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 METRIC SPACE:- 

                    Let   be a non-empty set and   denotes the set of real numbers. A function         is 

said to be metric if it satisfies the following axioms            

,  -   (   )     i.e,   is finite and non-negative real valued function. 

,  -    (   )         

,  -    (   )   (   )    (Symmetric property) 

,  -    (   )   (   )   (   )  (Triangular property) 

 IMPORTANT POINTS:- 

 Let “d” be a metric on a set     , then 

 (   ) is called metric space with metric  . 

   is called underlying or ground set. 

   is called the metric or distance function on  . 

 Elements of a metric space are called its points. 

 OPEN BALL:- 

Let  (   ) be a subset of a metric space , then  

 (   )  *     (   )   + 

is said to be an open ball with radius     centered at    . 

 Remember that: 

  If any point       of metric space belongs to open ball, that is 

   (   ) 

  This will be possible only if  (   )    

Theorem # 1:- Open ball in a metric space is an open interval. 

Proof:- 

The metric     on real line     is defined by  

 (   )  |   | 

Let  (   ) be an open ball of a metric space (   ). Then,



 (   )  *     (   )   + 

  (   )  *    |   |   + 

  (   )  *    |   |   + 

  (   )  *            + 

  (   )  *             + 

  (   )  -       , 

This is an open interval having length       

 OPEN SET:- 

               Let (   ) be a metric space and set G is called open in   if for every     , there exists 

an open ball  (   )   . 

 SCHEME TO PROVE ANY SET TO BE AN OPEN SET:- 

To prove any set     to be an open in  , we have to follow the following steps:- 

 First, we will take an arbitrary element     

 Secondly, we consider an open ball  (   ). 

 Thirdly, we have to prove (   )    

Theorem # 2:- Open Ball in a metric space is an open set. 

Proof:- 

Let  (   ) be an open ball in (   )   

We want to show that “ (   )” is open. 

Let    (   ) then  (   )    

     (   )            

           and consider an open ball  (   )   

We prove that   (   )   (   ) 

For this let    (   ) then (   )    

By triangular property, we have 

 (   )   (   )   (   ) 

  (   )       

  (   )        

  (   )    

Hence    (   ) so that   (   )   (   ) 



Thus  (   ) is an open set. 

 Theorem # 3: Let (   ) be a metric space, then 

(i) Both   and X are open sets. 

(ii) Intersection of finite collection of open sets is open 

(iii) Union of any collection of open sets is open 

PROOF: - (i) 

Let us suppose   is open.  

Then for each      there exist an open ball  (   ) such that  

  (   )    

But since    has no element. 

 Hence the condition is automatically satisfied. Hence    is open. 

PROOF:- (ii) 

Suppose *             + be a finite number of open sets in    

We show that      
              

Case-1:-  

If    is empty for some             then     
      is an open set in    

Case-2:- 

If     
        

Let        
    then                       

Since each    is an open set. 

Then there exist an open ball  (    ) such that 

 (    )                      

  (    )  ⋂  

 

   

        

We choose       *           +      

 (   )   (    )              

Hence 



 (   )  ⋂  

 

   

 

     ⋂  

 

   

                 

PROOF:- (iii) 

Suppose    be a class of open sets in    

We show that ⋃     is open in     

If     is empty      then ⋃         

Hence ⋃     is open in    

But if       then  

Let   ⋃     then      

Since each    is open. Then there exist an open ball  (   ) such that  

  (   )     ⋃     

  (   )  ⋃  

 

 

Hence ⋃     is open. 

Theorem # 4: Let (X, d) be a metric space. A subset   of X is open if and only if it is the 

union of open balls. 

PROOF:- 

  Suppose   be any subset of metric space (   )   

Firstly, we will suppose that     is an open set.Then we show that   open balls. 

   Case-1: 

If     then A is regarded as union of is empty class of open balls. 

  Case-2: 

If     then let      

Since   is open. Then there exist an open ball  (   ) such that 

 (   )    then     (   ) 



Conversely, we suppose that   is union of open balls. 

If union of open ball is an empty set, then   is trivially open. 

If union of open ball is not empty. 

Then for       there exist an open ball  (    ) such that 

    (    ) 

Since every open ball is an open set. That is,        such that 

 (     )   (    )    

  (     )    

It follows that   is open. 

Theorem # 5: The complement of a singleton set is open. 

PROOF: 

Let (   ) be a metric space. 

Let   * + be a singleton set. 

We want to show that “  is open”. 

Let      then     

Hence    . Then  (   )        By definition 

Let  (   )    and consider an open ball  (   )   Then,  

 (   )     

  (   )     

Thus    is open.  

 DISCRETE METRIC SPACE:- 

Let   be a non-empty set. Let   denote the set of real numbers. We define         such 

that 

 (   )          



 (   )          

This can also be written as 

 (   )  {
           
           

 

Then   is called discrete metric space or trivial metric space. 

