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<+ METRIC SPACE:-

Let X be a non-empty set and R denotes the set of real numbers. A function d: X X X = R is
said to be metric if it satisfies the following axioms V x,y,z € X.

[M;] d(x,y) = 0 i.e, d is finite and non-negative real valued function.
[M] d(x,y) =0 &x=y

[M3] d(x,y) =d(y,x) (Symmetric property)
[M,] d(x,z) <d(x,y)+d(y,z) (Triangular property)

“ IMPORTANT POINTS:-

Let “d” be a metricon a set "X", then

» (X,d) is called metric space with metric d.

» X is called underlying or ground set.

» d is called the metric or distance function on X.
» Elements of a metric space are called its points.

% OPEN BALL:~

Let B(y,r) be a subset of a metric spaceX, then

B(y,r) ={x € X:d(x,y) <r}

is said to be an open ball with radius "r" centered at "y".

< REMEMBER THAT:

If any point "a € X" of metric space belongs to open ball, that is
a € B(x,r)

This will be possible only if d(x,a) <7

Theorem # 1:- Open ball in a metric space is an open interval.

Proof:-
The metric "d" on real line "R" is defined by

d(x,y) = |x =yl

Let B(a,r) be an open ball of a metric space (X, d). Then,




B(a,r) ={x € X:d(a,x) <71}

= B(a,7) ={x € X:la—x| <7}

= B(a,7) ={x € X:|x —a| <71}

= B(a,r) ={x€eX:—r<x—a<r}
= B(a,r) ={x€Xia—-r<x<a+r}
= B(a,r) =]la—r,a+7r]

This is an open interval having length "2r".

% OPEN SET:-

Let (X, d) be a metric space and set G is called open in X if for every x € G, there exists
an open ball B(x,r) € A.

% SCHEME TO PROVE ANY SET TO BE AN OPEN SET:-

To prove any set "G" to be an open in X, we have to follow the following steps:-

» First, we will take an arbitrary element x € A
» Secondly, we consider an open ball B(x,r).
» Thirdly, we have to proveB(x,r) € A

Theorem # 2:- Open Ball in a metric space is an open set.

Proof:-

Let B(x,r) be an open ball in (X, d).

We want to show that “B(x,r)” is open.
Lety € B(x,r) thend(x,y) <r

Letd(x,y) =r, = nr <r

Put ¢ = r — r; and consider an open ball B(y, €).
We prove that B(y,&) € B(x, 1)

For this let z € B(y, €) thend(y,z) < ¢

By triangular property, we have

d(x,z) <d(x,y) +d(y,z)

=dx,z)<r +e

=d(x,z)<r—c+¢

=d(x,z)<r

Hence z € B(x,r) sothat B(y,¢€) € B(x,r)




Thus B(x, ) is an open set.

%+ Theorem # 3: Let (X, d) be a metric space, then

(i) Both ¢ and X are open sets.

(ii) Intersection of finite collection of open sets is open
(iii)  Union of any collection of open sets is open

PROOF: - (i)

Let us suppose @ is open.
Then for each x € ¢, there exist an open ball B(x, r) such that
B(x,r) S ¢
But since ¢ has no element.
Hence the condition is automatically satisfied. Hence ¢ is open.
PROOF:- (ii)
Suppose {4;:i = 1,2, ... ... ,n} be a finite number of open sets in X.

We show that ;_7NA4; is open.

Case-1:-

If A; is empty forsome i = 1,2, ...... ,nthen ;_TNA; = ¢ is an open set in X.
Case-2:-

If ;.TNA; # .

Let x € ;_TNA;thenx €A; Vi=12,.... N

Since each 4; is an open set.
Then there exist an open ball B(x, ;) such that

B(x,r;)) €A; V i=12,.... ,n
n

— B(X,Ti) c ﬂAl Vi
i=1

We choose r; = min{ry, 1, ... ... ,Tn}, then
B(x,r) € B(x,1;) Vi=1,2,..... N

Hence




n
B(x,r) S ﬂ A;
i=1

n
Thus ﬂ A; is an open set.

i=1

PROOF:- (iii)
Suppose A; be a class of open sets in X.
We show that U; 4; is open in X.

If A;isemptyV i, then U;4; = ¢.

Hence U; 4; is openin X.

Butif A; # ¢, then

Let x € U; 4; then x € 4;

Since each A4; is open. Then there exist an open ball B(x, ) such that

B(X,T) - Ai c UiAi

= B(x,r) S UAi
i

Hence U; 4; is open.

Theorem # 4: Let (X, d) be a metric space. A subset A of X is open if and only if it is the
union of open balls.

