let c be the centre of macr
of set of particles of masses m, m, -, m
placed at P, P, ; ; Pn resp.
Consider a particle of mass m;
at Pi with Position vector ri where
r is a Position vector of c.
Pi mi
$c' \qquad oc' + cP_i = oP_i$
$\gamma + \overline{CP_i} = \gamma_i$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

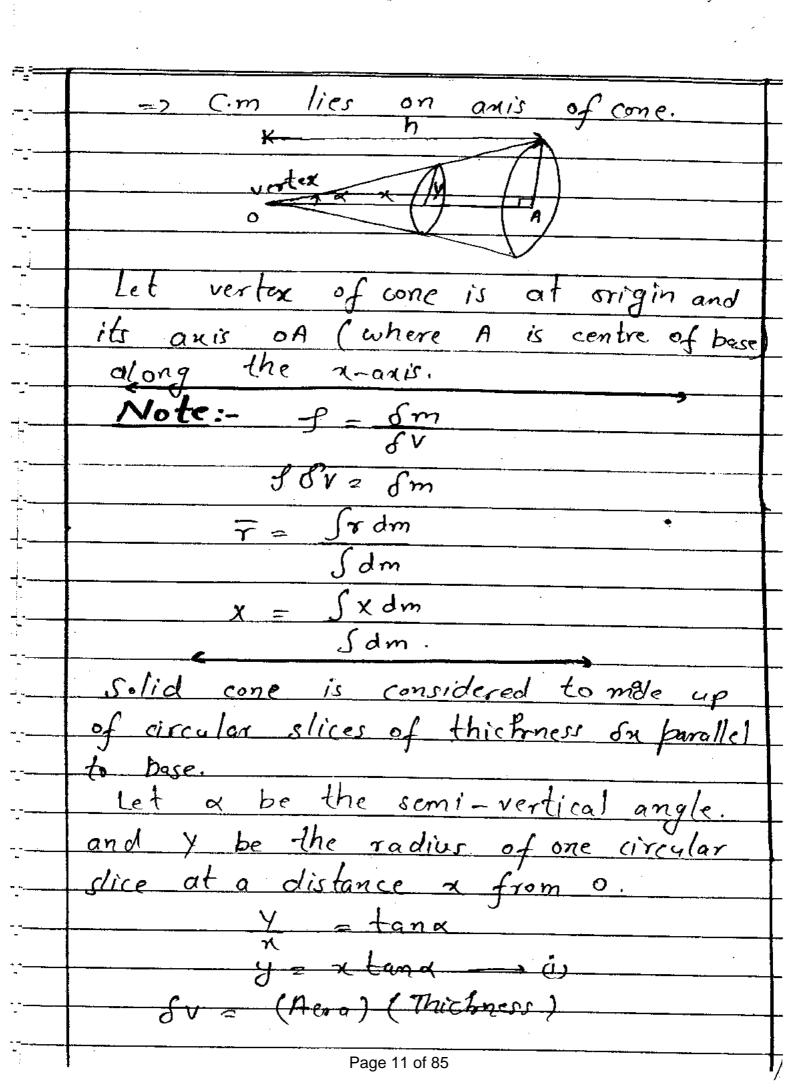
Available at Matheity.org
linear moment of m; about c(cm) = 0 By definition.
By definition
$\sum_{i=0}^{n} m_{i} \overline{CP_{i}} = 0$
i=1 where $i=1,2,3,,n$
$\sum_{i=1}^{n} m_i(\underline{x}_i - \underline{x}) = 0$
i=1
$\sum_{i=1}^{i=1} m_i \underline{Y}_i - \sum_{i=1}^{n} m_i \underline{Y}_i = 0$
$\hat{i} = l_m$ $\hat{i} = l$
$\sum_{i=1}^{n} m_{i} \Upsilon_{i} = \sum_{i=1}^{n} m_{i} \Upsilon_{i}$
$\hat{i}=1$ $\hat{i}=1$
E miri
$ \underbrace{\mathbf{x}}_{i} = \underbrace{\sum_{i=1}^{m_i} m_i \cdot \mathbf{r}_i}_{i} c \cdot m $
i=1 [A:2: complete.]
$\gamma = m_1 \gamma_1 + m_2 \gamma_2 + \cdots + m_n \gamma_n$
m, + m2 + + mn
For uniqueness of c.m:-
Let c' be an other com with
P.V T'. Then fellow As above.
we get n
$T' = \sum_{i} m_i T_i$
> m:
2=1
\Rightarrow $\underline{\Upsilon} = \underline{\Upsilon}'$
=2 C == C' i-e
Congracy
Page 4 of 85
· · · · · · · · · · · · · · · · · · ·

c and c' lies at same position.
=> Cm is unique.
Cartesian Component of c.m.
$\underline{\gamma_i} = (\chi_i, y_i, 3_i)$
$\gamma = (\bar{y}, \bar{y}, \bar{z})$
$ \frac{1}{x} = \sum_{i=1}^{n} m_i x_i $ $ \sum_{i=1}^{n} m_i $
Š' mi
7=1
$\bar{y} = \sum_{i=1}^{n} m_i y_i$
$\sum_{i=1}^{n} m_{i}$
2=1
= = = mi 3i
m.
$\tilde{i}=1$
We use these co-ordinates according
to object which deal.
ie object is one dimension, or
two, or three dimension.
Define: Centroid:
The boint S.T (Exi Syi 83i)
n n n
is called the centroid of set of
n particles of some masses.
Page 5 of 85

M. TANVEER

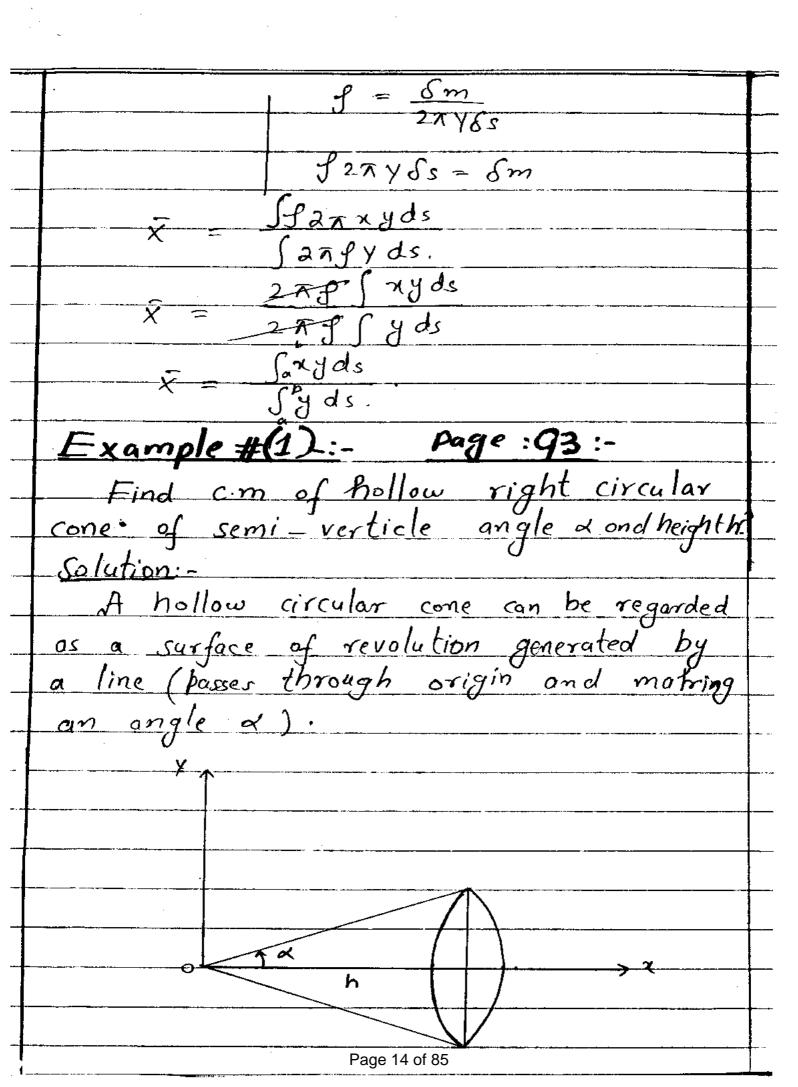
SUPERIOR GROUP OF COLLEGES

Note:-
Af particles have some masses then
c·m is same as centroid.
$\frac{\sum m_i r_i}{\sum} 4f m_i = m_i = m_n = m_n$
$\sum_{i} m$
$= \sum m \sigma_i$
$\sum' m \qquad \cdots \qquad \sum'' 1 = n$
$\sum \gamma_i$
= Centraid
Example #1 - Page: 67:-
Find the centraid of the points
i, 22 -j and 3i + j - 4k Af particles of
mass 2,4,3 grams are placed respectively
at these points, what will be their com?
Solution:-
$\gamma_1 = 2$ $m = 29$
$\frac{\gamma_2 = 2\dot{2} - \dot{d}}{m_2 = 4a}$
$x_3 = 3i \cdot i - 4k \qquad m_2 = 3q$
Centroid = Ziri = 1 + 12 + 13
3
= 2 + 21 - 3 + 32 + 3 - 4K
3
= 62 - 4K
3
Page 6 of 85


$=2\dot{2}-\frac{4}{3}K$
- Centroid - (2,0,-4/3)
$C \cdot m = \sum_{i} m_i \gamma_i - m_i \gamma_i + m_2 \gamma_2 + m_3 \gamma_3$
\geq , $m_1 + m_1 + m_3$
2(i) + 4(2i-j) + 3(3i+j-4k)
2 + 4 + 3
= 2i +8i -4j +9i +3j-12K
9
= 19 i - 12 k
7 19 -1 3-4
$C.m = \left(\frac{1}{9}, \frac{1}{9}\right) Ans$
- 1. linear Moment = $\sum_{i=1}^{n} m_i r_i$
<u> </u>
$- \lambda = 0.00 = 0.00$
$\sum_{i=1}^{n} m_i$
3:- Cartesian components as c.m.
$\frac{\sum_{i=1}^{m} m_i x_i}{\sum_{i=1}^{m} m_i}$
$\sum_{i=1}^{n} m_i$
<u>n</u>
$\geq m_i$
$\overline{3} = \frac{\sum_{i=1}^{n} m_i g_i}{\sum_{i=1}^{n} m_i g_i}$
$\overline{g} = \frac{1}{2}$ \overline{g}

	4:- Centroid = $\frac{\sum_{r}}{n} = \left(\frac{\sum_{x}}{n}, \frac{\sum_{y}}{n}, \frac{\sum_{z}}{n}\right)$
١	
-	Define thin rod by a thin rod we
	mean a rigid body whose width or
	breath and thickness is negligible
	Centre of Mass of athin rodin
	11:
	Consider a thin rod of mass m'
	and length 'l'.
	AK Xi Nm = Dim
	Sub divide the rod into "n" Parts and
	lebel then Dim be the mass of ith
	de Der Julia diedones as a point m
-	part X; be the distance as a point m
	ith part from A (one and point as rod).
	$-C.M = \frac{\sum \Delta_i m \chi_i}{\sum \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$
	Z. Aim
	> Dim ni
	$\eta \rightarrow \infty$ $\sum_{i} \Delta_{i} m$
	= 0 d
	dm.
	fdx = dm
.	Jajon .
	r g dn
	Page 8 of 85

=	If rod is emiform.
	c.m - 8 (Inda
-	7 (ª dn
-	
	$= \left(\frac{1}{2}\right)^{\frac{3}{2}}$
	[7]
•	l^2
	2/.
	Ar
	By rod is uniform com is some
	as Centroid.
	EXERCISE# 4:-
	:Q: No: 1:
_	A uniform rod AB is 4ft. long and
	weight 6 lb. and weights are altached to
	its as follows: 1 lb. at A, 2 lb. at 1ft.
\dashv	from A, 31b. at aft. from A, 41b. at
	3 ft. from A and 51b. at B. Find the.
-	distance from A of the centre of gravity
_	of the system?
_	Solution:
\perp	c(1,0), m(2,0) D(3,0)
F	A L
	31b. 41b
	21h 31b. 41b


Page 9 of 85

Let "A" be the origin and rod AB
is along x-axis.
Given AB=4ft
weight = 6 lb.
Since rod is uninform weight acts
at mid point "m" as rod.
Weights 11b., 21b., 31b, 41b, 5/6. are
attached to rod at A, C, M, D, B resp.
As shown in fig.
$C.G = \sum mix_i = 1(0) + 2(1) + (3+6)2+4(3)+5(4)$
Zmi 1+2+9+4+5
GG = 2+18+12+20
2.1
$C \cdot G = \frac{52}{21} = 2.48 = 2.5 \text{ ft. Ans}$
Note: - Right circular come is symmetric
about its axis.
=> Ats cm lies on its Axise-
Example # 11:- Page 82:-
Find the c.m of right circular
solid cone?
Solution:
=> Right groular cone is symmetric
=> Right groular cone is symmetric about its axis (A line through vertex
and centre of base).
Page 10 of 85

