Q1. Show that the shortest distance b/w the lines \(x+a = 2y = -12z \) and \(x = y + 2a = 6(z-a) \) is \(2a \).

Sol. Given lines are

\[
\begin{align*}
\frac{x+a}{2} &= \frac{y}{1} = \frac{z}{-12} \\
\therefore x &= y + 2a, \quad x = 6z + 6a
\end{align*}
\]

or \(\frac{x+a}{12} = \frac{y}{6} = \frac{z}{-1} \)

\(x-y-2a = 0 = x-6z+6a \)

Eq. of a plane through line \(2 \) is

\[
(x-y-2a) + k(x-6z+6a) = 0.
\]

\((1+k)x - y - 6kz - 2a + 6ka = 0 \)

Now, ds. of normal to this plane are \(1+k, -1, -6a \).

If this plane is \(l \) to line \(1 \)

Then \(12(1+k) + 6(-1) - 1(-6k) = 0 \)

\(12 + 12k - 6 + 6k = 0 \)

\(18k + 6 = 0 \)

\(3k + 1 = 0 \)
\(K = -\frac{1}{3} \)

Put in eq. of plane

\[(x-y-2a) - \frac{1}{3}(x-6z+6a) = 0\]

\[3x-3y-6a = x+6z-6a = 0\]

\[2x-3y+6z-12a = 0\] is eq. of plane

Through line 2 & 11 to line 1.

Let d be req. shortest distance then

\[d = \text{Distance of pt. } (-a, 0, 0) \text{ from plane } 2x-3y+6z-12a = 0\]

\[= \frac{|2(-a)-0+0-12a|}{\sqrt{4+9+36}}\]

\[= \frac{|2(-a)|}{\sqrt{4+9+36}}\]

\[= \frac{|-14a|}{\sqrt{49}}\]

\[= \frac{14a}{7}\]

\[d = 2a\]

Q2. Find the shortest distance b/w the axis of x & the st. line \(ax+by+c'z+d = 0 = a'x+b'y+c'z+d' \)

We know that eq. of x-axis in symmetric form is

\[\frac{x}{1} = \frac{y}{0} = \frac{z}{0}\] ———(1)
Now given line is
\[\alpha x + \beta y + \gamma z + d = 0 = a'x + b'y + c'z + d' \quad (2) \]

Now eq. of a plane containing this line is
\[(\alpha x + \beta y + \gamma z + d) + k(a'x + b'y + c'z + d') = 0 \]

or \[(a + kd)x + (b + kb)y + (c + kc')z + d + kd' = 0 \]

If this plane is \(\perp \) to \(x \)-axis then
\[k(a + kd') = 0 \]

\[\implies \quad k = -\frac{a}{a'} \]

Put in eq. of plane
\[(\alpha x + \beta y + \gamma z + d) - \frac{a}{a'} (a'x + b'y + c'z + d') = 0 \]

\[a'x + b'y + c'z + d' - \frac{a}{a'} a'x - \frac{a}{a'} b'y - \frac{a}{a'} c'z - ad' = 0 \]

\[(a'b - ab')y + (ac' - ac)x + (dd' - ad') = 0 \]

is eq. of plane containing line (2)

Let \(d' \) be req. shortest distance then
\[d' = \text{Distance of pt.}(0, 0, 0) \text{ from plane} \]
\[= \frac{(a'b - ab')0 + (ac' - ac)0 + (dd' - ad')}{\sqrt{(a'b - ab')^2 + (ac' - ac)^2}} \]
\[= \frac{a'd' - ad'}{\sqrt{(a'b - ab')^2 + (ac' - ac)^2}} \]
Q3: Show that the shortest distance b/w the str.
lines \[\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} \quad \text{and} \quad \frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5} \]

1) \(\frac{1}{\sqrt{6}} \) 4 eqs. of the str. line perpendicular to
both are \(11x + 2y - 7z + 6 = 0 \quad \text{and} \quad 7x + y - 5z + 7 \)

Ssl: Given lines are
\[\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} \quad \quad \quad (1) \]
\[\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5} \quad \quad \quad (2) \]