PROOF:-
Suppose A be any subset of metric space (X, d).
Firstly, we will suppose that "A" is an open set.Then we show that A open balls.

Case-1:

If A = @ then A is regarded as union of is empty class of open balls.
Case-2:

If A # @ thenlet x € A.

Since A is open. Then there exist an open ball B(x, 1) such that

B(x,r) € Athen A =U B(x,1)




Conversely, we suppose that 4 is union of open balls.
If union of open ball is an empty set, then A is trivially open.
If union of open ball is not empty.
Then for x, € A, there exist an open ball B(x,, r) such that
A =UB(x,,1)
Since every open ball is an open set. That is, 3 r; > 0 such that
B(x,,1,) € B(x,,r) €A
= B(x,,11) € A

It follows that A is open.

Theorem # 5: The complement of a singleton set is open.

PROOF:

Let (X, d) be a metric space.

Let F = {x} be a singleton set.

We want to show that “F¢is open”.

Lety € FCtheny & F

Hence y # x. Then d(x,y) # 0 - By definition

Let d(x,y) = r and consider an open ball B(y,r) . Then,
B(y,r)NF =9

= B(y,r) € F¢

Thus F€ is open.

+* DISCRETE METRIC SPACE:-

Let X be a non-empty set. Let R denote the set of real numbers. We define d: X X X — R such
that

dx,y) =0 ©x=y




dix,y) =1 ©x+y
This can also be written as

(0 ifx#y
d(x,y)—{l ifx+y

Then X is called discrete metric space or trivial metric space.

Theorem # 6: An open ball of radius 0 < r < 1 in a discrete metric space contain only
its Centre.

Proof:

Let (X, d) be a discrete metric space andlet 0 <r < 1.
Suppose B(x,r) be an open ball.

Then we shall prove that

"B(x, 1) contains only its centre".

Letx, € B(x, 1) & x # x,

=d(x,x,) <T

=d(xx,)<1 ~“0<r<1

=d(x,x,) =0

= x =x, - Xisdiscrete metric space

This contradicts our supposition. Hence our suppositionx, € B(x, 1) is wrong.
Therefore, B(x, r) contains only its Centre.

Theorem # 7: An open ball of radius > 1 in a discrete metric space is a whole space.

Proof:

Let (X, d) be a discrete metric space and let r > 1.
Suppose B(x,r) be an open ball.

Then we shall prove that

B(x,r)=X




Letx, €EX ———(a) &x # x,
= d(x,x,) =1 - Xisdiscrete metric space
=dx,x,)<r wr>1
= x, € B(x,r) ———(b)
Therefore, from (a) & (b)
X € B(x,r)———(4)
*» By definition, we know
B(x,r) € X ———(B)
From (4) & (B), we have
B(x,r) =X

This completes the proof.

Theorem # 8: Every non-empty subset of a discrete metric space is open.

PROOF:

Let (X, d) be a discrete metric space.
Let U € X such that U # @.

We shall prove that U is an open set.
Suppose that x, € U

Since every open ball B(x,,r) of radius 0 < r < 1 in a discrete metric space contain only its
Centre. That is,

B(x,,1) = {x,} then U is open.

Since every open ball B(x,, r) of radius r > 1in a discrete metric space is a whole space. That
is,

B(x,,1r) =X
Since X is open. Therefore, B(x,,r) is also open.

It follows that U is open.




¢+ CLOSE BALL

Let (X, d) be a metric space. If "a" is a point of X and "r" is positive real number, that is, r >
0 then the subset
B(a,r) = {x € X:d(a,x) < r}

is called close ball centered at "a" and radius "r".

Theorem # 9:- Close ball in a metric space is an open interval.

Proof:-

Let (X, d) be a metric space.

Let B(a, 1) be a close ball.

The close ball is defined as follow:-
B(a,r) =f{x € X:d(a,x) <1} ——— (i)
The metric "d" on real line "R" is defined by
d(x,y) =[x =yl

= d(a,x) =|a— x|

Thus equation (i) will become

B(a,r) ={x €X:la—x| <r}

= B(a,r) ={x €X:|x —a| <1}

= Bar)={xeX:-r<x—a<r}
= B(ar)={x€Xia—-r<x<a+r}
= B(a,r)=[a—r,a+71]

This is a closed interval having length "2r".

¢ CLOSE SET:

A subset “A” of metric space is said to be closed if and only if its complement is open.




Theorem # 10: Close ball in a metric space is close.

PROOF:

Let (X, d) be a metric space and B(a, r) be a closed ball.
Then we show B(a, 1) is close.