$SV = \pi y^2 Gx$ $SV = \pi x^2 \tan^2 x Gx$ If f is the density of material then, $f = \frac{gm}{gV}.$ $Sm = f SV = f \pi x^2 \tan^2 x Gx.$ $Cm,$ $\tilde{x} = \int_{\alpha}^{\beta} x \int_{\alpha}^{\beta} x \tan^2 x dx.$ $\tilde{x} = \int_{\alpha}^{\beta} x \int_{\alpha}^{\beta} x dx.$ $\tilde{x} = \int_{\alpha}^{\beta} x$	
$SV = \pi x^{2} \tan^{2} \alpha \delta x$ $f = f \text{ is the density of material then,}$ $f = f \text{ of } x^{2} + \tan^{2} \alpha \delta x.$ $Cm = f \delta V = f \pi x^{2} + \tan^{2} \alpha \delta x.$ $Cm, \qquad \int_{x}^{h} x dm$ $\bar{x} = \int_{x}^{h} x f \pi x^{2} + \tan^{2} \alpha dx.$ $\bar{x} = \int_{x}^{h} x^{2} + \tan^{2} \alpha dx.$ $\bar{x} = \int_{x}^{h} x^{2} + \tan^{2} \alpha dx.$ $\bar{x} = \int_{x}^{h} x^{2} dx.$	$\delta V = \pi Y^2 \delta x$
If f is the density of material then, $f = fm$ $\delta v.$ $\delta m = f \delta v = f \pi $	$\delta v = \pi x^2 \tan^2 \alpha \delta x$
$Sm = f SV = f \pi_{\chi^2} tan^2 a f \chi.$ $C.m, \qquad h$ $\bar{\chi} = \int_{\chi}^{h} dm$ $\bar{\chi} = \int_{\chi}^{h} d\pi x tan^2 a dx.$ $\bar{\chi} = \int_{\chi}^{h} tan^2 a dx.$	4f of is the density of material Then.
$Sm = f SV = f \pi_{\chi^2} tan^2 a f \chi.$ $C.m, \qquad h$ $\bar{\chi} = \int_{\chi}^{h} dm$ $\bar{\chi} = \int_{\chi}^{h} d\pi x tan^2 a dx.$ $\bar{\chi} = \int_{\chi}^{h} tan^2 a dx.$	-f = fm
C.m, $ \hat{x} = \int_{0}^{h} x dm $ $ \hat{x} = \int_{0}^{h} x \int_{0}^{h} x dx $ $ \hat{x} = \int_{0}^{h} x \int_{0}^{h} x dx $ $ \hat{x} = \int_{0}^{h} x \int_{0}^{h} x dx $ $ \hat{x} = \int_{0}^{h} x^{h} dx $	8 v.
C.m, $ \hat{x} = \int_{0}^{h} x dm $ $ \hat{x} = \int_{0}^{h} x \int_{0}^{h} x dx $ $ \hat{x} = \int_{0}^{h} x \int_{0}^{h} x dx $ $ \hat{x} = \int_{0}^{h} x \int_{0}^{h} x dx $ $ \hat{x} = \int_{0}^{h} x^{h} dx $	$\delta m = f \delta V = f \pi \chi^2 \tan^2 d \delta \chi.$
$\widehat{x} = \int_{0}^{\infty} x dx$ $\widehat{x} = \int_{0}^{\infty} x dx dx$ $\widehat{x} = \int_{0}^{\infty} x^{2} dx$	C m h
$\bar{x} = \int_{0}^{h} x \cdot \int_{0}^{h} x^{2} + \tan^{2} x dx.$ $\bar{x} = \int_{0}^{h} \int_{0}^{h} x^{2} + \tan^{2} x dx.$ $\bar{x} = \int_{0}^{h} \int_{0}^{h} x^{2} dx.$ $\bar{x} = \int_{0}^{h} x^{2} dx.$	$\int x dm$
$\bar{x} = \int_{0}^{h} x \cdot \int_{0}^{h} x^{2} + \tan^{2} x dx.$ $\bar{x} = \int_{0}^{h} \int_{0}^{h} x^{2} + \tan^{2} x dx.$ $\bar{x} = \int_{0}^{h} \int_{0}^{h} x^{2} dx.$ $\bar{x} = \int_{0}^{h} x^{2} dx.$	The day
$\vec{x} = \int A \tan^2 \alpha \int_0^{\pi} x^3 dx.$ $\vec{x} = \int A \tan^2 \alpha \int_0^{\pi} x^3 dx.$ $\vec{x} = \int_0^{\pi} x^3 dx.$	n °
$\vec{x} = \int A \tan^2 \alpha \int_0^{\pi} x^3 dx.$ $\vec{x} = \int A \tan^2 \alpha \int_0^{\pi} x^3 dx.$ $\vec{x} = \int_0^{\pi} x^3 dx.$	$\bar{\chi} = \int \chi \cdot \int \chi$
$\bar{x} = \int x + \tan^2 x \int_0^h x^3 dx.$ $\int x + \tan^2 x \int_0^h x^2 dx.$ $\bar{x} = \int_0^h x^3 dx.$	· (Pxx2 tan2 dx.
$ \frac{1}{x} = \frac{1}{3} \frac{1}{4} \frac{1}{3} \frac$	
$ \frac{1}{x} = \frac{1}{3} \frac{1}{4} \frac{1}{3} \frac$	$\bar{x} = \int A \tan^2 \alpha \int x^3 dx$
$\bar{x} = \frac{K^4}{4} \cdot \frac{3}{K^3}$ $\bar{x} = \frac{3}{4} \cdot h \cdot Ans$	Satana (" n' da.
$\bar{x} = \frac{K^4}{4} \cdot \frac{3}{K^3}$ $\bar{x} = \frac{3}{4} \cdot h \cdot Ans$	The state of the s
$\bar{x} = \frac{K^4}{4} \cdot \frac{3}{K^3}$ $\bar{x} = \frac{3}{4} \cdot h \cdot Ans$	$\overline{\chi} = \frac{1}{2} \frac{\chi \cdot \sigma \chi}{2}$
$\bar{x} = \frac{K^4}{4} \cdot \frac{3}{K^3}$ $\bar{x} = \frac{3}{4} \cdot h \cdot Ans$	J'n'dn.
$\bar{x} = \frac{K^4}{4} \cdot \frac{3}{K^3}$ $\bar{x} = \frac{3}{4} \cdot h \cdot Ans$	
$\bar{x} = \frac{K^4}{4} \cdot \frac{3}{K^3}$ $\bar{x} = \frac{3}{4} \cdot h \cdot Ans$	[x37h]
$\bar{x} = \frac{3}{4} \cdot h$. Ans	3 0
$\bar{x} = \frac{3}{4} \cdot h$. Ans	$\bar{\chi} = K^A - 3$
	4 43
	$\bar{x} = 3.h$. And
Page 12 of 85	4
	Page 12 of 85

::====		
-	Define:-	
· <u> </u>	Surface of revolution:	
	Surface formed by the rotation of a	
- 	Surface of revolution:- Surface formed by the rotation of a plane curve about a line in the	
+ : - : - -	same plane:	
	* Cm of surface of revolution.	
-	Let Y=f(x) be a plane curve where	
~. ·~-	· · · · · · · · · · · · · · · · · · ·	
	Let the axis of rotation be taken	
- 	as m-anis.	Γ
•	^	1
- 	S S	Γ
· · · · · · · · · · · · · · · · · · ·		
	x + a x + b	
		T
	The area of the element of surface	T
	of revolution = 27 yds	Ī
	y=0 : cm lies on oxis of	
	rotation i.e one anic	T
	x = Jfx2xyds	T
	Sf2xyds.	I
	r f = dm	
	S(surface area)	T
. 1	Page 13 of 85	T

		<u>. </u>
	P(x, , y,) => P(0,0); m= tand.	
	Equation of generator line.	
	y-y = m' (x-4,)	
	y-0 = tana $(x-0)$	
	y 2 ntana	
	c.m of hollow cone lies on its	
i	onis of rotation i-e on n-anis.	
-		
	Snyds	
	(y ds.	
	$ds = \left[1 + \left(\frac{dx}{dx}\right)^2\right] dx.$	
	i dy tana	
	Ox.	
	$ds = \int 1 + \tan^2 \alpha dx.$	
	- 1 ca 2 da	
	ds = seconda	
	a h	
	=> x = o xtana. x seco dx	
	(" tand.x seco dr.	
	tanaseca J x2dx	
	tand Jeca ("ndr	
	c .3. 4°	
	$\bar{x} = \frac{1}{3}$	
	[x2/2]h	
	Page 15 of 85	1 /

Available at Matherty.org
T 12/2
$\bar{\alpha} = \frac{-7/3}{2}$
h/2
$\bar{\chi} = \frac{2}{3}h$. Ans
3
In a numerical case the value of
ds in terms of:
Cartesian coordinates:
$ds = \int 1 + \left(\frac{dy}{dn}\right)^2 dn.$
Polar coordinates:-
$ds = \int r^2 + \left(\frac{dr}{do}\right)^2 do$
Parameter:
$dc = \frac{1}{2} \left(\frac{d^{4}}{2} \right)^{2} + \left(\frac{d^{4}}{2} \right)^{2} dt$
may be an hitituted as found convenient
may be substituted as found convenient Solid of Revolution:
Solia of Revolution:
a A solid whose boundary is obtained
by revolving a given plane curve, about
a line in its plane.
* c.m of a solid of revolution.
Let the given curve be
$y = f \propto 0$.
_
where n varies from n=a to n=b and
let the axis of rotation be taken as maxis
855 B
7 = 9 Page 16 of 85 % 2 b
to a construction of the control of

The solid can be regarded as made up of thin circular slices Har to n-anis. The mass of slice at a distance x from the origin is for yifa = o : cm lies on anis of

b rotation rie one anis.

= Jaxf Ty2du = SAJAyon JA Sby2dn $X = \int_{a}^{\infty} x y^{2} dx$ Jb y2 da Example:- page 92:
A solid right circular come. Solution. A solid right circular cone can be regarded as a solid of revolution formed by the rotation of the line (passes through the origin and matring angle «). Page 17 of 85

$P(x_1,y_1) \Rightarrow P(0,0)$; $m = tan\alpha$
Equation of rotation line.
y-y-m(x-x1)
y-0 = tana (x =0)
y = x tanx
c.m lies on axis of rotation
je one axis.
$-\bar{x} = \int_0^{\infty} x y^2 dx$
$\int_{0}^{h} y^{2} dn$
$\bar{x} = \int_{-\infty}^{\infty} x \cdot x^2 \tan^2 x dx$
$\int_{0}^{h} \chi^{2} tan^{2} dx$
tand for n3 dn
$\frac{1}{\sqrt{2}}\int_{0}^{h}x^{2}dx$
$\frac{1}{x} = \left[\frac{x}{4}\right]_0$
$\int \frac{\pi^3}{3} \frac{7^h}{3}$
$\lfloor 3 \rfloor_0$
<u> </u>
h ³
- KM 3
4 7
$\bar{\chi} = \frac{3}{4}h$ Ans
Page 18 of 85

=_%	Nif .
- _[10]	Example #2:- Page 94:
	Find the c.m of the surface generated
	by the revolution of the arc of the
- · · · · · · · · · · · · · · · · · · ·	parabola lying between the vertex and
	parabola, lying between the vertex and the latus rectum, about the x-onis?
	Solution: Y
: _# :*	Latuerectum
	ν Γ Ε(α,ο) , χ
- <u>"</u> ",——	
:.·	
• <u>•</u> •	Let Equation of parabola.
· ·	$y^2 = 4ax$
<u>.</u> .	4 = Juan
1_ % 	curve of parabola, n-oxis.
I s.	$y = 2 \sqrt{ax}$
	04 210
	dx 2)x
· .	od 2 d n
· _ ^,	$ds = \left(1 + \left(\frac{dy}{dx}\right)^2\right)^2 dx$
	J de l
: 24	$= \int \frac{1+a}{x} dx$
<u>.</u> .	
_ 7,	$ds = \int x + a dx$
	1 ×
_ 1	Page 19 of 85

: cm lies on axis of revolution i-e
$on \pi-qnis$:
$\frac{\bar{y} = 0}{\int_{0}^{\alpha} \pi y ds}$
$\bar{\chi} = \int_{0}^{\pi} n y ds$
$\int_{0}^{\alpha} y ds$
$\frac{1}{\sqrt{\alpha}}$
$\lambda = \int_0^{\infty} \sqrt{2 J \alpha J / \alpha} dx$
$\frac{1}{x} = \int_{0}^{\alpha} x \cdot 2 \int a \int x \cdot \frac{\int a + x}{\int x} dx$ $\int \frac{a}{x} = 2 \int a \int x \cdot \frac{\int a + x}{\int x} dx$
6
$\bar{x} = 2 \int a \int n \int a + x dx$
2Fa Sa Jatu du.
$\int_{a}^{a} \left(x + q - q\right) \int x + q dx$
$\int_{a}^{a} \int_{x+a}^{x+a} dx$
$= \int_0^a \left[(x+a)^3 - a \int x+a \right] dx$
$\int_{-\infty}^{\infty} \sqrt{x+a} dx$
5/2 3/2/a
$= \frac{\int \frac{2}{5} (x+a)^{3/2} - \alpha \frac{2}{3} (x+a)^{3/2} \Big ^{\alpha}}{\sqrt{2}}$
$\frac{1}{3} \cdot (\chi + q)^{3/2} \alpha \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma$
$\frac{2}{5} \cdot (2a)^{\frac{5}{2}} - a \cdot \frac{2}{3} (2a)^{\frac{3}{2}} - \frac{2}{5} a^{\frac{3}{2}} + a \cdot \frac{2}{3} a^{\frac{3}{2}}$
$\frac{2}{3}(2q)^{3/2} - \frac{2}{3}(a)^{3/2}$
$\frac{2}{5} \cdot 2^{12} \cdot a^{12} - \frac{2}{3} \cdot 2^{3/2} \cdot a^{12} = \frac{2}{3} a^{12} + \frac{2}{3} a^{12}$
$\frac{2}{3} \cdot 2^{3/2} a^{3/2} - \frac{2}{3} a^{3/2}$
$\frac{3}{2} \left[\frac{3}{5} \cdot 4\sqrt{2} - \frac{2}{3} 2\sqrt{2} - \frac{2}{5} + \frac{2}{3} \right]$
$\frac{3}{2} \left[\frac{2}{3} \cdot 2\sqrt{2} - \frac{2}{3} \right]$
Page 20 of 85

·		
=_*:-	$-\frac{3/2}{a} \left[\frac{8/2}{5} - \frac{4/2}{3} - \frac{2}{5} + \frac{2}{3} \right]$	F
	$\begin{bmatrix} \frac{4\sqrt{2}}{3} & -\frac{2}{3} \end{bmatrix}$	
		_
i di e	$= a. \frac{24/2 - 20/2 - 6 + 10}{195}$	
7	4/2 - 2	
	3	_
	= a. 29/2-20/2-6+10	_
	5(4/2-2)	
4	= a. 452 + 4	_
	2.0/2 -10	_
1,7.	$= \alpha \cdot \cancel{\cancel{M}} \left(\underbrace{52 + 1} \right)$	
4.	$= \frac{a \cdot \frac{2}{4}}{18} \left(\frac{\sqrt{2} + 1}{2\sqrt{2} - 1} \right)$	
-		_
	$= \frac{2a}{5} \left[\frac{\sqrt{2}+1}{2\sqrt{2}-1} \cdot \frac{2\sqrt{2}+1}{2\sqrt{2}+1} \right]$	
<u>.</u>		
ا ي مهري ا سا	$= 2a \left[\frac{4+12+2\sqrt{2}+1}{2} \right]$	
;,	5 [8 - 1]	_
	$= 29 \cdot \left[5 + 3 \right] $	-
	5 (7)	_
	2 10 + 6 12 a	_
, ,-	35 Ans	_
; ***,	Q:No: 2:	
- Ly	Weighter of 1,2,3,416 are placed at	
* ************************************	the corners A,B,C,D respectively of a	
	Square of side 8 inches. Find the	_
.; <u>:</u>	distances of the c.g of the set of	_
, Succession of the second of	weights from AB and AD?	_
1	Page 21 of 85	
	· ·	1

Solution:-		
Consider	a square	ABCD of side
length a=	8" inches and	origin at A with
sides AB an	d AD along	a and y-gais.
91	p(0,0) a	ζ(a,α) 31b
	чь	31b
a	c ·g	a
	1116	215
	A(0,0) a	B(a, n) X
J		
C. G.	$= (\bar{\mathbf{x}}, g)$	
<u> </u>	E'mi xi	
	Z'mi	
$\int_{-\infty}^{\infty} \bar{x} =$	1(0) + 2(a)) + 3(a) + 4(o).
	1+2+	3 + 4
Ž =	<u> Za</u>	
	2	
2 =	<u>a</u>	a
~ =	4.8/	<u> </u>
Ž =	y" in ches.	
- - - -	Emiti_	·
	$\geq m_i$	
\	1(°) + 2 (°)	+ 3(a) + 4 (a)
	1 + 2 +3	3 + 4
	Page 22 of 8	5

5. 6" Inches = (4",5.6") Distance of CG from AB = 5.6 inches.