A pt. on line (1) is \(A(1, 2, 3) \)

A pt. on line (2) is \(B(2, 3, 5) \)

\[\overrightarrow{AB} = (2-1)\hat{i} + (3-2)\hat{j} + (5-3)\hat{k} \]
\[\overrightarrow{AB} = \hat{i} + \hat{j} + 2\hat{k} \]

New dirs. of (1) are 2, 3, 4

Dirs. of (2) are 3, 4, 5

Let \(\vec{u} \) be a vector \(\perp \) to both lines then

\[\vec{u} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix} \]
\[\vec{u} = (15-12)\hat{i} - (10-12)\hat{j} + (8-9)\hat{k} \]
\[\vec{u} = -\hat{i} + 2\hat{j} - \hat{k} \]

Let \(d \) be the req. shortest distance b/w lines then
\[d = \frac{\overrightarrow{AB} \cdot \overrightarrow{u}}{|\overrightarrow{u}|} \]
\[= \frac{(\hat{1} + 2\hat{j} + 2\hat{k}) \cdot (-\hat{i} + 2\hat{j} - \hat{k})}{\sqrt{1 + 4 + 1}} \]
\[= \frac{(1)(-1) + (2)(2) + (2)(-1)}{\sqrt{6}} \]
\[= \frac{-1 + 4 - 2}{\sqrt{6}} \]
\[\left[d = \frac{1}{\sqrt{6}} \right] \text{ is req. distance} \]

Now eq. of line 1 to both given lines is
\[
\begin{vmatrix}
2 - 1 & y - 2 & z - 3 \\
2 & 3 & 4 \\
-1 & 2 & -1 \\
\end{vmatrix} = 0
\]
\[
\begin{vmatrix}
x - 2 & y - 4 & z - 5 \\
3 & 4 & 5 \\
-1 & 2 & -1 \\
\end{vmatrix} = 0
\]
\[
(x - 1)(-3 - 1) - (y - 2)(-2 + 4) + (z - 3)(4 + 3) = 0 = (x - 2)(-4 - 10) - (y - 4)(-3 + 5) + (z - 5)(6 + 4)
\]
\[
(x - 1)(-11) - (y - 2)(2) + (z - 3)(17) = 0 = (x - 2)(-14) - (y - 4)(2) + (z - 5)(10)
\]
\[
-11x - 2y + 7z + 11 + 4 - 21 = 0 = -14x - 2y + 10z + 28 + 8 - 50
\]
\[
-11x - 2y + 7z - 6 = 0 = -14x - 2y + 10z - 14
\]
\[
+2y - 7z + 6 = 0 = 7x + y - 5z + 7
\]

is req. eq.
\[
\overrightarrow{U} = 4\hat{i} + 6\hat{j} + 8\hat{k}
\]

Let \(\overrightarrow{d} \) be the req. shortest distance b/w lines then

\[
d = \frac{\overrightarrow{AB} \cdot \overrightarrow{U}}{|\overrightarrow{U}|}
\]

\[
= \frac{(-4\hat{i} - 6\hat{j} - 8\hat{k}) \cdot (4\hat{i} + 6\hat{j} + 8\hat{k})}{\sqrt{16 + 36 + 64}}
\]

\[
= \frac{-16 - 36 - 64}{\sqrt{116}}
\]

\[
= -\frac{116}{\sqrt{116}}
\]

\[
= -\sqrt{116}
\]

\[
= -\sqrt{4 \times 29}
\]

\[
d = 2\sqrt{29} \quad \text{(in magnitude)}
\]

Now given lines are

\[
\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1} = t \quad \text{---- (1)}
\]

\[
\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1} = s \quad \text{---- (2)}
\]

Parametric eq. of given lines are

\[
\begin{align*}
\begin{cases}
x = 3 + t \\
y = 5 - 2t \\
z = 7 + t
\end{cases} \quad \text{---- (3)}
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
x = -1 + 7s \\
y = -1 - 6s \\
z = -1 + s
\end{cases}
\end{align*}
\]
Q4 Find the shortest distance b/w the lines
\[
\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1} \quad \text{and} \quad \frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}.
\]
Find eq. of the st. line \(L\) to both the given st. lines \(L_1\) also its pt. of intersection with the given st. lines.