For this we shall prove Ec(a, r) = X — B(a,r) is open.
lety € B (a,r) theny & B(a,7) = d(a,y) >

Put e = d(a,y) — r and consider an open ball B(y, €).
Now we prove B(y, ) € B (a, 1)

For thisletz € B(y,€) thend(y,z) < ¢

By triangular property, we have

d(a,y) <d(a,z)+d(y,2)

=¢c+r<d(az)+e

=r<d(a,z)Ord(az)<r

=ZzE Ec(a, )

Hence B(y, €) S Ec(a, r). It follows that Ec(a, r) is open.

Thus B(a,r) is closed.

¢ LIMIT POINT:

Let (X, d) be a metric space. Then a point x € X is called limit point of A if every

open ball B(x, r) with center "x" contains a point of 4 other than "x" . that is,

B(x,r)NA—{x}+®

% ALTERNATIVE DEFINITION OF CLOSED SET:

A subset “A” of metric space is said to be closed if it contains all of its limit point.




Theorem # 11: A subset of metric space is close if and only if its complement is open.

PROOF:

Let (X, d) be a metric space and let A € X.

Suppose A is close and we wanted to show “ A€ is close”.

lety € Atheny € A

= y is not limit point of A.

Then by definition of a limit point there exists an open ball B(y, ) such that
BymnA—-{y}=90

= Bly,r)NA=0 ~A—-{y}cA

= B(y,r) € A€

= A€ is open.

Conversely, we suppose that A€ is open.

Then we show A is close.

Let x be the limit point of A which does not belong to A. That is,

x & Athenx € A€

Then there exists an open ball B(x,r) such that B(x,r) € A€ and
B(x,r)NA=0

This implies x is not limit point of A which is contradiction to our supposition.

Hence x € A. Accordingly A is close.

Theorem 12: Let (X, d) be a metric space, then

(i) Both @ and X are close.
(ii) Union of finite collection of close sets is a close.
(iii) Intersection of any collection of close sets is close.

PROOF:




(i)

As O =X —Q@then ¢ =X

Since X is open then @€ is open. It follows that @ is close.
Again, since X =X — X then X =@

Since @ is open then X€ is open. It follows that X is close.
(ii)

Let{Oyp:ax = 1,2, ... ... ,n} be a finite class of close sets.
Then we show Uj_; O, is close.

Suppose that,

n
F = UO“ then F¢ =
a=1

n c
Jo,
a=1
n

= F°¢ = ﬂ 0,° + De— Morgan theorem

a=1

Since 0,° being the complement of a finite class of close sets will be open and consequently
n_,0,° is open. Therefore, F¢ is open.

This implies that F is closed

This complete the proof.

(iii)

Let {O,: a € I} be a class of infinite collection of close sets.
Then we prove N,e; Oy is close.

Suppose that F = Ny¢; Oy, then

“<(0e)

a€l

= F¢ = U 0,° - by De — Margan law

a€l



*+ 0, be the collection of close sets. Then,0,° is open and consequently U,¢; O,° is open set.
Therefore, F€ is open.

this implies F is close.

This completes the proof.

+* DIAMETER OF A SET:

Let (X, d) be a metric space. The diameter of a non-empty subset 4 of metric space is defined
as

6(4) = sup {d(x, y)}

+¢ Theorem # 13: The diameter of a close ball in a metric space is< 2r.

PROOF:-

Let (X, d) be a metric space.

Let B(a, 1) denote a close ball.

Letx,y € B(a,r) thend(a,x) <r&d(a,y) <r
By triangular inequality, we have

d(x,y) <d(x,a)+d(a,y)

=dxy)<r+r

= d(x,y) < 2r

This completes the proof.

% NEIGHBORHOOD:-

Let (X, d) be a metric space and "a" be any point of X. A subset N of X is called

neighborhood of "a" if there exist an open set G such that a € G and G is contained in N. That
is,

XEGEN




Theorem # 14: Let (X, d) be a metric space and A S X. Then A is open iff A is nhd of
each of its point.

PROOF:
Let (X, d) be a metric space and A € X.
Suppose "A" is open.
We show “A is nhd of each of its point”.
Let x € A. Then,
XEACA " every set is subset of itself
= A is nhd of x.
As "x" be an arbitrary point of A. So, A is nhb of each of its point.
Conversely, we suppose that “A is nhb of each of its point.”
Let x be any point of A.
Since A is nhd of x. Therefore, 3 an open set G such that
XEGCEA
and
A=U{{xkxeA}cu{G:xeA}cA

Thus A is open.