Theorem # 6:  An open ball of radius       in a discrete metric space contain only 

its Centre. 

Proof: 

Let (   ) be a discrete metric space and let        

Suppose  (   ) be an open ball  

Then we shall prove that 

  (   ) contains only its centre   

Let     (   )        

  (    )    

  (    )             

  (    )    

           is discrete metric space 

This contradicts our supposition. Hence our supposition    (   ) is wrong. 

Therefore,  (   ) contains only its Centre. 

Theorem # 7:  An open ball of radius     in a discrete metric space is a whole space. 

Proof: 

Let (   ) be a discrete metric space and let      

Suppose  (   ) be an open ball  

Then we shall prove that 

 (   )    



Let        ( )        

  (    )         is discrete metric space 

  (    )           

     (   )    ( ) 

Therefore, from ( )   ( ) 

    (   )    ( ) 

  By definition, we know 

 (   )      ( ) 

From ( )   ( )  we have 

 (   )    

This completes the proof. 

Theorem # 8: Every non-empty subset of a discrete metric space is open. 

PROOF: 

Let (   ) be a discrete metric space. 

Let     such that      

We shall prove that   is an open set. 

Suppose that       

Since every open ball  (    ) of radius       in a discrete metric space contain only its 

Centre. That is,  

 (    )  *  + then   is open. 

Since every open ball  (    ) of radius     in a discrete metric space is a whole space. That 

is, 

 (    )    

Since   is open. Therefore,  (    ) is also open. 

It follows that   is open. 



 CLOSE BALL 

Let (   ) be a metric space. If     is a point of   and     is positive real number, that is,    

  then the subset 

 (   )  *     (   )   +  

is called close ball centered at     and radius      

Theorem # 9:- Close ball in a metric space is an open interval. 

Proof:- 

Let (   ) be a metric space. 

Let  (   ) be a close ball.  

The close ball is defined as follow:- 

 (   )  *     (   )   +    ( ) 

The metric     on real line     is defined by 

 (   )  |   | 

  (   )  |   | 

Thus equation ( ) will become 

 (   )  *    |   |   + 

  (   )  *    |   |   + 

  (   )  *            + 

  (   )  *             + 

  (   )  ,       - 

This is a closed interval having length       

 CLOSE SET: 

A subset “A” of metric space is said to be closed if and only if its complement is open. 



Theorem # 10:  Close ball in a metric space is close. 

PROOF: 

Let (   ) be a metric space and  (   ) be a closed ball. 

Then we show  (   ) is close. 

For this we shall prove  
 
(   )     (   ) is open. 

Let    
 
(   )         (   )   (   )    

Put    (   )    and consider an open ball  (   )  

Now we prove  (   )   
 
(   ) 

For this let    (   ) then  (   )    

By triangular property, we have 

 (   )   (   )   (   ) 

      (   )    

    (   ) Or   (   )    

    
 
(   ) 

Hence  (   )   
 
(   ). It follows that  

 
(   ) is open. 

Thus  (   ) is closed. 

 

 LIMIT POINT: 

                        Let (   ) be a metric space. Then a point     is called limit point of   if every 

open ball  (   ) with center     contains a point of   other than       that is, 

 (   )    * +    

 ALTERNATIVE DEFINITION OF CLOSED SET: 

A subset “A” of metric space is said to be closed if it contains all of its limit point. 



Theorem # 11: A subset of metric space is close if and only if its complement is open. 

PROOF: 

Let (   ) be a metric space and let      

Suppose   is close and we wanted to show “    is close”. 

Let      then     

   is not limit point of     

Then by definition of a limit point there exists an open ball  (   ) such that 

 (   )    * +    

  (   )          * +    

  (   )     

    is open. 

Conversely, we suppose that    is open. 

Then we show   is close. 

Let   be the limit point of   which does not belong to    That is, 

              

Then there exists an open ball  (   ) such that  (   )     and 

 (   )      

This implies   is not limit point of   which is contradiction to our supposition. 

 Hence    . Accordingly   is close. 

Theorem 12: Let (   ) be a metric space, then 

(i) Both   and   are close. 

(ii) Union of finite collection of close sets is a close. 

(iii) Intersection of any collection of close sets is close. 

PROOF: 



(i)  

As                   

Since                   is open. It follows that   is close.    

Again, since                  

Since   is open then    is open. It follows that   is close.     

(ii)  

Let *             + be a finite class of close sets. 

Then we show ⋃   
 
    is close. 

Suppose that,  

  ⋃   

 

   

         [⋃   

 

   

]

 

 

    ⋂   
 

 

   

                        

Since   
  being the complement of a finite class of close sets will be open and consequently 

   
  

    is open. Therefore,           .  

This implies that   is closed 

                         

(iii)  

Let *      + be a class of infinite collection of close sets. 

Then we prove        is close. 

Suppose that         , then 

   (⋂  

   

)

 

 

    ⋃  
 

   

                     



     be the collection of close sets. Then,  
  is open and consequently  ⋃   

 
    is open set. 