Given lines are
\[
\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1} \quad (1)
\]
\[
\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1} \quad (2)
\]
A pt. on line \(1\) is \(A(3,5,7)\)
A pt. on line \(2\) is \(B(-1,-1,-1)\).
\[
\overrightarrow{AB} = (-1-3)\hat{i} + (-1-5)\hat{j} + (-1-7)\hat{k}.
\]
\[
\overrightarrow{AB} = -4\hat{i} - 6\hat{j} - 8\hat{k}.
\]
The dir. of line \(1\) are \((1, -2, 1)\)
The dir. of line \(2\) are \((7, -6, 1)\)
Let \(\overrightarrow{u}\) be a vector perpendicular to both lines then
\[
\overrightarrow{u} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
1 & 1 & 1 \\
7 & -6 & 1
\end{vmatrix}
\]
Expanding from \(R_1\)
Any pt. on \(C \) is \(P(3+t, 5-2t, 7+t) \)

Any pt. on \(C \) is \(Q(-1+3t, -1-6t, -1+8) \)

D.s.s. of line \(P Q \) are \(\begin{align*}
3+t+1-7t, 5-2t+1+6t, 7+t+1-8 \ &= t-7t+4, -2t+6t+6, t-8+8
\end{align*} \)

If \(PQ \) is the line of shortest distance then
then \(PQ \) is perp. to both the lines, so

\[
\begin{align*}
1(t-7t+4) - 7(-2t+6t+6) + 1(t-8+8) &= 0 \\
7(t-7t+4) - 6(-2t+6t+6) + 1(t-8+8) &= 0 \\
6t - 20t &= 0 \\
2t - 8t &= 0
\end{align*}
\]

\[
\Rightarrow t = 0 \quad t = 0
\]

Hence Co-ords. of pts. \(P + Q \) are

\(P(3,5,7) \) \& \(Q(-1,-1,-1) \)

Now eq. of line of shortest distance is

\[
\frac{x-3}{3+1} = \frac{y-5}{5+1} = \frac{z-7}{7+1}
\]

\[
\frac{x-3}{4} = \frac{y-5}{6} = \frac{z-7}{8}
\]

\[
\text{or} \quad \left\{ \begin{array}{l}
\frac{x-3}{2} = \frac{y-5}{3} = \frac{z-7}{4} \\
\text{in ref. line.}
\end{array} \right.
\]
Q5 Find the co-ords. of the pt. on the join of \((-3,7,-13)\) and \((-6,1,-10)\) which is nearest to the intersection of the planes:

\[2x - y - 3z + 32 = 0 \quad \text{and} \quad 3x + 2y - 15z - 8 = 0\]

\[\text{Sol.}\quad \text{Eq. of the line through } (-3,7,-13) \text{ and } (-6,1,-10)\]

\[\frac{x+3}{-3+6} = \frac{y-7}{7-1} = \frac{z+13}{-13+10} \]

\[\frac{x+3}{3} = \frac{y-7}{6} = \frac{z+13}{-3}\]

\[\Rightarrow \frac{x+3}{1} = \frac{y-7}{2} = \frac{z+13}{-1} = t \quad \Rightarrow (1)\]

\[\Rightarrow \begin{cases} x = -3 + t \\ y = 7 + 2t \\ z = -13 - t \end{cases}\]

Any pt. on line (1) is \(P(-3+t, 7+2t, -13-t)\).

Also, given eq. of line is:

\[2x - y - 3z + 32 = 0 \quad \text{and} \quad 3x + 2y - 15z - 8 = 0\]

Let \(l, m, n\) be d.s. of this line. Then since it lies on both planes, so by condition of perpendicularity:

\[2l - m - 3n = 0 \quad \text{and} \quad 3l + 2m - 15n = 0\]

\[\Rightarrow \frac{l}{15+6} = \frac{m}{-3+9} = \frac{n}{4+3}\]
\[\frac{1}{21} = \frac{m}{21} = \frac{n}{7} \]
\[\frac{3}{3} = \frac{m}{3} = \frac{n}{1} \]

So d.m.s. of given line are 3, 3, 1.