Distance of C.G. from AD = 4 inches Weights of 5, 1, 3, 2, 4 and 15 lb. are placed at the angular points of a regular hexagon taken in order. Find the distance of their c.g. from the 1516 weight? Ans: Diagram. Solution: Y-axis E (0, [3a) p(a, 13a) $= \sqrt{\frac{39}{2}}$ 15.46. ۵(مره) ₽ a (056° A(0,0) Page 23 of 85

Consider regular nexagon ABCDEF with corner A at origin and side AB and direction AE along x and y-axis. 4f "a" is the length of side then (o-ordinates of $A(0,0)$, $B(0,0)$, $C(\frac{30}{2},\frac{130}{2})$) $C(0,0)$, $C(0,0)$, $C(\frac{30}{2},\frac{130}{2})$ $C(0,0)$, $C(0,$
with corner A at origin and side AB and direction AE along x and y-axis. If "a" is the length of side then (o-ordinates of $A(0,0)$, $B(a,0)$, $C(\frac{3a}{2},\frac{3a}{2})$ $D(a, \sqrt{3}a)$, $E(0, \sqrt{3}a)$ and $E(-\frac{9}{2}, \frac{3}{2}, \frac{3}{2})$ $C(G = (\overline{x}, \overline{y})$ $\overline{x} = \sum_{m \in x_i} m_i x_i$ $\overline{x} = 15(0) + 5(a) + 1 \cdot \frac{3}{2} a + 3a + 2(0) + H(-\frac{a}{2})$ $15 + 5 + 1 + 3 + 2 + 4$ $\overline{x} = 5a + \frac{3a}{2} + 3a - 2a$ 30 $\overline{x} = 10a + 3a + 6a - 4a$ 60 $\overline{x} = \frac{15a}{60} = \frac{a}{4}$ $\overline{y} = \sum_{m \in y_i} m_i y_i$ $\overline{y} = 15(0) + 5(0) + 1 \cdot \frac{\sqrt{3}}{2} a + 3(\sqrt{3}a) + 2(\sqrt{3}a) + H(\sqrt{3}a)$ $15 + 5 + 1 + 3 + 2 + 4$ $15 + 5 + 1 + 3 + 2 + 4$ $15 + 5 + 1 + 3 + 2 + 4$ $15 + 5 + 1 + 3 + 2 + 4$
and direction AE along x and y-axis. 4f "a" is the length of side then (o-ordinates of $A(0,0)$, $B(a,0)$, $C(\frac{3a}{2},\frac{3a}{2})$ $D(a, \overline{3}a)$, $E(0, \overline{3}a)$ and $E(-\frac{9}{2}, \overline{2}a)$. $C.G. = (\overline{x}, \overline{y})$ $\overline{x} = \sum_{m \in X_1} m \times 1$ $\overline{x} = 15(0) + 5(\alpha) + 1 - \frac{3}{2} \alpha + 3\alpha + 2(0) + M(-\frac{a}{2})$ $15 + 5 + 1 + 3 + 2 + 4$ $\overline{x} = 5a + \frac{3a}{2} + 3a - 2a$ $\overline{x} = 10a + 3a + 6a - 4a$ $\overline{x} = \frac{15a}{60} = \frac{a}{4}$ $\overline{y} = \sum_{m \in Y_1} m \times y$ $\overline{y} = \sum_{m \in Y_2} m \times y$ $\overline{y} = 15(0) + 5(0) + 1 \cdot \frac{7}{2} a + 3(\overline{3}a) + 2(\overline{3}a) + M(\overline{3}a)$ $\overline{y} = 15(0) + 5(0) + 1 \cdot \frac{7}{2} a + 3(\overline{3}a) + 2(\overline{3}a) + M(\overline{3}a)$ $\overline{y} = 15(0) + 5(0) + 1 \cdot \frac{7}{2} a + 3(\overline{3}a) + 2(\overline{3}a) + M(\overline{3}a)$ $\overline{y} = 15(0) + 5(0) + 1 \cdot \frac{7}{2} a + 3(\overline{3}a) + 2(\overline{3}a) + M(\overline{3}a)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$D(\alpha, \sqrt{3}a), F(0, \sqrt{3}a) \text{ and } F(-\frac{9}{2}, \frac{\sqrt{3}}{2}a).$ $C.G_{0} = (\bar{x}, \bar{y})$ $\bar{x} = \sqrt{2}m_{1}x_{1}$ $\sqrt{x} = \sqrt{3}a + 3x + 2(0) + \sqrt{2}$ $\sqrt{x} = \sqrt{3}a + 3x + 2 + \sqrt{2}$ $\sqrt{x} = \sqrt{3}a + 3x + 2 + \sqrt{2}$ $\sqrt{x} = \sqrt{3}a + 3x + 2 + \sqrt{2}$ $\sqrt{x} = \sqrt{3}a + 3x + 2 + \sqrt{2}$ $\sqrt{x} = \sqrt{3}a + 3\sqrt{3}a + 2\sqrt{3}a + 2\sqrt{3}a$ $\sqrt{x} = \sqrt{3}a + 3\sqrt{3}a + 2\sqrt{3}a + 2\sqrt{3}a$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\sum m_{i}$ $\sum m_{i}$ $\sum -15(0) + 5(\alpha) + 1 \cdot \frac{3}{2} \alpha + 3\alpha + \lambda(0) + \mathcal{H}(-\frac{\alpha}{2})$ $15 + 5 + 1 + 3 + 2 + 4$ $15 + 5 + 1 + 3 + 2 + 4$ $15 + 5 + 1 + 3 + 2 + 4$ $15 + 5 + 1 + 3 + 2 + 4$ $15 + 5 + 1 + 3 + 2 + 4$ $15 + 5 + 1 + 3 + 2 + 4$ $15 + 3 + 3 + 3 + 2 + 4$ $15 + 3 + 3 + 3 + 2 + 3 + 3 + 3 + 3 + 3 + 3$
$ \frac{1}{x} = \frac{15(0) + 5(\alpha) + \frac{1 - \frac{3}{2}\alpha + 3\alpha + 2(0) + H(-\frac{\alpha}{2})}{15 + 5 + 1 + 3 + 2 + 4} $ $ \frac{1}{x} = \frac{5\alpha + \frac{3\alpha}{2} + 3\alpha - 2\alpha}{30} $ $ \frac{1}{x} = \frac{10\alpha + 3\alpha + 6\alpha - 4\alpha}{60} $ $ \frac{1}{x} = \frac{15\alpha}{60} = \frac{\alpha}{4} $ $ \frac{1}{y} = \frac{15\alpha}{60} = \frac{\alpha}{4} $ $ \frac{1}{y} = \frac{15(0) + 5(0) + \frac{1 \cdot \frac{13}{2}\alpha + 3(\sqrt{3}\alpha) + 2(\sqrt{3}\alpha) + H(\sqrt{3}\alpha)}{2}}{15 + 5 + 1 + 3 + 2 + 4} $ $ = \frac{13\alpha}{2} + \frac{313\alpha}{3} + \frac{2\sqrt{3}\alpha + 2\sqrt{3}\alpha}{3} $
$ \frac{1}{3} = \frac{5a + \frac{3a}{2} + 3a - 2a}{30} $ $ \frac{1}{3} = \frac{10a + 3a + 6a - 4a}{60} $ $ \frac{1}{3} = \frac{15a}{60} = \frac{4}{4} $ $ \frac{1}{3} = \frac{15(0) + 5(0) + 1 \cdot \frac{13}{2}a + 3(\sqrt{3}a) + 2(\sqrt{3}a) + 4}{2} $ $ \frac{1}{3} = \frac{13a + 3\sqrt{3}a + 2\sqrt{3}a + 2\sqrt{3}a} $
$\bar{\chi} = 10\alpha + 3\alpha + 6\alpha - 4\alpha$ $\bar{\chi} = \frac{15\alpha}{60} = \frac{\alpha}{4}$ $\bar{y} = \sum_{i=1}^{3} m_{i} y_{i}$ $\bar{y} = 15(0) + 5(0) + 1 \cdot \frac{13}{2} \alpha + 3(\sqrt{3}\alpha) + 2(\sqrt{3}\alpha) + \sqrt{3}\alpha$ $= \frac{13\alpha}{2} + 3\sqrt{3}\alpha + 2\sqrt{3}\alpha + 2\sqrt{3}\alpha$
$\bar{\chi} = \frac{10\alpha + 3\alpha + 6\alpha - 4\alpha}{60}$ $\bar{\chi} = \frac{15\alpha}{60} = \frac{\alpha}{4}$ $\bar{y} - \sum_{m_1} m_1 y_1 = \frac{15(0) + 5(0) + 1 \cdot \sqrt{3} \alpha + 3(\sqrt{3} \alpha) + 2(\sqrt{3} \alpha) + \sqrt{4}(\sqrt{3} \alpha)}{15 + 5 + 1 + 3 + 2 + 4}$ $= \frac{13\alpha}{2} + \frac{313\alpha}{2} + \frac{2\sqrt{3}\alpha}{2} + \frac{2\sqrt{3}\alpha}{2} + \frac{2\sqrt{3}\alpha}{2}$
$ \frac{15a}{60} = \frac{4}{9} $ $ \frac{15a}{60} = \frac{4}{9} $ $ \frac{15m_{5}}{2m_{5}} $ $ \frac{15(0) + 5(0) + 1 \cdot \sqrt{3}}{2} = 4 \cdot 3(\sqrt{3}a) + 2(\sqrt{3}a) + 4(\sqrt{3}a) $ $ \frac{15 + 5 + 1 + 3 + 2 + 4}{2} $ $ = \frac{13a}{2} + \frac{313a}{2} + \frac{2\sqrt{3}a}{2} + \frac{2\sqrt{3}a}{2} $
$ \overline{x} = \frac{15a}{60} = \frac{\alpha}{4} $ $ \overline{y} - \sum m_i y_i $ $ \overline{y} = \frac{15(0) + 5(0) + 1 \cdot \sqrt{3}a + 3(\sqrt{3}a) + 2(\sqrt{3}a) + \sqrt{4}(\sqrt{3}a)}{15 + 5 + 1 + 3 + 2 + 4} $ $ = \frac{\sqrt{3}a}{2} + 3\sqrt{3}a + 2\sqrt{3}a + 2\sqrt{3}a $
$ \frac{3}{2} = \sum_{m_i} m_i y_i $ $ \frac{3}{2} = \frac{15(0) + 5(0) + 1 \cdot \sqrt{3} a + 3(\sqrt{3}a) + 2(\sqrt{3}a) + \sqrt{3}a}{15 + 5 + 1 + 3 + 2 + 4} $ $ = \frac{3a}{2} + 3\sqrt{3}a + 2\sqrt{3}a + 2\sqrt{3}a $
$\sum_{y} m_{i}$ $= \frac{15(0) + 5(0) + 1 \cdot \sqrt{3} a + 3(\sqrt{3}a) + 2(\sqrt{3}a) + \sqrt{3}a}{15 + 5 + 1 + 3 + 2 + 4}$ $= \frac{\sqrt{3}a + 3\sqrt{3}a + 2\sqrt{3}a + 2\sqrt{3}a}{2}$
$ \frac{3}{3} = \frac{15(0) + 5(0) + 1 \cdot \sqrt{3} \cdot a + 3(\sqrt{3} \cdot a) + 2(\sqrt{3} \cdot a) + \sqrt{3} \cdot a}{15 + 5 + 1 + 3 + 2 + 4} $ $ = \frac{\sqrt{3} \cdot a}{2} + \frac{3\sqrt{3} \cdot a}{2} + \frac{2\sqrt{3} \cdot a + 2\sqrt{3} \cdot a}{2} $
$\frac{15+5+1+3+2+4}{2}$ =\frac{13a}{2} + \frac{313a}{2} \frac{13a}{2} + \frac{2\frac{3}{3}a}{2} \frac{1}{3} \frac{3}{3} \frac{1}{3} \frac{1}
$\frac{15+5+1+3+2+4}{2}$ =\frac{13a}{2} + \frac{313a}{2} \frac{13a}{2} + \frac{2\frac{3}{3}a}{2} = \frac{13}{2}
= 2
3.0
$= \int 3\alpha + 14 \int 3\alpha$
6.0
$=\frac{15\sqrt{3}a}{4}$
Page 24 of 85

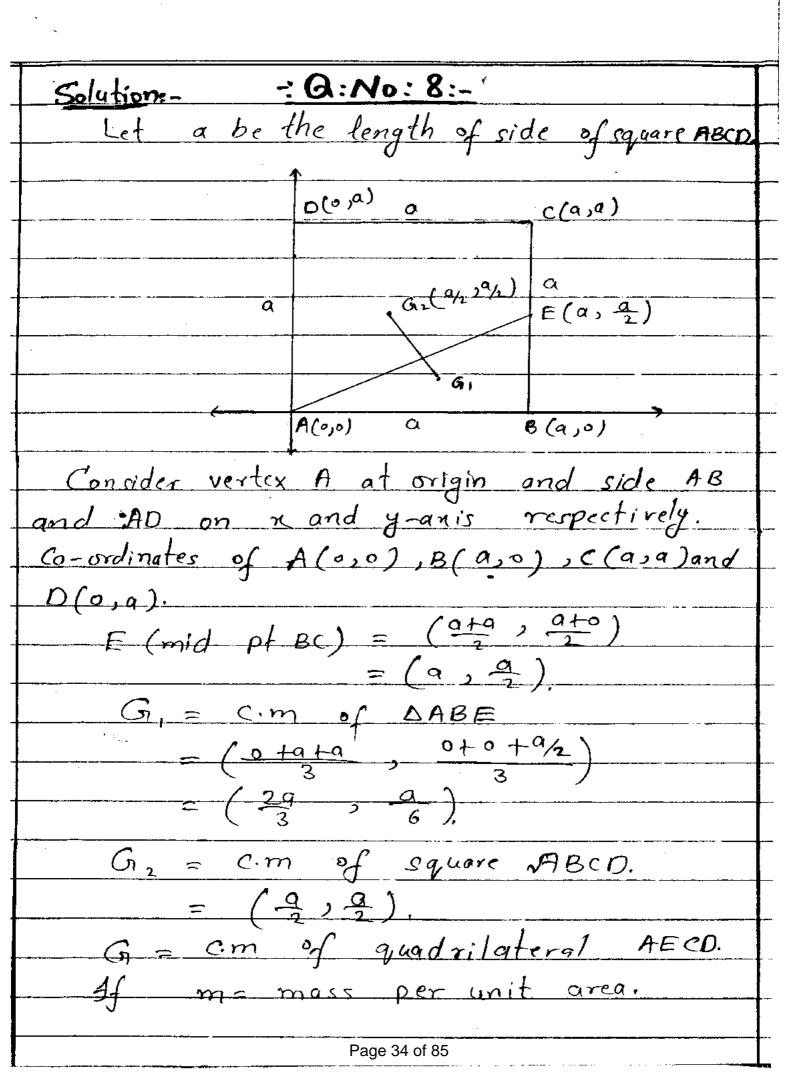
$C \cdot G_1 = \left(\frac{\alpha}{4}, \frac{\sqrt{3}q}{4}\right)$
Distance of C.G. from A (i.e from
$151b \text{weights}) = \sqrt{x^2 + y^2}$
$= \frac{3^2 + 3a^2}{16}$
16 16
$= \sqrt{\frac{9a}{16}}$
$=\int \frac{\alpha^2}{\alpha^2}$
7 9
$=\frac{3}{2}$
tano = # = 150
Y A Y
tano = 13
0 2 6°
of the length of side in the line
joining 151b. and 31b. weights.
-; Q:No:4:-
ABC is an isosceles triangular
lamina in which AB = AC = 15 inches.
BC = 24 mches. The weight of the lamina
is 241b. and weights of 6,6 and 41b.
are placed at the corners A, B
and c respectively. Find the distance
of the c.g. of the system from BC?
Page 25 of 85

y_axis
Solution:
15 m. 9 in. 15 in.
2416 (0,3)
81b: 12 41b. n-axis
B(-12,0) $M(0,0)$ $C(12,0)$
24 in.
C' 11 1/2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Consider isogceles DABC [AB]=[AC]=15in-
Draw perpendicular IAMI from A to side
BC = 24 in.
Jahre M as origin and BC and AM
along a and y-axis respectively.
The co-ordinates of B(-12,0), c(12,0)
M(0,0), $A(0,9)$.
: In DAMC
$ AM ^2 + MC ^2 = AC ^2$
$ AM ^2 - AC ^2 - MC ^2$
$=(15)^2-(12)^2$
= 225 - 144
$\sqrt{ AM ^2} = \sqrt{81}$
: triangle is symmetric about line IAMI
its on lies on this line.
its orginal lies on this line.
Page 26 of 85