Therefore,    is open. 

               is close. 

This completes the proof. 

 DIAMETER OF A SET: 

Let (   ) be a metric space. The diameter of a non-empty subset   of metric space is defined 

as 

 ( )      * (   )+ 

 Theorem # 13: The diameter of a close ball in a metric space is      

PROOF:- 

Let (   ) be a metric space. 

Let  (   ) denote a close ball   

Let      (   ) then  (   )       (   )    

By triangular inequality, we have 

 (   )   (   )   (   ) 

  (   )      

  (   )     

This completes the proof.  

 

 NEIGHBORHOOD:- 

          Let (   ) be a metric space and     be any point of    A subset   of   is called 

neighborhood of     if there exist an open set   such that     and   is contained in    That 

is, 

      



Theorem # 14: Let (   ) be a metric space and      Then   is open iff   is nhd of 

each of its point. 

PROOF: 

Let (   ) be a metric space and      

Suppose     is open. 

We show “A is nhd of each of its point”. 

Let      Then, 

         every set is subset of itself 

   is nhd of     

As     be an arbitrary point of    So,   is nhb of each of  its point. 

Conversely, we suppose that “  is nhb of each of  its point.” 

Let   be any point of     

Since   is nhd of    Therefore,   an open set   such that 

      

and 

   {* +    }   *      +    

Thus   is open. 

 INHERIDITY PROPERTY: 

                                If     then we read   is a subset of   and   is superset of    If any property 

contains in superset then it must also be contained in subset. This property is said to be inherdity 

property. 

 Theorem # 15:Let (   ) be a metric space and     is infinite subset of X. If     is 

a limit point of    then every nhd of   contains infinite points of A. 

PROOF: 

Let (   ) be a metric space and   is infinite subset of     



Let     is a limit point of   and let    be the neighborhood of    

Then by definition of neighborhood   an open set     such that 

       

Then we will show “   contains infinite point of      

To prove this, we shall prove 

“O contains infinite points of A”. 

Since     is open. So by definition, ,    an open ball  (   ) such that 

  (   )    

Suppose to contrary that   contain only finite number of points of     

It follows that  (   ) contains only finite number of points of    say             only, 

that is,      
   (   ) then  (      

   )    

Let, 

 (    )     

 (    )     

……….. 

……….. 

……….. 

 (    )     

And, 

       *            + 

Then the open ball  (    ) does not contain any point of   other than    

This is contradiction, since   is a limit point of     

Hence  (    ) contains at least one point of   other than    

Hence every neighborhood of   contains infinite point of    

 CLOSURE OF A SET: 



                                      Let    be a subset of a metric space (X, d). Then we define closure of 

A as “the union of A and all limit points of A”. It is denoted as    Mathematically, it is 

defined as 

 A = A  Ad ,  

 where Ad denotes set of limit points of A. 

 Adharent Point: 

                        Let (   ) be a metric space and      then     is said to be adharent 

to   if  

   ( )    

 Theorem # 16: Let (   ) be a metric space and      Then          

PROOF: 

Let (   ) be a metric space and      

Let    be the closed set consisting of all of its limit point. 

Let        ( ) 

   is limit point of A. Therefore, 

  * +   ( )    

    ( )               * +    

   is adharent point to A. Therefore, 

      ( ) 

From ( )   ( )         

       ( ) 

Since by definition        ( ) 

From ( )   ( )         



         ( ) 

Now we show that       . 

Let       ( ) 

         

               

      then by definition 

   ( )                        

   * +   ( )          

               is limit point 

           ( )          is limit point 

From ( )   ( )         

         (  ) 

Now ( ) (  )   

       

 

Theorem # 17: In any metric space (   )  show that A is closed if and only ifA = A 

PROOF:- 

Let (   ) be a metric space and      

First we suppose       

We show that “A is closed”. 

As        

                 



      

   is close. 

Conversely, we suppose ”   is close”. 

      

        

     

This completes the proof. 

Theorem # 18: Let (   ) be a metric space and let       be two arbitrary subsets 

of    Then 

(i)     

(ii)     

(iii)         

(iv)         

(v)     

(vi) If     then      

PROOF:- (i) 

Since   is close. Therefore, 

     

            if     then          

           

This completes the proof. 

PROOF:- (ii) 

Since   is close. Therefore, 

         by definition 

            if     then          



           

This completes the proof. 

PROOF:- (iii) 

As we know 

                

                 

             ( )  

As by definition, we have 

            

           ( )  

      is the superset of      

But we know the smallest superset of     is       hence, 

         

( )              ( ) 

from ( )   ( )  we have 

         

This completes the proof. 

PROOF:- (iv) 

As we know 

                

                  

          



PROOF:- (v) 

If   is close. Then 

    

    is close. 

If    is close, then by definition 

    

This completes the proof. 

PROOF:- (vi) 

As it is given 

            

       

     

As   is the smallest superset of A. so, 

    

       

     

 

 