To find a pt. on line put \(t = 0 \) in above eqs.

\[
\begin{align*}
2x - y + 32 &= 0 \\
3x + 2y - 8 &= 0
\end{align*}
\]

\[
\frac{x}{8-64} = \frac{-y}{-16-96} = \frac{1}{4+3}
\]

\[
\frac{x}{-56} = \frac{-y}{-112} = \frac{1}{7}
\]

\[
\begin{align*}
x &= -8 \\
y &= 16 \\
z &= 0
\end{align*}
\]

So \((-8, 16, 0)\) is a pt. on given line.

Now eq. of given line through \((-8, 16, 0)\) with
d.m. 3, 3, 1 is

\[
\frac{x + 8}{3} = \frac{y - 16}{3} = \frac{z}{3} = t
\]

\[
\begin{align*}
x &= -8 + 3t \\
y &= 16 + 3t \\
z &= 3t
\end{align*}
\]

Any pt. on this line is \((-8 + 3t, 16 + 3t, 3t)\)

1st d.m.s. of line \(PQ \) are \(-3 + t + 8 - 3t, 7 + 2t - 16 - 3t, -13 - t\)

\[= t - 3 + 5, 2t - 3 + 9, -13 - t - 3\]

If \(PQ \) is perf. to both lines \(\ell \) & \(\ell' \).
then
\[
\begin{align*}
1(t-3.3+5) + 2(2t-3.3-9) - 1(13-t-3) &= 0 \\
3(t-3.3+5) + 3(2t-3.3-9) + 1(13-t-3) &= 0
\end{align*}
\]

\[
\begin{align*}
6t - 8s &= 0 \\
8t - 19s - 25 &= 0
\end{align*}
\]

Multiply I by 4, II by 2

24t - 32s = 0

\[
\sqrt{24t - 57s} = 75
\]

\[
25s = -75
\]

\[
[3 = -3]
\]

Put in I

6t - 8(-3) = 0

6t + 24 = 0

t + 4 = 0

(t = -4)

Put t = -4 in co-ords of P

P(-3-4, 7-8, -13+4)

or P(-7,-1,-9) is the req. pt.

Q6. Find the length & eq. of the common perpendicular of the lines

L: 6x + 8y + 3z - 11 = 0, x + 2y + z - 3 = 0

M: 3x - 9y + 3z = 0, x + y + z = 0

Solu
Given lines are

\[L : 6x + 8y + 3z - 13 = 0 = x + 2y + z - 3 \]
\[M : 3x - 9y + 5z = 0 = x + y - 2 \]

We will write both eqs. in symmetric form.

Let \(l, m, n \) be dir. of line \(L \), since it lies on both planes, so by condition of perpendicularity,

\[
\begin{align*}
6l + 8m + 3n_1 &= 0 \\
l + 2m + n_1 &= 0
\end{align*}
\]

So dir. of \(L \) are \(2, -3, 4 \).

To find a pt. on \(L \) Put \(z = 0 \)

\[
\begin{align*}
6x + 8y - 13 &= 0 \\
x + 2y - 3 &= 0
\end{align*}
\]

So a pt. on \(L \) is \(\left(\frac{1}{2}, \frac{5}{4}, 0 \right) \).

Now eq. of \(L \) through \(\left(\frac{1}{2}, \frac{5}{4}, 0 \right) \) having dir. \(2, -3, 4 \) is

\[
\begin{align*}
x - \frac{1}{2} &= \frac{y - \frac{5}{4}}{2} = \frac{z}{4}
\end{align*}
\]

Let \(l, m, n \) be dir. of line \(M \), since it lies on both planes, so by condition of perpendicularity,
\[
\begin{align*}
2.1 - 9m_2 + 5n_2 &= 0 \\
6m_2 + n_2 &= 0
\end{align*}
\]

\[
\begin{align*}
m_2 &= \frac{-m_2}{7+9} \\
\frac{m_2}{3} &= \frac{m_2}{8} = \frac{n_2}{12} \\
\frac{m_2}{1} &= \frac{m_2}{2} = \frac{n_2}{3}
\end{align*}
\]