≎;≈	
	$c \cdot m = of \triangle ABC = \left(\frac{0 - 12 + 12}{3}, \frac{9 + 6 + 0}{3}\right)$
	=(0,3)
	Weights of 6,6 and 41b. are attached
	at vertices A,B,C respectively.
سراری ^ن ر	Distance of G.g of the system
	from Bc = y
: 	$(cm) \bar{y} = 6(9) + 6(0) + 4(0) + 24(3)$
	6+6+4+24
	$: C \cdot m = \sum_{i} m_{i} y_{i}$
	$\geq m_i$
	$y = \frac{54 + 72}{}$
4.	40
	$y = \frac{12.6}{14.8}$
	3.15 inches. Am
PV	Example: - Page 76:-
	In a uniform execular disc of 8"
*	radius a circular hole of 2" radius
~	is cut the centre of the hole being
	3" from the centre of the disc. Find
*//	the centre of the disc. Find thecentre
***************************************	of mass of the Remainder of thedisc?
<u></u>	Solution:
-	Let M and M, be the masses
\$	Page 27 of 85

of large disc and hole removed resp. acting at c and c. Taking a line through cc, as x-axis
(Axis of symmetry). So c.g of remaining portion lies on it. M=mass of large disc. · = (Aera) (moss per unit area).

where m = mass per unit area. $M = \pi (8)^2 m = 64 \pi m$ M, - mass of circular hole. M, = 4Km Af taloing cat origin. oc = 0, OCI = 3". C.G. of remaining portion is consider as a dise from which a circle of radius 2" is removed. X = M.OC - M.OC, Page 28 of 85


$\bar{\chi} = 64\pi m \cdot 0 - 4\pi m \cdot 3$
64xm - 4xm
= -12 Am
60 TM
ive sign shows that cg of
remaining portion lies left to origin
at distance ="
_0
Q:No:10:-
From a uniform circular disc of radius
a, a circular hole, having radius half that
of the disc, is punched. Find the position
of com of the remainder?
Solution
let M and M, be the mass of
Their c.g lies at their central pt c
· ,
and c. of
a k y a/2.
$A = \frac{1}{5} \cdot \frac{1}{3} \cdot $
6
A line through c,c, is to tring as
Page 29 of 85

n-axis (Axis of symmetry) so cog lies onit
HA is origin.
AC=a.
$AC_{1} = AC + CC_{1} = a + \frac{a}{2} = \frac{3}{2}a$
· ·
M = mass of circular disc = Aera x mass/Aera where m = mass per unit Aera.
$= \pi \alpha^2 \cdot m$
M, = mass of circular hole.
$= \pi \left(\frac{\alpha}{2}\right)^2 \cdot m$
$\sqrt{\pi}a^2m$
Remaining Hostion of disc regarded as a
Remaining "portion of disc regarded as a disc from which a circular hole is
removed.
If c.G. of remaining portion les at G. Then
$AG = M - AC - M \cdot AC,$
M-M,
$= \pi \alpha^2 m \cdot \alpha - \frac{\pi \alpha^2 m}{4} \cdot \frac{3}{2} \alpha.$
$\pi a^2 m - \pi a^2 m$
$Aa^2m\left(\alpha-\frac{3\alpha}{8}\right)$
$\overline{\Delta a^2 m} \left(1 - \frac{1}{6} \right)$
-8a-3a=5a
8-2
cg of remaining disc from $c = \alpha - \frac{S\alpha}{6}$
$= \frac{6\alpha - 5\alpha}{6}$
Available at MathCity.org Page 30 of 85

At distance to a from the centre
of the disc.
-: Q. No: 5:-
The radius of the faces of a frustum of a solid cone are 2ft. and 3ft.
of a solid cone are 2ft. and 3ft.
and the height of the frustum is 4ft. Find the distance of the c.g from
Find the distance of the c.q from
the larger face?
Solution =-
·(3ft)
0'2.ft \ (3ft)
Gn i uft
E O St D
Consider a frustrum BCDE. Extend
sides EB and DC to complete the cone.
op = 3ft. ; o'c = 2ft.
00' = 4 ft.
Af A is the verlex of come and
oA is the axis of symmetry C.9 lies
on this Axis.
AAOD = BAO'C
Page 31 of 85

M. TANYEER SUPERIOR GROUP OF COLLEGES O'A O'C O'A = $\frac{3}{2}$ Height of cone from base = $h - \frac{3}{2}h$ Height of cone from base = $h - \frac{3}{2}h$ $\frac{1}{4}$ O'A = $\frac{1}{$	· · · · · · · · · · · · · · · · · · ·	
$ \frac{OA}{O'A} = \frac{3}{2} $ $ \frac{O'A}{O'A} = \frac{3}{2} $ $ \frac{O'A}{O'A} = \frac{1}{2} $ $ \frac{O'A}{O'A} = \frac{1}{2} $ $ \frac{O'A}{O'A} = \frac{1}{2} $ $ O'A = 8ft. $ $ h = height of cone. $ $ h = 00' + 0'A $ $ = 4 + 8 $ $ h = 12 ft. $ $ Height of cone from vertex = \frac{3}{4}h. Height of cone from base = h - 3 h = \frac{1}{4}(12) OCa_1 = 3ft. height of small cone = \frac{1}{4}h O'a_2 = \frac{1}{4}(8) = 2ft OGa_1 = 6ft. $. 2220 040004	F COLLEGES
$ \frac{OA}{O'A} - 1 = \frac{3}{2} - 1 $ $ \frac{OA - O'A}{O'A} = \frac{3 - 2}{2} $ $ \frac{O'A}{O'A} = \frac{1}{2} $ $ \frac{O'A}{O'A} = \frac{1}{2} $ $ O'A = 8ft. $ $ h = height of cone. $ $ h = 00' + 0'A $ $ = 4 + 8 $ $ h = 12 ft. $ Height of cone from vertex = $\frac{3}{4}$ h. Height of cone from base = $h - \frac{3}{4}$ h $ = \frac{1}{4} (12) $ $ O(A_1 = 3ft. $ Incight of small cone = $\frac{1}{4}$ h $ O'A_2 = \frac{1}{4} (8) = 2ft $ $ O(A_1 = 6ft. $	O'A O'C	
$ \frac{OA}{O'A} - 1 = \frac{3}{2} - 1 $ $ \frac{OA - O'A}{O'A} = \frac{3 - 2}{2} $ $ \frac{O'A}{O'A} = \frac{1}{2} $ $ \frac{O'A}{O'A} = \frac{1}{2} $ $ O'A = 8ft. $ $ h = height of cone. $ $ h = 00' + 0'A $ $ = 4 + 8 $ $ h = 12 ft. $ Height of cone from vertex = $\frac{3}{4}$ h. Height of cone from base = $h - \frac{3}{4}$ h $ = \frac{1}{4} (12) $ $ O(A_1 = 3ft. $ Incight of small cone = $\frac{1}{4}$ h $ O'A_2 = \frac{1}{4} (8) = 2ft $ $ O(A_1 = 6ft. $	$\frac{OA}{-2A} = \frac{3}{2}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
00' 2 1 0'A 2	$\frac{-0n}{0A} - 1 = \frac{-3}{2} - 1$	
00' 2 1 0'A 2	2 2 2	
00' 2 1 0'A 2	$\frac{\sqrt{1-6}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	
0'A = 2 0'A = 2 0'A = 8ft. h = height of cone. h = 00' + 0' A = 4 + 8 h = 12 ft. Height of (cone) big cone from vertex = 3h. Height of cone from base = h - 3h = \frac{1}{4}h. OGn, = 3ft. height of small cone = \frac{1}{4}h O'Gn_ = \frac{1}{4}(8) = 2ft OGn_ = 6ft.		
o'A = 2 o'A = 8ft. h = height of cone. h = 00' + 0'A = 4 + 8 h = 12 ft. Height of (cone) big cone from verten = $\frac{3}{4}h$. Height of cone from base = $h - 3h$ = $\frac{1}{4}h$ = $\frac{1}{4}(12)$ O($n_1 = 3ft$. height of small cone = $\frac{1}{4}h$ O' $n_2 = \frac{1}{4}(8) = 2ft$ O($n_3 = 6ft$.		
h = height of cone. $h = 00' + 0'A$ = 4 + 8 $h = 12 \text{ ft.}$ Height of (cone) big cone from vertex = $\frac{3}{4}h$. Height of cone from base = $h - \frac{3}{4}h$ = $\frac{1}{4}(12)$ $O(5_1) = 3\text{ ft.}$ height of small cone = $\frac{1}{4}h$ $O(5_2) = \frac{1}{4}(8) = 2\text{ ft.}$ $O(5_3) = 00' + 0' (5_3)$ $O(5_4) = 00' + 0' (5_4)$ $O(5_4) = 00' + 0' (5_5)$		
h = height of cone. $h = 00' + 0'A$ = 4 + 8 $h = 12 \text{ ft.}$ Height of (cone) big cone from vertex = $\frac{3}{4}h$. Height of cone from base = $h - \frac{3}{4}h$ = $\frac{1}{4}(12)$ $O(5_1) = 3\text{ ft.}$ height of small cone = $\frac{1}{4}h$ $O(5_2) = \frac{1}{4}(8) = 2\text{ ft.}$ $O(5_3) = 00' + 0' (5_3)$ $O(5_4) = 00' + 0' (5_4)$ $O(5_4) = 00' + 0' (5_5)$	$\frac{1}{0'A}$ $\frac{1}{2}$ $\frac{1}{2}$	
h = height of cone. $h = 00' + 0'A$ = 4 + 8 $h = 12 \text{ ft.}$ Height of (cone) big cone from vertex = $\frac{3}{4}h$. Height of cone from base = $h - \frac{3}{4}h$ = $\frac{1}{4}(12)$ $O(5_1) = 3\text{ ft.}$ height of small cone = $\frac{1}{4}h$ $O(5_2) = \frac{1}{4}(8) = 2\text{ ft.}$ $O(5_3) = 00' + 0' (5_3)$ $O(5_4) = 00' + 0' (5_4)$ $O(5_4) = 00' + 0' (5_5)$	0'A = 8ft.	
h = 00' + 0'A = 4 + 8 h = 12 ft. Height of (cone) big cone from vertex = $\frac{3}{4}h$. Height of cone from base = $h - \frac{3}{4}h$ = $\frac{1}{4}h$. O(h, = 3ft. height of small cone = $\frac{1}{4}h$ O'G, = $\frac{1}{4}(8) = 2ft$ OG, = 00' + 0'G, $\frac{1}{4}(8) = 2ft$ OG, = 6ft.		
$h = 12 \text{ ft.}$ $Height of (cone) big cone from vertex = \frac{3}{4}h.$ $Height of cone from base = h - \frac{3}{4}h$ $= \frac{1}{4}(12)$ $OG_{1} = 3ft.$ $height of small cone = \frac{1}{4}h$ $O'G_{2} = \frac{1}{4}(8) = 2ft$ $OG_{3} = 00' + 0'G_{3}$ $OG_{1} = 6ft.$		
h = 12 ft. Height of (cone) big cone from vertex = $\frac{3}{4}h$. Height of cone from base = $h - \frac{3}{4}h$ = $\frac{1}{4}h$. O(h , = 3 ft. height of small cone = $\frac{1}{4}h$ O(h , = $\frac{1}{4}$ (8) = $\frac{2}{4}$ ft. O(h , = $\frac{1}{4}$ (8) = $\frac{2}{4}$ ft. O(h , = $\frac{1}{4}$ (8) = $\frac{2}{4}$ ft.		
Height of cone from base = $h-3h$ $= \frac{1}{4}h$ $= \frac{1}{4}(12)$ $O(n_1 = 3ft.$ $height of small cone = \frac{1}{4}h$ $O(n_2 = \frac{1}{4}(8) = 2ft)$ $O(n_3 = 00^2 + 0^2 G_3$ $O(n_4 = 6ft)$	= 4 + 8	
Height of cone from base = $h-3h$ $= \frac{1}{4}h$ $= \frac{1}{4}(12)$ $O(n_1 = 3ft.$ $height of small cone = \frac{1}{4}h$ $O(n_2 = \frac{1}{4}(8) = 2ft)$ $O(n_3 = 00^2 + 0^2 G_3$ $O(n_4 = 6ft)$	h = 12 ft.	·
Height of cone from base = $h-3h$ $= \frac{1}{4}h.$ $= \frac{1}{4}(12)$ $O(n_1 = 3ft.$ $height of small cone = \frac{1}{4}h$ $O(n_2 = \frac{1}{4}(8) = 2ft)$ $O(n_3 = 00' + 0' G_3$ $O(n_4 = 6ft)$	Height of (cone) big cone from ve	orten = 3h.
$=\frac{1}{4}h.$ $=\frac{1}{4}(12)$ $0G_{1} = 3ft.$ $height of small cone = \frac{1}{4}h$ $0G_{2} = \frac{1}{4}(8) = 2ft$ $0G_{3} = 00^{2} + 0^{2}G_{3}$ $0G_{1} = \frac{1}{4}(8) = $	Height of come from hace =	h-3h
$= \frac{1}{4}(12)$ $= \frac{1}{4}(12)$ $OG_{1} = 3ft.$ $height of small cone = \frac{1}{4}h$ $O'G_{2} = \frac{1}{4}(8) = 2ft$ $OG_{3} = 00' + 0'G_{3}$ $OG_{3} = 4 + 2$ $OG_{3} = 6ft.$	J. J	, 7
height of small cone = $\frac{1}{4}h$ $0'G_{2} = \frac{1}{4}(8) = 2fh$ $0G_{3} = 00' + 0'G_{3}$ $0G_{2} = 4 + 2$ $0G_{3} = 6ft$	- 4	n
height of small cone = $\frac{1}{4}h$ $0'G_{2} = \frac{1}{4}(8) = 2fh$ $0G_{3} = 00' + 0'G_{3}$ $0G_{2} = 4 + 2$ $0G_{3} = 6ft$	= 1	12)
height of small cone = $\frac{1}{4}h$ $0'G_{2} = \frac{1}{4}(8) = 2fh$ $0G_{3} = 00' + 0'G_{3}$ $0G_{2} = 4 + 2$ $0G_{3} = 6ft$	4	
height of small cone = $\frac{1}{4}h$ $0'G_{2} = \frac{1}{4}(8) = 2fh$ $0G_{3} = 00' + 0'G_{3}$ $0G_{2} = 4 + 2$ $0G_{3} = 6ft$	$OG_1 = 3ft.$	
$0'G_{2} = \frac{1}{4}(8) = 2f + $	1	
$0G_{1} = 00' + 0'G_{1}$ $0G_{1} = 4 + 2$ $0G_{1} = 6ft.$		
$0G_{1} = 00' + 0'G_{1}$ $0G_{1} = 4 + 2$ $0G_{1} = 6ft.$	$O'G_{2} = \frac{1}{4}(8) =$	2-f /-
	1	
$DG_2 = \delta f \ell.$		
	C C 1	