¢ INHERIDITY PROPERTY:

If A € B then we read A is a subset of B and B is superset of A. If any property
contains in superset then it must also be contained in subset. This property is said to be inherdity
property.

% Theorem # 15:Let (X, d) be a metric space and "A" is infinite subset of X. If x € X is
a limit point of A, then every nhd of x contains infinite points of A.

PROOF:

Let (X,d) be a metric space and A is infinite subset of X.




Let x € X is a limit point of A and let N, be the neighborhood of x.
Then by definition of neighborhood 3 an open set "0" such that

x€0CEN,
Then we will show “N,, contains infinite point of A".
To prove this, we shall prove
“O contains infinite points of A”.
Since "0" is open. So by definition, , 3 an open ball B(x, 1) such that
B(x,r) € 0
Suppose to contrary that O contain only finite number of points of A.

It follows that B(x, ) contains only finite number of points of 4, say a,, a,, ... ... ,a, only,
thatis, ;_7a; € B(x,r) thend(;1a;, x) <r

Let,
d(x,a;) =1,
d(x,a,) =r,

d(x,a,) =1,
And,
r' =min{r,ry, ... .. Tt

Then the open ball B(x,r") does not contain any point of A other than x.
This is contradiction, since x is a limit point of A.
Hence B(x,r") contains at least one point of A other than x.

Hence every neighborhood of x contains infinite point of X.

¢ CLOSURE OF A SET:




Let A be a subset of a metric space (X, d). Then we define closure of

A as “the union of A and all limit points of A”. It is denoted as A. Mathematically, it is
defined as

A=A UA?,

where A% denotes set of limit points of A.

«* Adharent Point:

Let (X,d) be a metric space and A € X, then x € X is said to be adharent
toAif

ANN(x)+ 0

% Theorem # 16: Let (X, d) be a metric spaceand A € X.Then A = A U A<,

PROOF:

Let (X,d) be a metric space and A € X.
Let A% be the closed set consisting of all of its limit point.
letx € AT — — — (a)

= x is limit point of A. Therefore,
A—{x}NnN(kx) =0

= ANN(Kx) =0 v A—{x}cA
= x is adharent point to A. Therefore,
x€A———(b)

From (a) & (b), we have
ATCA———(0)

Since by definition A € A — — — (d)

From (c¢) & (d), we have




AUALCA———(i)

Now we show that A € A U A%,
Lletx €A ———(e)

= x €AUA?

= x €A or x € A%

X € A. then by definition
ANN(x)#@® - xisadharent
= A—{x}NN(x) =0

= x € A% - x s limit point

= x €AUA%———(f) = xislimit point
From (e) & (f),we have
ACAUAY — — —(iD)

Now (i), (ii) =

A=AUA?

Theorem # 17: In any metric space (X, d), show that A is closed if and only if A=A

PROOF:-

Let (X, d) be a metric space and A € X.

First we suppose A=A

We show that “A is closed”.
AsA = AU A?

= A=AUA? - A=A




=A% C A

= A is close.

Conversely, we suppose ” A is close”.
= AYC A

= AUAY=A

=A=A

This completes the proof.

Theorem # 18: Let (X, d) be a metric space and let A & B be two arbitrary subsets
of X. Then

(i) =0

(i) X=X

(i) AUB=AUB

(v ANBZSANB

(v 4=24

(vi) IfA € B then ACB
PROOF:- (i)

Since @ is close. Therefore,
¢’co
=Qu@g?=¢ ~ifASBthenAUB =B
=0=0
This completes the proof.
PROOF:- (i)
Since X is close. Therefore,
X% < X by definition

= XuXi=X +“ifACBthenAUB=B8B




=X=X

This completes the proof.
PROOF:- (iii)

As we know

A€ AUB & BSAUB

= ACAUB & BSAUB
—AUBCAUB - - - (a)
As by definition, we have
AcCA&BCSB

= AUBCAUB———(i)

= AU B is the superset of AU B.

But we know the smallest superset of AU B is AU B . hence,

AUBCAUB
() =AUB CAUB———(b)

from (a) & (b), we have

AUB =AUB

This completes the proof.
PROOF:-  (iv)

As we know

ANBES A &ANBCEBR

— ANBCA&ANBCB

NB

IN
x|

= ANBKB



PROOF:-  (v)

If A is close. Then

|
I

A
= A is close.

If A is close, then by definition

This completes the proof.
PROOF:- (vi)

As it is given

ASB&BCB

= ACBCB

—ACB

As A is the smallest superset of A. so,

CA

o

o
N
|
N
So]

=
=

|
IN
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