So dir. of line M are \(1, 2, 3\).
To find a pt. on line M: Put \(x = 0\)
\[
\begin{align*}
3x - 9y &= 0 \\
x + y &= 0
\end{align*}
\]
\[
\begin{align*}
x - 3y &= 0 \\
x + y &= 0
\end{align*}
\]
Subtract, we get
\[
-4y = 0
\]
\[
y = 0
\]
Put in \(x = 0\)
\[
-4x = 0
\]
\[
x = 0
\]

So a pt. on line M is \((0, 0, 0)\).
Hence eq. of M through \((0, 0, 0)\) having dir. \(1, 2, 3\) is
\[
\frac{x}{1} = \frac{y}{2} = \frac{z}{3}
\]
Now we want to find shortest distance b/w \((1, 2, 3)\) and \((0, 0, 0)\).
A pt. on line \((1)\) is \(A\left(\frac{1}{2}, \frac{5}{9}, 0\right)\)
A pt. on line \((2)\) is \(B(0, 0, 0)\)
\[
\overrightarrow{AB} = -\frac{1}{2}i - \frac{5}{9}j + 0k
\]
Let \(\vec{u} \) be a vector perf to both lines, then

\[
\vec{u} = \begin{bmatrix}
\hat{c} & \hat{d} & \hat{k}
\end{bmatrix}
\begin{bmatrix}
1 \\
-2 \\
3
\end{bmatrix}
\begin{bmatrix}
= (-9 - 8) \hat{c} - (6 - 5) \hat{d} + (4 + 3) \hat{k}
\end{bmatrix}
\begin{bmatrix}
= -17 \hat{c} - 2 \hat{d} + 7 \hat{k}
\end{bmatrix}
\]

Let \(d \) be the req. shortest distance b/w lines then

\[
da = \frac{\vec{A}_b \cdot \vec{u}}{|\vec{u}|}
\begin{bmatrix}
= \frac{(-\frac{1}{2} \hat{c} - \frac{5}{2} \hat{d} + 0 \hat{k}) - (-17 \hat{c} - 2 \hat{d} + 7 \hat{k})}{\sqrt{289 + 4 + 49}}
\end{bmatrix}
\begin{bmatrix}
= \frac{-\frac{1}{2}}{\sqrt{342}}
\end{bmatrix}
\begin{bmatrix}
= \frac{11}{\sqrt{342}}
\end{bmatrix}
\]

Now eq. of common perpendicular is

\[
\begin{bmatrix}
x - \frac{1}{2} \\
y - \frac{5}{2} \\
z
\end{bmatrix}
\begin{bmatrix}
2 \\
-3 \\
4
\end{bmatrix}
\begin{bmatrix}
= 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
\begin{bmatrix}
= 0
\end{bmatrix}
\begin{bmatrix}
-17 \\
-2 \\
7
\end{bmatrix}
\]

\[
(x - \frac{1}{2})(-21 + 8) - (y - \frac{5}{2})(14 + 6) + z(-4 + 81) = 0 = x(14 + 6) - y(7 + 51) + z(-2 + 34)
\]

\[
(x - \frac{1}{2})(-13) - (y - \frac{5}{2})(82) + z(-55) = 0 = 20x - 58y + 32z
\]

\[
-13x - 82y - 55z + \frac{13}{2} + \frac{25}{2} = 0 = 20x - 58y + 32z
\]

\[
-13x - 82y - 55z + 109 = 0 = 10x - 29y + 16z
\]
Q7. Show that the shortest distance b/w any two opposite edges of the tetrahedron formed by the planes \(y+z = 0, \ x+x = 0, \ x+y = 0 + x+y+z = a \) is \(\frac{2a}{\sqrt{6}} \). Let the three st. lines of the shortest distance intersect at the pt. \((-a, -a, -a)\).

Let the planes \(y+z = 0, \ x+x = 0, \ x+y = 0 + x+y+z = a \) be \(ABC, ACD, ABD + BCD \) respectively.