Let m be the mass per unit volume.	
M=mass of big cone.	
M= mass of big cone. = volume . mass: volume	
$-\frac{1}{3}\pi r^2h$, m.	
= -1 x (35 (12).m	
= 36 7m	
M, = Mass of small conc.	
$= \frac{1}{3} \pi \gamma^2 h. m$	
$=\frac{1}{3} + (2)^2 \cdot 8 \cdot m$	
332xm	
3	***
Af Gibe the c.g of frustrum. Frustrum	
is consider as a cone from which a small	
cone is removed.	
$OG_1 = M.OG_1 - M_1.OG_2$	
M-M	
$=36\pi m \cdot 3 - \frac{32\pi m}{3}$	
36×m - 32×m	
- Am (108 - 64)	-
$= \pi m \left(\frac{108 - 643}{3} \right)$ $\pi m \left(\frac{108 - 32}{3} \right)$	
= 44.3 - 132 $76 76$	
$0G = \frac{33}{19} ft$	
19 3 5	,
Page 33 of 85	

M= mass of square ABCD.
$M = (a)^2 m$
M = 0.
$M_1 = mass of \Delta ABE$
- 1 [AB][BE] m Quad. AE(D) is regarded
- 1 a.a.m as a square ABCD
M. = 02 m which DABE is
, o 1
So, $\bar{\chi} = M \cdot \frac{Q}{2} - M_1 \cdot \frac{29}{3}$
M - M,
$\bar{\chi} = \alpha^2 m \cdot \frac{\alpha}{2} - \frac{\alpha^2 m}{4 x_2} \cdot \frac{2\alpha}{3}$
$a^2m - \underline{a^2m}$
$= \frac{a^2m\left(-\frac{\alpha}{2} - \frac{\alpha}{6}\right)^4}{2}$
2m(1-4)
$\bar{a} = 6a - 2a$
12 -3
Available at MathCity.org
$\frac{1}{1}$ $\frac{\alpha}{2}$ $\frac{\alpha}{2}$ $\frac{\alpha}{6}$
M - M
$\frac{9}{9} = \frac{a^2 m \cdot a}{2} - \frac{a^2 m \cdot a}{4}$
$a^2m - a^2m$
$\frac{1}{a^2m}\left(\frac{a}{a}-\frac{a}{a}\right)$
$\frac{1}{2} = \frac{2}{4} m \left(1 - \frac{1}{4} \right)$
J - 12a - a
24 - 6
Page 35 of 85

$$\ddot{y} = \frac{11a}{18}$$

$$G = (\vec{x}, \vec{j}) = (\frac{4a}{9}; \frac{11a}{8}).$$
Slope of $AE = \frac{a}{2} - 0 = \frac{9}{2} = \frac{1}{2}$

$$8 lope of $G_1, G_2 = \frac{11a}{18} - \frac{a}{8}$

$$\frac{4a}{9} - \frac{2a}{3}$$

$$= \frac{11a}{18} - \frac{a}{8}$$

$$\frac{4a}{9} - \frac{2a}{3}$$

$$= \frac{8a}{12}$$

$$= \frac{3a}{4a}$$
(Slope of AE) (Slope of G_1, G_2) = $\frac{1}{2}(-x)$

$$= -1$$
(Slope of AE) (Slope of G_1, G_2) = $\frac{1}{2}(-x)$

$$= -1$$

$$A = 1 \cdot G_1, G_2$$
Q: A square lamina $ABCD$ is divided into two parts by joining A to E , the middle point of BC . Prove that line joining the comof the triangular portion AEE to that of the quadrilateral portion AEE to that perpendicular to AE ?$$

Available at MathCity.org

Page 36 of 85

		
 .	vip .: Q: No: 12: -	
	Two uniform solid spheres, composed	
	of the same material and whose	
	diameters are 6 in. and 12 in resp.	
	are firmly united. Find the com of	
	the combined body?	
	Solution:-	
	Volume of sphere = 4773	
	Digneter of big sphere 12in.	
	Radius of big sphere = 6 in.	
	Diameter of small sphere = 6in.	F
	Radius of small sphere = 3 in.	
	Radius of small sphere = 3 in. Af m = mass per unit volume.	
	M= mass of big sphere.	-
	$= \frac{4}{3} \pi \gamma^3 m$	
	$\frac{3}{4 - (6)^3}$	
	3 1 6 7 7 7	
	M1= mass of small sphere	
	- 4 7 73.m	
	$\frac{3}{\sqrt{1000}}$ $\frac{3}{\sqrt{1000}}$ $\frac{3}{\sqrt{1000}}$	
	3	
\perp	com of both sphere lies at their	
_	central points say o and o'.	
	0	
1	Page 37 of 85	1

$\sqrt{3}$
0 0'(9,0)
Le de la
line out through centre is taken as
a-cours and o at origin.
Af G is the c.m of combined body
Then,
G = M(0) + M,.00
M + M
$= \frac{9/3 \pi 3^3 m 9}{1}$
4/3×63 m+4 x3.3m
· = \frac{4}{3}\taum(3^3.9)
$\frac{4}{3}$ Am $((2x3)^3 + 3^3)$
23 • 9
$\frac{1}{2^3 \cdot 3^3 + 3^3}$
22. 9
$3^{3}(2^{3}+1)$
8 + 1
- 1 "
= Gracts at 1 in. from centre
of big sphere.
Page 38 of 85
raye 30 UI 00

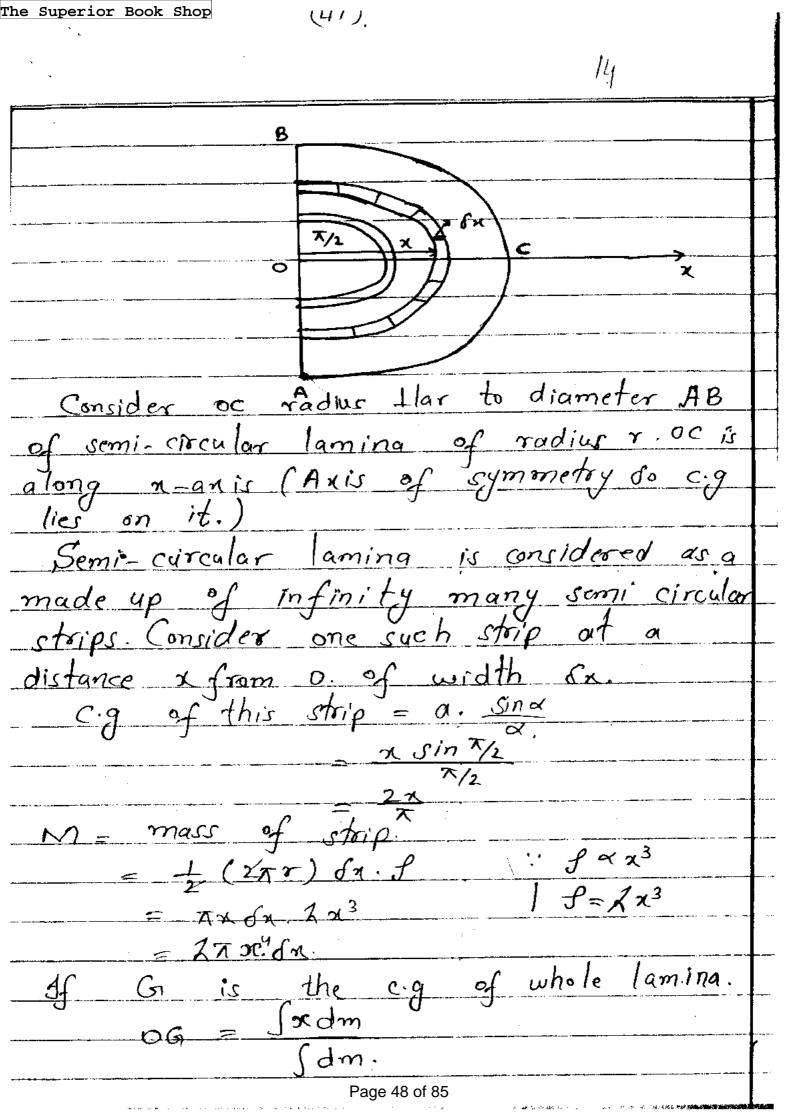
-: Q : No: 6:-ABCD is a trapezium which bounds a uniform lamina. AB, CD are parallel, and of lengths a, b respectively. Prove that the AB is 3 h a+2b where h is the distance between parallel sides? H Consider a trapezium ABCD in which JABIA (CDI and JABI=a and JeDI Take E and F mid point of side AB and CD respectively. Join E to Cand D. Then trapezium is equalent to three triangle AED EBC and ECD. h = Llar distance blw parallel sides. = Altitude of each triangle mass per unit area. Page 39 of 85

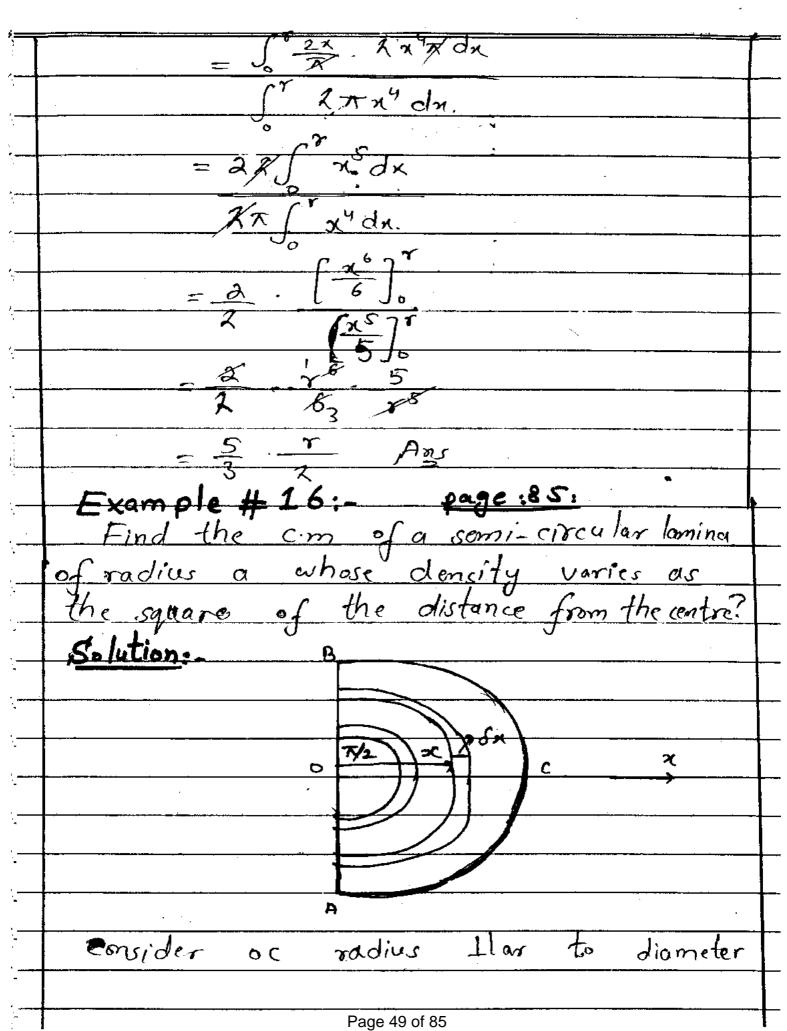
mass of DEAD = Area . mass/Aero.
$= \frac{1}{2} \left(\frac{9}{2} \right) h \cdot m - mass of AFBC.$
= ahm = mass of DEBC.
mass of DECD = $\frac{4}{3}b.hm = \frac{bhm}{2}$
Whole mass of triangle is equalent to 3
particle of mass of the mass of triongle.
place at the vertices.
Then mass at A = ohm = mass at B.
mass at c = ahm 12 hm = mass at 0
mass at $c = \frac{hm}{12}(a+2b) = mass at D$
mass at $E = \frac{ahm}{12} + \frac{ahm}{12} + \frac{bhm}{6}$
12 12 6
$= \frac{hm}{12}(\alpha + \alpha + 2b)$
= <u>hm</u> (a+b).
V
mass at A and B are equalent to mass
_ ahm + ahm at E
12 12
= <u>ahm</u>
Then mass at E = hm (a+b) + ahm
$= \frac{hm}{a} (2a + b).$
6
mass at c and D are Earnalent to mass at F.
Page 40 of 85

·		
	- hm (a+2b) + hm (a+2b)	
	$=\frac{2hm}{12}(a+2b),$	
	= hm (a+2b)	
	= hm (a+2b) If G is the cm of whole system	
	acting at E and F.	
	acting at E and F. EG = mass at F = $\frac{hm}{6}$ (a+2b) GF mass at E $\frac{hm}{6}$ (2a+b)	
	GF mass at E hm (20+b)	
	Draw Llar from Go to line EL which	
	is Llar from E to CD.	
	DEGH is similar with DELF.	
	$EH = G = \alpha + 2b$	
	$\frac{EH}{HL} = \frac{EG}{GF} = \frac{a+2b}{2a+b}$	
	$\frac{EH}{HL} = \frac{a+2b}{2a+b}$	
	HL 2atb	
	$\frac{HL}{a+b} = \frac{2a+b}{a+2b}$	
	EH 9169	-
	$\frac{HL}{EH} + 1 = \frac{2\alpha + b}{\alpha + 2b} + 1$	
	HL+EH _ 2a+b +a+2b	
	EH 9+26	
	EL 3a+3b	
	EH at 2b	
1	h = 3(a+b)	
	EH a+26	
+	$\frac{h(a+2b)}{2(a+b)} = EH$	
_	3 (a+ b) Page 41 of 85	
,		

EH	$=\frac{1}{3}h\frac{(a+2b)}{a+b}$
Distance	of cm from AB.
Note: - Ce	ntroid is the point of concurrency
of medians.	
Centroid a	livide medians 2:1.
	-: Q: No: 9:-
	s in the shape of a square described
	of an isosceles triangle. Find
the tangent	of the semi-vertical angle of
the triangle	of the semi-vertical angle of if the cm of the whole lamina ddle point of the base?
is at the mic	ddle point of the base?
Solution: - 1	Diagra:-
	A
	· Ca1 (3 AL)
0	6
(A)	a L a
20	20.
	• G12
	M
E	
0.00	of cymmetry co. cim lies
AM ancis	g symmery 30, cm
	Page 42 of 85