Then eq. of line \(AC \) is:
\[
\begin{align*}
y + z &= 0 \\
\frac{y}{2} + \frac{x}{2} &= 1
\end{align*}
\]

is symmetric form of line \(AC \).

Now the eq. of opposite edge \(BD \) is:
\[
\begin{align*}
x + y &= 0 \\
\frac{x+y+2}{2} &= a
\end{align*}
\]

Let \(l, m, n \) be the d.s. of this line.

Since it lies on both planes so by condition of perpendicularity:
\[
\begin{align*}
l + m + 2n &= 0 \\
l + m + n &= 0
\end{align*}
\]
\[\frac{b}{1} = \frac{m}{-1} = \frac{n}{0} \]

So the eq of line is \(x, -1, 0 \)

To find a pt. on this line put \(x = 0 \) in above.

\[\begin{align*}
0 + y &= 0 \quad \Rightarrow \quad y = 0 \\
0 + z + z &= a \quad \Rightarrow \quad 2z = a
\end{align*} \]

So a pt. on this line \(BB \) is \((0, 0, a) \)

Hence \(\mathbf{v} \) of this line is:

\[\mathbf{v} = \frac{x}{1} = \frac{y}{-1} = \frac{z-a}{0} \]

Now we will find shortest distance by \(\mathbf{v} \) \(\mathbf{1} \) & \(\mathbf{2} \)

A pt. on line \(\mathbf{1} \) is \(A(0, 0, 0) \)

A pt. on line \(\mathbf{2} \) is \(B(0, 0, a) \)

Now \(\vec{AB} = 0\mathbf{i} + 0\mathbf{j} + a\mathbf{k} \)

Let \(\mathbf{u} \) be a vector perpendicular to both lines then

\[\mathbf{u} = \begin{bmatrix} 1 & \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix} \]

Expanding for \(k \):

\[= (0-1)\hat{i} - (0+1)\hat{j} + (-1-1)\hat{k} \]

\[\vec{u} = -\hat{i} - \hat{j} - 2\hat{k} \]

Let \(d \) be the shortest distance b/w lines

Then \(d = \frac{|\vec{AB} \cdot \vec{u}|}{|\vec{u}|} \)
$$d = \frac{(0\hat{i} + 0\hat{j} + a\hat{k}) \cdot (-1\hat{i} - 5\hat{j} - 2\hat{k})}{\sqrt{1 + 1 + 1}}$$

$$= \frac{0\hat{i} + 0\hat{j} - 2a\hat{k}}{\sqrt{1}}$$

$$d = \frac{2a}{\sqrt{1}}$$

in req. distance.

Similarly we can show that the shortest distance b/w opposite edges $AB, CD \& BC, AD$ is also $\frac{2a}{\sqrt{1}}$.

Now eq. of line of shortest distance b/w opposite edges $AC \& BD$ is

$$\begin{vmatrix} x & y & z \\ 1 & 1 & -1 \\ -1 & -1 & -2 \end{vmatrix} = 0 = \begin{vmatrix} x & y & 2-a \\ 1 & 1 & 0 \\ -1 & -1 & -2 \end{vmatrix}$$

$$(-2-1)z - (-2-1)y + (-1+1)x = 0 = (2-a)x - (-2+0)y + (-1-1)(2-a)$$

$$-3x + 3y + 0z = 0 = 2x + 2y - 2z + 2a$$

we see that the pt. $(-a, -a, -a)$ satisfies this eq. So this pt. lies on the line of shortest distance b/w $AC \& BD$. Similarly $(-a, -a, -a)$ also lies on the other two lines of shortest distance. Hence it lies on the intersection of all three lines of shortest distances.

Available at
www.mathcity.org
Q8. Find the shortest distance b/w the str. lines joining the pts. A(3, 2, 1) & B(1, 6, -2) & the str. line joining the pts. C(-1, 1, -2) & D(-3, 3, -2). Also find eq. of the line of shortest distance & Co-ords. of the feet of common perpendicular.

Sol.: Eq. of line AB is:
\[
\frac{x-3}{1} = \frac{y-2}{-4} = \frac{z+4}{-10}
\]

Eq. of line CD is:
\[
\frac{x+1}{-3} = \frac{y-1}{1} = \frac{z+2}{-6}
\]

A pt. on line (1) \(\text{is} (3, 2, 1)

A pt. on line (1) \(\text{is} B(-3, 3, -2)

\[\overrightarrow{AB} = (1, 1, 1) \hat{i} + (1-3) \hat{j} + (3+4) \hat{k}
\]

\[\overrightarrow{AB} = -2 \hat{i} - 2 \hat{j} + 7 \hat{k}
\]

Let \(U\) be a vector, perp. to both lines \(A\) & \(C\)

Then:
\[
\mathbf{U} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k}
\end{vmatrix}
\begin{vmatrix}
1 & 1 & 1
\end{vmatrix}
\begin{vmatrix}
1 & 0 & 2
\end{vmatrix}
\]

\[
\mathbf{U} = \begin{vmatrix}
1 & 1 & 1
\end{vmatrix}
\begin{vmatrix}
1 & 1 & 1
\end{vmatrix}
\begin{vmatrix}
1 & 0 & 2
\end{vmatrix}
\]
\[\mathbf{U} = (-4, 0) \mathbf{i} - (2 - 1) \mathbf{j} + (0 + 2) \mathbf{k} \]

or \[\mathbf{U} = -4 \mathbf{i} - \mathbf{j} + 2 \mathbf{k} \]

Let \(d \) be the reg. shortest distance b/w the lines then

\[d = \frac{\mathbf{R}_2 \cdot \mathbf{U}}{|\mathbf{U}|} \]

\[= \frac{(-4 \mathbf{i} - \mathbf{j} + 2 \mathbf{k}) \cdot (-4 \mathbf{i} - \mathbf{j} + 2 \mathbf{k}) \sqrt{16 + 1 + 4}}{16 + 1 + 4} \]

\[= \frac{21}{\sqrt{21}} \]

\[d = \sqrt{21} \]

As lines are

\[\frac{x - 3}{1} = \frac{y - 2}{-2} = \frac{z + 4}{4} = t \quad \text{(1)} \]

\[\frac{x + 1}{1} = \frac{y - 1}{0} = \frac{z + 2}{2} = s \quad \text{(2)} \]

Any pt. on line (1) is \(P(3 + t, 2 - 2t, -4 + 4t) \)

Any pt. on line (2) is \(Q(-1 + s, 1, -2 + 2s) \)

D.s. of \(PQ \) are \(3 + t + 1 - s, 2 - 2t - 1 + s, -4 + 4t + 2 - 2s \)

or \(t - 5 + 1, -2 + 1, t - 2s - 2 \)

Suppose \(PQ \) is line of shortest distance then \(PQ \) is perf. to both lines (1) & (2)

So, \[1(t - 5 + 1) - 2(-2 + 1) + 1(t - 2s - 2) = 0 \]

\[1(t - 5 + 1) + 0(-2 + 1) + 2(t - 2s - 2) = 0 \]
\[
\begin{align*}
6t - 5s &= 0 \\
3t - 5s &= 0 \\
\Rightarrow t &= s = 0
\end{align*}
\]
So, coordinates of feet of perpendiculars PA and QA are
\[
\begin{align*}
P(3, 2t - 4) & \quad Q(-1, s - 2)
\end{align*}
\]
Now, eq. of common perp. PA is
\[
\begin{align*}
\frac{x - 3}{-1 - 3} &= \frac{y - 2}{1 - 2} = \frac{2 + 4}{-2 + 4} \\
\frac{x - 3}{-4} &= \frac{y - 2}{-1} = \frac{2 + 4}{2} \\
\text{or} \quad \frac{x - 3}{4} &= \frac{y - 2}{1} = \frac{2 + 4}{-2}
\end{align*}
\]
Available at
www.mathcity.org

All Notes of FSc, BSc and MSc are available @
http://www.MathCity.org
Visit our facebook @
fb.com/MathCity.org