_ 	BCDE is a square of side length 2a.
. And the second	describe at the base of isosceles
	triangle ABC.
سس لوندوريه م	Lx = semi-verticle angle
**************************************	An DALB.
<u></u>	BL = tom d =) of = tand
Angle different	a = AL tang
egal ga	a cota = AL
k aner	G, is com of AABC.
**************************************	$AG_{+} = \frac{2}{3}AL$
egy - Tegy	$= \frac{2}{3} a \cot \alpha$
ida sa	Gz is c.m of square BCDE.
<u></u>	$AG_2 = AL + LG_2$
.j.,	A Grz zacota + a.
<u> </u>	If m= mass per unit area.
	M= mass of square.
i i gariya	= (29)2. m = 402 m.
	Mi = mass of DABC.
<u> </u>	$= \frac{1}{2} BCI.IALI.m$
**************************************	$=\frac{1}{2}(xa)acotam$
	= a2cotam
	If G is com of combined body.
ند	$nG = m AG_2 + m_1 \cdot AG_1$
\$. Jy.,-	$m + m_1$
<u> </u>	
5.3	


= 4a2m (a + a cota) + a2cotam. = acota Hazm + a2cota.m ": cm of combined body lies at mid pt L of base so, AL = AG : AL = a cota acota = a2m (4a + 4a cota + 23 a cof2) 03m (4 + cota) acota(4 + cota) = 4a + 4acota + = acota 12a sota + 3a cot2a = 12a + 12a sota + 2a cot2a acot2 = 120 Example # 14:- Page: 14:-Find the com of a uniform circular cone. Solution: Consider a creular are AB of circle of sodius a, matring an angle 2x centre, a is semi-verticle Page 44 of 85


	<u></u>
Consider a part PQ of arc s.t	
$\angle Po X = \emptyset$	
LOOX = 0+60'	,
4 P O Q = 80	
PQ = a do " += 80	
, m = mass per unit length.	
mass of $\widehat{P}\widehat{q} = 0$ do m	
$x = a \cos \theta$	
$\bar{x} = \int x dm$	
[dm	
_ sa coso am do	
(* amdo	
= 0 m f co 10 do	
= 0 7/ (0 /000	
om J do	<u></u>
_ a [sino]_a	 -
672	n-1-1-1
$= \alpha \left[\sin \alpha - \sin(-\alpha) \right]$	
$\int \alpha - (-\alpha) $	- · · · · · · · · · · · · · · · · · · ·
a (sma + sina)	
d+d	
= Zasina	
29	
Sing Ans	
Page 45 of 85	

Example #15:- Page: 84:-
Find the c.m of a uniform sector of a
circular lamina?
Solution:
B' a
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
A I I I I I I I I I I I I I I I I I I I
Let AOB be a sector of a circular lamina of
radius a let the measure of LAOB be 24 . By
Symmetry the c.m lies on Ox, the bisector
of LAOB. The sector may be regarded as
consisting of strips concentric with the given
cricle as in Fig.
The length of a strip A'B' of radius n.
_ 2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
: mass of this strip
= fax.x.6x
where f is the density of the
sector and fx is the breadth of strip.
The cm of the strip is at a distance
asina from 0.
f
the position of the com of the sector
is given by,
Page 46 of 85

 $\bar{x} = \int_0^{\infty} f 2 \alpha x dx \cdot \frac{x \sin \alpha}{\alpha}$ ot = 2a . Sind . Ans is. Com of uniform circular arc = a sing a = radius of circle, a = semi-vertical ongle.

iis: cm of a sector of circular bomina Find the c.g. of a semi-crocular lamina of radius x when the density varies as the cube of the distance from the centre? Page 47 of 85

The Superior Book Shop

(49)

AB efsemi circular lamina of radius a Oc is along n-anis (Axis of symmetry so c.m lies on it). Semi circular lamina is considered as a made up of infinity many semi-crowlar strips Consider one such strip at a distance a from o of width on. com of this strip = a sina M= mass of strip. = - (2xac). Sn.f = xx.dx.f If the G position of com of the whole lamina is given by og = Indm JATX3dx. = 27 J x4dx TA Panada Page 50 of 85

Page 51 of 85

width of strip.
Length of strip A'B' = 2 an : d=10
mass = Area x density. 1=x6x.
= dansn. f
$= 2\alpha \times \delta \times \cdot \lambda \times \qquad \qquad \delta = \lambda \times$
$M = 2 \propto \alpha^2 Z d^{\alpha}$
The centre of gravity (e.g.) of arc A'B'
lies on Oc at OG, = rsing
$- \pi . cin \sigma$
e.g of sector of laming = a. Indm
10°
$= \int_0^{\pi} \frac{\sin \pi}{\pi} \cdot 2 d\pi^2 \lambda dx$
$\int_{0}^{\alpha} 2 x^{2} dx$
Jo
= 22 Sind Sn3dn.
22 du
- Sing [-x4]
α $\int x^3 7^{\alpha}$
, [3] 0
$=\frac{\sin\alpha}{\alpha}\cdot\frac{\alpha}{4}\cdot\frac{3}{\alpha^2}$
3 a sing
wip 4 d Ans
-: G:No:16:-
An isosceles triangular laming is such
Page 52 of 85

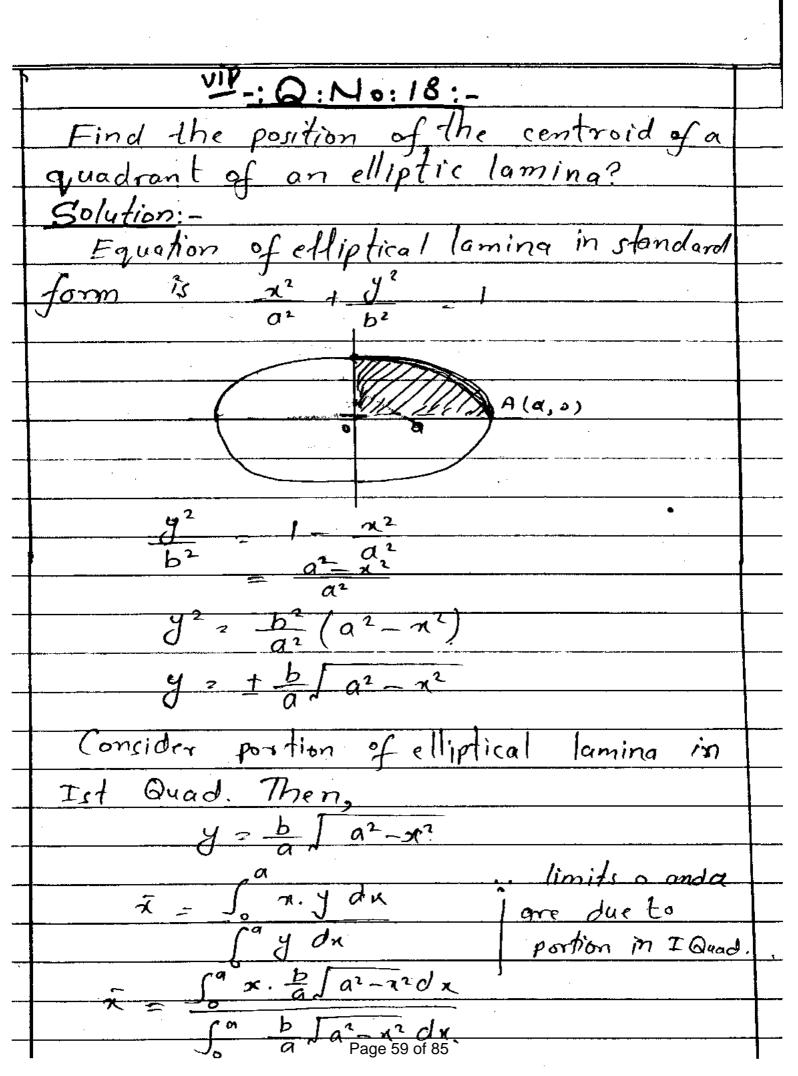
ەنىد	
224	that its mass per unit area at every
ere e e e e e e e e e e e e e e e e e e	point is proportional to the sum of the
	distances of the north from the equal
	sides of the triangle. Prove that the
· · · · · · · · · · · · · · · · · · ·	sides of the triangle. Prove that the distance of the c.m. from the vertex is three - fourths of the altitude?
: ^	three - fourths of the altitude?
	Ans:-
<u> </u>	P(x,y)
	1758
) ()	10M1=a=alliAnde
V	
w,	Consider an isosceles triangle o AB
	om Llar AB, om = a = altitude.
	om is the axis of symmetry tation
4	along n-axis em lies on it.
./. 	Equation of line ob, Y = x tand.
.c. ———	: y-y,=m(n-x)
<u> </u>	y-0 = tand (x-0)
4	y = 3ctana
· ~	Equation of line of, y = - xtanx
·	$y-y-m(x-x_1)$
·	1 you fand all world
. .	1 de la constant de l
·	1 7 = -1014
<u>1</u> .	Page 53 of 85

Taking an element of length on and width by at a point P(x, y) of triangle.

Distance of P(x,y) from line ob. · (ntana -y=0). Intana -41 Stan2 d +1 / Sec2x IPC/2 xsind-ycose Cosk, seck. 1P91 = xsinx -ycosx Similarly, Distance of P(x,y) from OA. . (ntona ty=0). 1PD1 = 75inx + y COSX. 1 x 1PC1 + 1PD1 = 2x Sinx. f=2/nsind. Mass = Area density. = Sn. Sy · Z Rnsina o - Atana - a fation x 2 A a sin & dady Page 54 of 85

Available at MathCity.org

566 a	
	$\left(\frac{d}{2}\right)^{2}$ $\left(\frac{1}{2}\right)^{2}$ $\left(\frac{1}{2}\right)^{2}$ $\left(\frac{1}{2}\right)^{2}$
745 pr =	= Jacksma (Intend) an
Viv.	2-x 2 Sind (Silody) du
1. K. J	
My -	ntand ntand
dillo parameter	$\int 1 \cdot dy = \left[\int \int \frac{1}{x} dx \right]$
10 j	
13 1400	= ntand + x tand = 2x tand
tario a	c.m = Jo 2x22 sind . 2x tand dx
pality of the particular and the second	1927 using . 2ntanddu
- 1	°C9 x3dx
	3 2. J ₀
**************************************	$\int_{0}^{\infty} x^{2} dx$
***	C 2479
	z <u>l 4 Jo</u>
**************************************	$\int \frac{\pi^3}{3} \int \frac{\pi}{3}$
Option The Control of	$=\frac{2^{1/3}}{4}$
<u>-</u>	2
ή:	= 3 a. Ans
	Note: - <u>cycloid</u> : -
7,4 -	A curve that is generated by a point
×	on the circumference of the circle and
<u> </u>	it roled on a ctraight line.
فالمراحب	cycloid:
	$\bar{x} = \frac{\int x ds}{\int \frac{1}{\sqrt{1 - \frac{1}{1 - \frac{1}{$
	J 0 3 Page 55 of 85


VIP, Q: No: 17:-Find the centroid of the one of the cycloid x = a (0 +sino) which lies in the first Quadrant? x = a(o+sino); y = a(1-coso)du = a(1+coso); dy = a sino do squaring and adding. $\left(\frac{dx}{d\phi}\right)^2 + \left(\frac{dy}{d\phi}\right)^2 = a^2 \left(1 + \cos\phi\right)^2 + a^2 \sin^2\alpha$ = a2 (1 + cos & + 2 cos & + sin2a) 2 a2 (2 + 2 cosa = 2 a2. 2 cos20/2 (da)2+(dy)2= [4a2 cos20/2 do. ds = 20 cos 0/2 do = lads a (o + sino) - 2 a cosa/2 da * 2a coso/2 do xax (0 (050/2 + sino cos 0/2) do 瓦 (* Coso/2 do

0 (050 do + 5 2 sin 0 (050/2 do 7 050/2 do +2 5 Sing cos 20/2 do or cos a/2 do 20. sino - 12. sino 100]-4/cmo [2sino]] Sino/2 + 4 coso Th - 4 [(053 T/2] 2x Sint + 4 (OST } - {0+40050} - 4 χ (3 χ - 4) $3\pi - 4).$ a (1- coso). 2a coso/2 do Page 57 of 85

Øa¥ Jo (1- (.50) (050/2 da
20 5 t coso/2 do.
l I
$= a \int_{0}^{\infty} \frac{2 \sin^2 \theta}{2 \cdot \cos \theta} d\theta$
(* cos 0, do
$= 0.22 \int_0^{\infty} \frac{\sin^2 \phi}{2} \left(\frac{1}{2} \cos \frac{\phi}{2} \right) d\theta$
↑
(050/m d0
(2 CIDD 17)
$\left(\begin{array}{c} 2\sin\theta \\ 2 \end{array}\right)^{\frac{1}{2}}$
$= 4a \cdot \left[\frac{(\sin \frac{\pi}{2})^3}{3} - \frac{(\sin \frac{\pi}{2})^3}{3} \right]$
2 sint - 2 sin o
$\int \Delta = 07$
2(1)-0
<u>49</u> 249
= 3 2 3×2
$y = \frac{2a}{3}$
Centroid = (x, y)
$= \left(\frac{\alpha(3X-4)}{3}, \frac{2a}{3} \right)$
Ang
Available at MathCity.org
Page 58 of 85

The Superior Book Shop

(58)

1 (a2-42) (-2x) dx $\frac{\int a^2 - x^2 dx}{(a^2 - x^2)^{3/2}} \int_0^9$ $\frac{a^2}{2} \sin(\frac{x}{a}) + \frac{x}{2} \int a^2 - x^2 \int a^2$ $\frac{\left[\left(a^{2}-a^{2}\right)^{\frac{3}{2}}-\left(a^{2}-o\right)^{\frac{3}{2}}\right]}{\left[\frac{a^{2}}{2}\sin\left(\frac{a}{a}\right)+\frac{a}{2}\int_{a^{2}-a^{2}}-\left[\frac{a^{2}}{2}\sin\left(\frac{a}{a}\right)+o\right]}{\left[\frac{a^{2}}{2}\sin\left(\frac{a}{a}\right)+\frac{a}{2}\int_{a^{2}-a^{2}}-o\left(\frac{a^{2}}{2}\sin\left(\frac{a}{a}\right)+o\right)\right]}$ $\frac{g^{2}}{2} dx = \frac{1}{2} \int_{0}^{\alpha} \frac{b^{2}}{a^{2}} (a^{2} - n^{2}) dx$ Page 60 of 85

46 Gentroid = (x,g) $=\left(\frac{4a}{3\pi},\frac{4b}{3\pi}\right).$ vifa: No: 19: lamina is bounded by the astroid $\alpha = a\cos^3 o$, $y = a\sin^3 o$. Find the centroid of its portion that lies in the Quadran Solution: X = a c = 2 0 dn = 30 coso (-sino) do 3a coso sino do. Page 61 of 85.

Centroid = (\bar{x}, \bar{y}) .
Centroid = (\bar{x}, \bar{y}) . $\bar{x} = \int_{0}^{\alpha} xydx$
Saydx.
- fo a coso a sino (-3a coso sino) do
(° a sin³o (-3a cos²o sino) do
7/2
when $\chi = 0$ cos $0 = 0$ $\frac{\pi}{2}$
when $x=a$ $\cos \theta=1=$ $0=0$
1 1 1 5
$= (-3a^{2})(-1)\int_{0}^{\pi/2} \sin \omega \cos d\omega$
· (-3at) (-1) 5 1/2 sin o coso do
(4-1)(4-3)(5-1)(5-3)
$= \alpha \cdot \frac{(9-7)(7-3)(3-7)}{9\cdot 7\cdot 5\cdot 3\cdot 1}$
$(4-1)(4-3)(2-1)$ $-\frac{\pi}{2}$
6, 9, 2
de of pis even and or is odd.
$\int_{0}^{\frac{\pi}{2}} \int_{0}^{P} \frac{dy}{\sin \theta \cdot (\theta - \theta)} \frac{(P-1)(P-3)-\cdots(q-1)(q-3)}{(P+q)(P+q-2)-\cdots}$
iii. At p is even and q is even.
$\int \frac{\sqrt[4]{2}}{\sin \phi \cdot \cos \phi} \frac{q}{d\phi} = \frac{(\rho-1)(\rho-3)-(q-1)(q-3)-(q-1)(q-3)-(q-1)}{(\rho+q)(\rho+q-2)-(q-1)(q-3)-(q-1)(q-3)-(q-1)}$
8.1.4.2
$\frac{9.7.3.3}{3.1.1.7} = \frac{0.3.3}{1.1.7}$
6: 4.2.2 32
Page 62 of 85
A COLUMN CONTROL OF THE MANAGEMENT AND ASSESSMENT OF THE STATE OF THE

$\overline{x} = a \cdot \frac{8}{315} \cdot \frac{32}{5}$
315
$\bar{x} = a.256$
315-7
$\bar{x} = \bar{y} = \frac{256a}{315\pi}$
Centroid = (\bar{x}, \bar{y})
$=\left(\frac{256\alpha}{315\pi},\frac{256\alpha}{315\pi}\right).$
-: Q: No: 20: -
Find the centroid of the surface formed
by the revolution of the cardioide = a(1+car)
about the initial line?
Solution: - Equation of cardioide:
$r = a(1+\cos\theta).$
In bolar form,
x = 8 coso ; y = 8 sino
ds = 82 + 1 dr 12 de
1 (do)
$ds = \sqrt{a^2(1+\cos 0)^2 + a^2 \sin^2 0.00}$
10 ² (1 1 cos / 12 cos / sin ² 0 1 do
Page 63 of 85

$$ds = \int a^{2}(2 + 2\cos \theta) \cdot d\theta$$

$$ds = \int 2a^{2}(1 + \cos \theta) \cdot d\theta$$

$$ds = \int 2a^{2} \cdot 2 \cos^{2}\theta/2$$

$$ds = \int 4a^{2} \cos^{2}\theta/2 d\theta$$

$$ds = 2a \cos^{2}\theta/2 d\theta$$

$$\therefore Cardioide is revolving about a line$$

$$(x - axis). So centroid lies on it.

$$xy ds = x \cos x \sin \theta \cdot 2a \cos \theta/2 d\theta$$

$$= x^{2} \cos x \sin \theta \cdot 2a \cos \theta/2 d\theta$$

$$= x^{2} (\cos x \sin \theta \cdot 2a \cos \theta/2 d\theta)$$

$$= 4a^{3}(2 \cos^{3}\theta/2)(2 \cos^{3}\theta/2) \cdot \sin^{2}\theta \cos^{2}\theta/2 d\theta$$

$$= 16a^{3}(2 \cos^{3}\theta/2)(2 \cos^{3}\theta/2) \cdot \sin^{2}\theta/2 d\theta$$

$$= 16a^{3}(2 \cos^{3}\theta/2)(2 \cos^{3}\theta/2) \cdot \sin^{3}\theta/2 d\theta$$

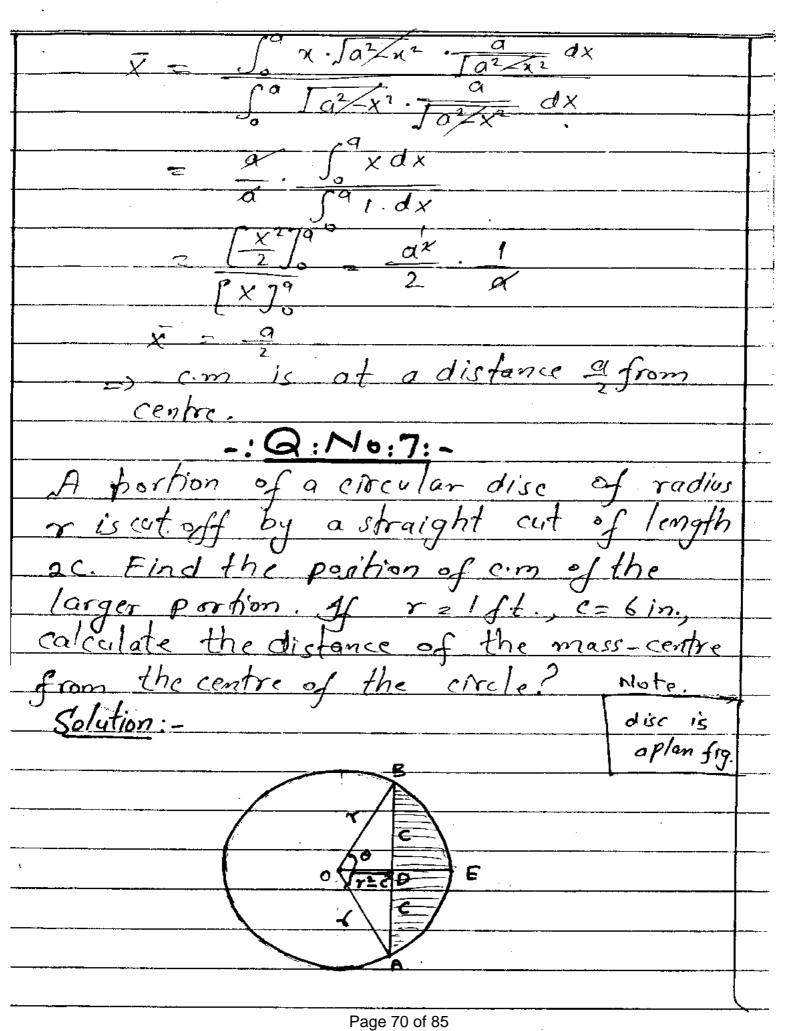
$$= 16a^{3}(2 \cos^{3}\theta/2)(2 \cos^{3}\theta/2) \cdot \sin^{3}\theta/2 d\theta$$

$$= 16a^{3}(-4 \cos^{3}\theta/2) \cdot \cos^{3}\theta/2 \cdot \sin^{3}\theta/2 \cdot$$$$

yds = rsino. 2 a coso do
= a(1+ coso) sino.29 coso, do
= a. 2 (05 ² 0 . 2 sino coso 20 coso do
$= 8a^2 \cos^4 0 \sin 0 do$
$\int_{0}^{\pi} y ds = 8a^{2} \int_{0}^{\pi} \cos \theta \cdot \sin \theta d\theta.$
\(\frac{1}{2}\)
$= -16a^{2} \int \frac{\cos \theta}{2} \left(-\frac{\sin \theta}{2} \cdot \frac{1}{2}\right) d\theta$
5 7
$= -16a^{2} \left[\frac{\cos 0}{5} \right]^{7}$
1636217
$=-\frac{16\alpha^2}{5}\left(0-\frac{1}{5}\right)$
16 02
5
$\int_{-\infty}^{\infty} xy ds = \frac{680}{63}$
$\int_{0}^{\pi} y ds = \frac{16a^{2}}{5}$
·
$\overline{x} = \frac{160 a^3}{6.3} \cdot \frac{b}{16a^2}$
63 160
\ <u></u>
$= \frac{100}{63}, \frac{5}{1}$
63
= <u>50 a</u> 63
6'3
Centroid = (x, y)
Centroid = (500,0)
Cen 1010 = (-3)- Ans
Page 65 of 85
· · ·

Formula's:-
Surface of solid of revolution in my-plane
= Jajda
Jy2dx
Revolution of curve in hollow form.
Revolution of curve in hollow form. $\bar{x} = \int xy dS$
Sy ds
In plane ny-
n = Snydn
Sydx
-: @:No: 21:_
Show that the cm. of a segment of a
Show that the cm. of a segment of a solid sphere of radius a, at a distance b
from the centre of the sphere is at a
distance 3 (a+b) from the centre!
Solution: - segment of solid sphere is the
solid of revolution of a portion ABC at
a distance b from B
centre o of sphere
of radius a about
OF (Naris) ANIS
of symmetry
So, cm lies on it.
7 2 : 4 2 0
Page 66 of 85

*	
: =/ ₀	Equation of circular lamina.
K ₀	$x^2 + y^2 = \alpha^2$ in this
; *** <u> </u>	$y^2 = 0^2 - x^2 \qquad b = x \leq a$
Me,	
4.th	$\bar{x} = \int_{b}^{a} x y^{2} dx$
٧,	$\int_{1}^{a} y^{2} dx$
<u> </u>	$= \int_{b}^{b} x \cdot (\alpha^{2} - x^{2}) dx$
V _a	
9a	$\int_{b}^{a} \left(a^{2} - x^{2}\right) dx$
٧,	$= \int_{b}^{\alpha} (\alpha^{2}x - x^{3}) dx$
*-	
*	$\int_{b}^{\alpha} \left(a^{2} - \chi^{2} \right) dx$
^«	<u> </u>
	$\frac{2}{\int a^2 x - \frac{\chi^3}{2} \int^{\alpha}$
×—	3 Jb ,
Vi	$\overline{x} = \begin{bmatrix} a^4 & a^4 \\ \hline 2 & 4 \end{bmatrix} = \begin{bmatrix} a^2b^2 & b^4 \\ \hline 2 & 4 \end{bmatrix}$
	$\int a^3 - \frac{a^3}{a^3} - \int a^2b - b^3 = 0$
	$\begin{bmatrix} \frac{3}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$
·	$=\frac{2}{2}-\frac{3}{4}-\frac{3}{2}+\frac{3}{4}$
,	$a^3 - a^3 - a^2b + b^3$
	1 / 2 04 2 02 h 2 1 h 4 7
	= -4[===================================
	$\frac{1}{3} \cdot \left[3a^3 - a^3 - 3a^2b + b^3 \right]$
	Dogo 67 of 95
7	Page 67 of 85


The Superior Book Shop

(61).

 $\frac{3}{4} = \frac{a^4 + b^4 - 2a^2b^2}{2a^3 - 3a^2b + b^3}$ $-(a^2-b^2)^2$ $2a^3 - 2a^2b - a^2b + b^3$ $(a-b)^{2}(a+b)^{2}$ 2a2(a-b)-b (a2-b2) (a-b)2 (a+b)2 $(a-b)[2a^2-ab-b^2]$ (a-b) (a+b)2 2a2-2ab+ab-b2 (a-b)(a+b)2 2 x (a -b) + b (a-b). (a+b) (a+b) (a-b) (2a +b) viP -: Q: No: 22: -Prove that the com of a hemispherical shell of radius a is at a distance Solution A hemispherical shell is a half sphere generated by

Page 68 of 85

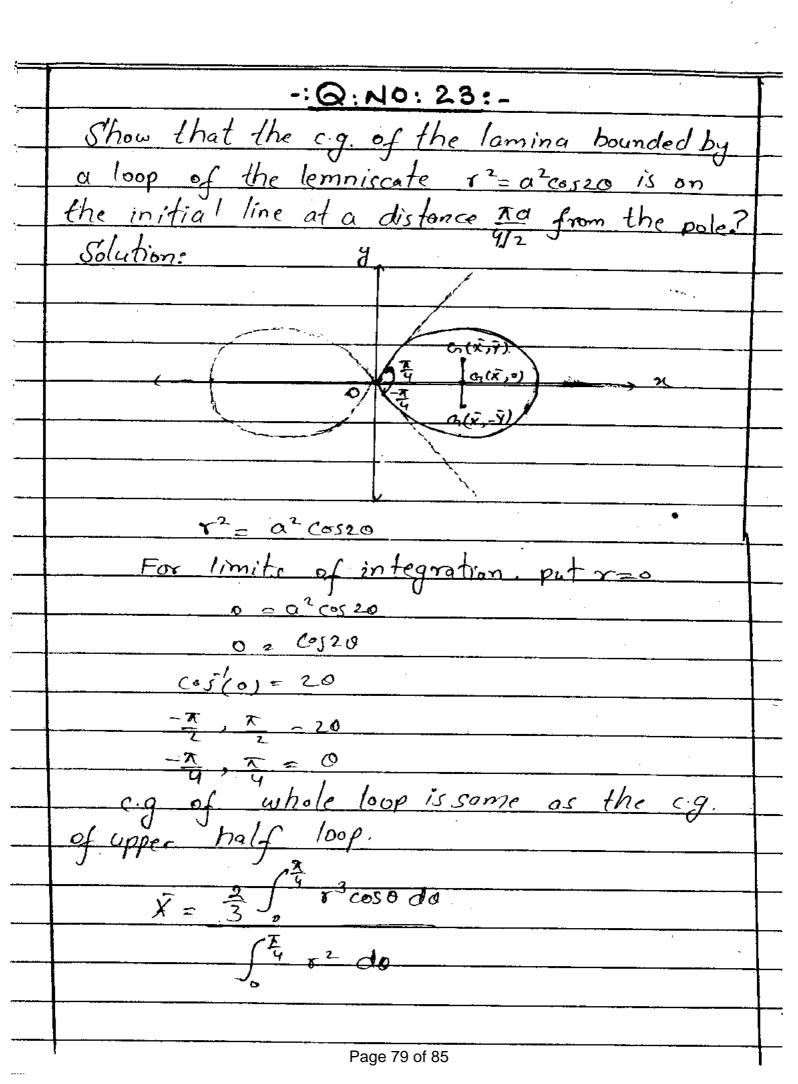
(along x-axis). B
Dais of symmetry
So, com lies on it-
Radius of shell = a
" cm lies on x-anis.
$50, \overline{x}_{7}, \overline{y}_{7} = 0$
Equation of circule whose Arc AB
is Consider.
$x^2 + y^2 = \alpha^2$
$y^2 = a^2 - x^2$
y = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
dy 1 1 2 2 2
$\frac{1}{dx} = \frac{1}{2\sqrt{a^2 + x^2}} $
dy _ n
$\partial x = \int a^2 - x^2$
$ds = \left(1 + \left \frac{dy}{dx} \right ^2 \right)^2 dx$
$\lambda = \lambda$
$= \frac{1 + x^2}{2} dx$
$\int a^2 - X^2$
$= \frac{\alpha^2 - \chi^2 + \chi^2}{2} d\chi$
$d^2-\chi^2$
$ds = \frac{a}{dx}$
$\int a^2 - x^2$
x = S ×Yds
Ja yds
Page 69 of 85

	if AB = 2c straight cut
	Consider radius OF Ilar to AB segment
l me	ABE is removed from the disc.
****	Aera of segment ABE=2 (Aera of DEB)
***************************************	= 2 [Acta of sector OBE - Acta of ODB]
<u> </u>	= 2 (-1 2 0 - 1 10D/. 1BD)]
- Ny	
***	$= \gamma^2 \circ - \int \gamma^2 c^2 \cdot c$
Ve ₁	$= \chi^2 \theta - c \cdot \sqrt{\gamma^2 - c^2} := S / \eta \theta = \frac{c}{\gamma}$
74.	= 2 Sin (c) - c/Y2-c2 8 2 Sin (c)
v _e	
· · · · · · · · · · · · · · · · · · ·	If m is the mass per unit area of disc.
۸ <u>.</u>	M. = Mass of segment ABE.
	$M_1 = 2m$
¥.	Mz mass of disc
W	$= \pi r^2 \cdot m$
**	com of disc = $(0,0)$.
ņ	Equation of circular disc.
n-	$x^2 + y^2 = x^2$
-	$y^2 = r^2 - \chi^2$
·	y str=22 Equation of Arc AB
	$\frac{1}{\sqrt{\tau^2 + c^2}} \leq x \leq x$
	$\int xydx$
	× 2 182-C2
	$\int_{-\infty}^{\infty} y dx.$
	√√² C ² Page 71 of 85

Available at MathCity.org

$$\frac{1}{\sqrt{1 + \frac{1}{2}}} \frac{1}{\sqrt{1 + \frac{1}{2}}} \frac{1}{\sqrt$$

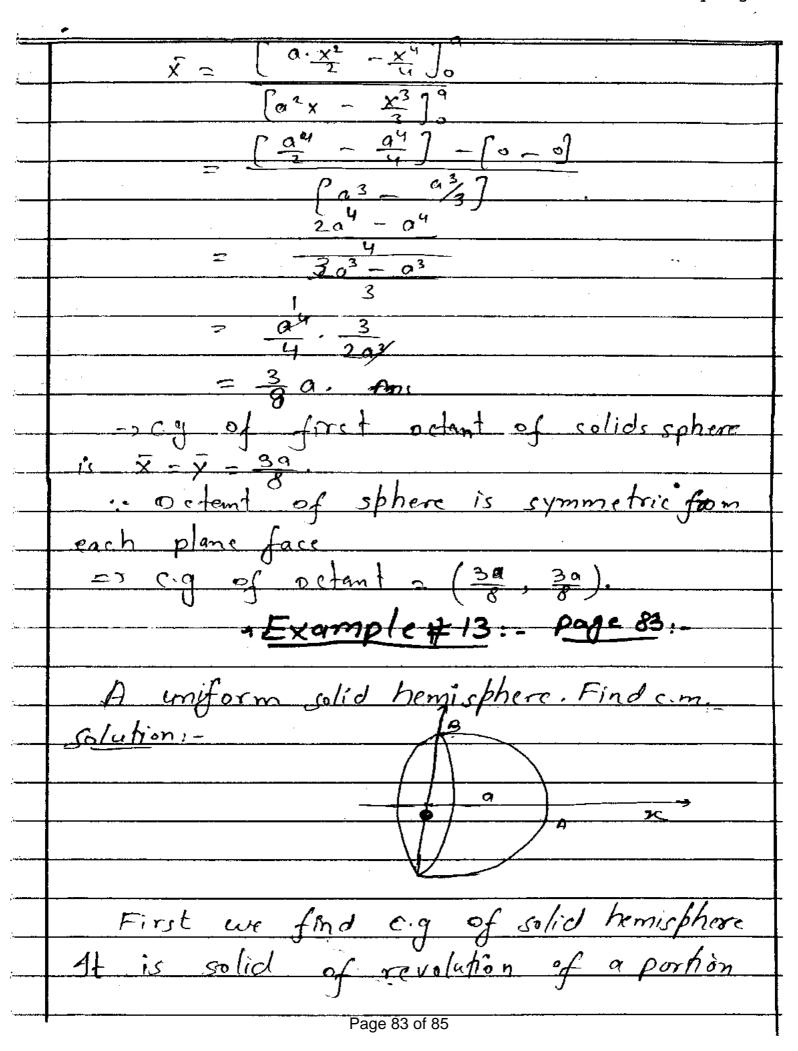
c.m of Big portion of disc. cm - M.o - M, x m - M,
$M \cdot O = M, \bar{x}$
M - M,
$= -km\left(\frac{2c^3}{3k}\right)$
$7r^2m-2m$
$-\gamma \left(\frac{2c^3}{3}\right)$
$m/(\pi r^2 - \chi)$
$\frac{2c^3}{3}$
$(\pi \gamma^2 - \lambda)$
$\frac{1}{2} \frac{2}{3^2} \sin \left(\frac{c}{\tau}\right) - c \cdot \sqrt{\frac{2}{3^2} c^2}.$
$\frac{2}{2} = (1)^{2} \sin^{2}\left(\frac{1}{2} - \frac{1}{1}\right) - \frac{1}{2} \int_{1}^{1} \frac{1}{4} dx$
$=$ $Sin(-\frac{1}{2}) - \frac{1}{2} \cdot \sqrt{\frac{4-1}{4}}$
$\frac{\pi}{6} - \frac{\sqrt{3}}{2 \cdot 2}$
7 6 2.2
$\frac{2}{2} = 0.091$
$\frac{1}{(2\pi)^3}$
$3(3.14(1)^2-0.091)$
2 . 1
9.15
1 2 2 7 3 61
$\frac{1}{2} - \frac{1}{4 \times 4.15} = -0.0273 ft$
= -0.027.3 x 12 inches
2 0.328 in.
so com is shift 0.328 inches left to
origional centre es disc.
Page 73 of 85


-: Q:No: 2-5:-
If the c.g of a grundrilateral lamina is the same as that of four equal particles placed at its
angular points, show that the bounding quadrilateral
must be a parallelogram?
Solution = c
2 G (3m) K B(m)
Let ABCD be the quadrilateral lamina
If m be the mass of each particle placed
at the angular points. A, B, C and D.
Join A to C. if Gisthe centroid of DACD.
=> A mass of 3m acts at G.
We are left with two particles of mass
3m acts at G and mass m acts at B.
As k is the mid point of AC.
Gilles on median DK
of K is the c.g of masses at Grande.
$G_1K = M$
KB 37/1
$3G_1k = KB \longrightarrow i$
Page 74 of 85

Gadivides DK in 2:1.
$=) GrK = \frac{1}{3} \mathbf{b} k using in (i)$
3. 1. OK = KB
Dk = KB
=) K is the mid point of BD.
"K is also mid point of AC.
=> Diagonal bisect each other
=> ABCD is a parallelogram.
-: Q:No:13:-
A rod of length 50 is bent so as to form
5 sides of a regular hexagon. Show that
the distance of its cm. from either end
of rod is 1/33 Salution:
Solution 10 19
E a D
Gni(0) (0, 0353)
G(0, 0, 3)
α
G1, 120 60°
$A(-9/2,0)$ od $B(\frac{a}{2},0)$ x
Consider a regular hexagon ABCDEF of
Concider a regular hexagon ABCDEF of side length a Tabring side AB along noning and line joining the mid point
a anis and line joining the mid point
Page 75 of 85

of AB and DE as y-axis. (Axis of symmetry)
C.m of hexagon lies on it. Af Gris c.m
of complete hexagon.
$G = (0, \frac{\alpha\sqrt{3}}{3}).$
As m is mass per unit length.
M= mass of hexagon.
= 6d.m
if AB is the missing rod. Then, its cm.
acts at 0 (mid point of AB).
$G_{i} = (0,0).$
M,= mass of rod AB.
$= a \cdot m$.
cm of 5 sides is consider as a hexagon
whose one side is missing.
$cm = M.0G_1 - M.0G_1$
M-M
= 38am. a [3] - am. (0)
6am - am.
$= 3a^{2}m\sqrt{3}$
2 dub
= 0.3/3
5 Gn = cm of 5 sides = (0, a 3 53)
Co-ordinates of A (-a, o) and B (a, n)
Dictance of com to from A = [1-10.2]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Page 76 of 85

¥:	
* C	$\frac{1}{1} = \frac{1}{1} \frac{a^2}{a^2} + \frac{a^2}{a^2} = \frac{27}{a^2}$
*	N 7
V	$= \alpha^{2} \cdot \frac{2S + 108}{100}$
*:	
4.4	$= 0.\frac{\int 133}{10}$
۲۰	70
: '5	-: Q:No.11,_
·>	From a semi-circular lamina of radius 2a
*r**	a circular lamina of radius a is removed from
<u> </u>	that the cm. of the remainder is at a
¥	distance 160 - a from the diameter?
14 ⁵ H	Solutions-
? 	C
5	
<i>:</i> ——	G,
.·	B O A
<i>5</i>	Consider a semi circular lamina of radius 2a.
#	AB be its diameter and ac its radius Llar to AB. Consider as n-anis (Anis; of
	Symmetry) com lies on it. If G, be com of semi circular lamina
	i (1 · · · · · · · · · · · · · · · · · ·
· 	$OG_1 = \frac{2}{3} \gamma \frac{sind}{d}$
·	= 2 .2 a stn 2 3 7/
·	Page 77 of 85


: « 2 semi vertical angle.
Angle in semi circle is x
So, semi angle is A.
= <u>49</u> , <u>1</u>
Padius California Carrowald TO
Rodius of disc removed = a
its cm acts at o' centre of disc 00'= a
if m is mass per unit area.
M = Mass of semi circular dise
$=\frac{1}{2}(\pi r^2).m$
$= -\frac{1}{2} \times 4a^2 \cdot m$
$= 2\pi a^2 m$
M, = mass of removed disc.
$= \overline{\Lambda}a^2.m$
em of remaining portion of semi eircular
$laming = MOG_1 - M_1.00'$
M - M
$= 2\pi a^2 m \cdot \frac{8\alpha}{3\pi} - \pi a^2 m \cdot \alpha$
$2\pi\alpha^2m - \pi\alpha^2m$.
$= Aa^2m \left(\frac{16a}{3\pi} - a\right)$
FORM (2 - 1)
160
= 16a - a. Ans
Page 78 of 85

$8^2 = \alpha^2 \cos 20$
r = a cos 20
$\frac{\mathbf{r}^{3} = \alpha^{3} \cot^{\frac{3}{2}}}{2^{3}} = \alpha^{3} \cot^{\frac{3}{2}} \cos^{\frac{3}{2}} \cos^{$
(x/4 a² co 52 o do.
1
$\overline{x} = \frac{2}{3} \sqrt[3]{5} \sqrt{(1-2\sin \theta)} \cos \theta d\theta$
02 (4 COL 20 do
$= \frac{2}{2} a \int_{0}^{\frac{\pi}{4}} \left[1 - \left(\sqrt{2} \sin \theta \right)^{2} \right]^{3/2} \cos \theta d\theta$
Tu cosa e do
1
Neminator 5 (1-(52 sino) cosodo
put sino = sint
Tz coso do z cost dt
coso do = cost do
When 0=0; Izsino=sint
= 20 = sint $= 20 = t$
4
$= \sum_{\frac{\pi}{2}} = t$ $C^{\frac{\pi}{2}}$ $C^{\frac{\pi}{2}}$ $C^{\frac{\pi}{2}}$
(1-(T251NO)2) cosodo 2 (1-51N2+) - (05) dt.
$= \frac{1}{12} \left(\left(\cos^2 t \right)^3 / 2 \cos t \right) dt$
12.70
Page 80 of 85

*	, , , , , , , , , , , , , , , , , , , ,
Co.	$= \frac{1}{\sqrt{2}} \int_{0}^{\sqrt{2}} \cos^{3}t \cdot \cos t dt.$
k.e	$= \int_{2}^{\sqrt{2}} \int_{1}^{\sqrt{2}} \cot t dt.$
	$=$ $\int_{\mathbb{R}} \int_{\mathbb{R}} \cot t dt$.
	Using when P is even.
**	$C^{\frac{\pi}{2}}$
**************************************	$\int_{0}^{\pi/2} \frac{P}{\cos \theta} d\theta = \frac{(P-1)(P-3)}{P(P-2)(P-4)}$ $= \frac{1}{\sqrt{2}} \int_{0}^{\cos 4} dt = \frac{1}{\sqrt{2}} \cdot \frac{3}{\sqrt{4}} \cdot \frac{1}{2} \cdot \frac{\pi}{2}$
N	P(P-2)(P-4)
·	$\int_{-\sqrt{2}}^{2} \int_{-\sqrt{2}}^{2} \frac{\cos f dt}{\int 2} = \int_{-\sqrt{2}}^{2} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$
± _e n _e	0 —
A _k t.	<u>16 / 2</u>
1.	denominator Jacos 20 do = Sinzo 7 1/4
·	J. Cos 2002 [2]
1 ·	1 [cm 2/x] cm - 7
ţe;	$=\frac{1}{2}\left[\sin 2\left(\frac{\pi}{2}\right)-\sin 0\right]$
V.	
(A)	
	2
	using b. results in Equation (i).
	3⊼
	$X = \frac{2a}{3} \cdot \frac{16\sqrt{2}}{1}$
	3 /2
	$\frac{2a}{3} = \frac{2\pi}{3} + \frac{2\pi}{3}$
*	3 KIZ T
<u> </u>	T q
*:	452
<u>.</u>	
+	Page 81 of 85
	·

-: Q: No: 24:-Find the position of the cig of an octant of a uniform solid sphere? Solution :-First we find eg of solid hemisphere. It is solid of revolution of a portion DAB of circular lamina of radius a. if oA is the radius and Anis of symmethen c.9 lies on it. Tabre QA as x-onis, then Equation of circular lamina. y2 2 a2-x2 $\int_{a}^{a} \times (a^{2} - x^{2}) dx$ (a (a2- x2) dx Page 82 of 85

(A -1

OAB of circular lamino of radius a.
if on is the radius and Anis of symmetry
the c.g lies on it.
Take of as x-axis. Then
The position of the com of the solid is given by,
Equation of circular lamina.
$x^2 + y^2 = a^2$
$\frac{y^2}{2} a^2 - x^2$
$= \int_0^a x y^2 dx$
S ⁹ y ² d×
$\int_0^a x(a^2-x^2)dx$
$\int_{0}^{q} (\alpha^{2} - x^{2}) dy$
$= \underbrace{\begin{bmatrix} \alpha^2 \cdot \underline{x^2} \\ 2 \end{bmatrix} - \underbrace{x^4}_{4} \underbrace{\int_{0}^{4}}_{0}}_{0}$
$\left[\alpha^2 \times - \frac{\times^3}{3}\right]^{c_4}$
Fa4 a47 p
$= \left(\frac{1}{2} + \frac{1}{4}\right) \cdot \left(\frac{3}{4} - \frac{3}{4}\right)$
$\left[\begin{array}{cc} \alpha^3 & -\alpha^3 \\ 4 & 4 \end{array}\right]$
$\frac{20^7 - a}{4}$
$\frac{3a^3-a^3}{4}$
$\frac{\frac{3}{4}}{2\alpha^3} = \frac{\alpha^4}{4} \cdot \frac{3}{2\alpha^3}$
$\frac{2\alpha}{3}$ $\frac{2\alpha}{3}$
<u> </u>
8 . ~
Page 84 of 85
1 age of 61 of

The Superior Book Shop

Available at MathCity.org

Matric | FSc | BSc | BS | MSc | MPhil
For notes and other resources, visit our website