

Notes of Metric Space

Author: Umer Asghar Level: BSc or BS,

Available online @ http://www.mathcity.org, Version: 1.0

METRIC SPACE:-

Let X be a non-empty set and R denotes the set of real numbers. A function $d: X \times X \to R$ is said to be metric if it satisfies the following axioms $\forall x, y, z \in X$.

 $[M_1]$ $d(x, y) \ge 0$ i.e, d is finite and non-negative real valued function.

- $[M_2] \quad d(x, y) = 0 \iff x = y$
- $[M_3] \quad d(x, y) = d(y, x)$
- $[M_4] \quad d(x,z) \le d(x,y) + d(y,z)$

(Symmetric property) (Triangular property)

✤ IMPORTANT POINTS:-

Let "d" be a metric on a set "X", then

- \succ (X, d) is called metric space with metric d.
- X is called underlying or ground set.
- \succ d is called the metric or distance function on X.
- Elements of a metric space are called its points.

✤ OPEN BALL:-

Let B(y, r) be a subset of a metric space X, then

 $B(y,r) = \{x \in X : d(x,y) < r\}$

is said to be an open ball with radius "r" centered at "y".

***** REMEMBER THAT:

If any point " $a \in X$ " of metric space belongs to open ball, that is

 $a \in B(x,r)$

This will be possible only if d(x, a) < r

Theorem # 1:- Open ball in a metric space is an open interval.

Proof:-

The metric "d" on real line "R" is defined by

d(x, y) = |x - y|

Let B(a, r) be an open ball of a metric space (X, d). Then,

$$B(a,r) = \{x \in X : d(a,x) < r\}$$

$$\Rightarrow B(a,r) = \{x \in X : |a - x| < r\}$$

$$\Rightarrow B(a,r) = \{x \in X : |x - a| < r\}$$

$$\Rightarrow B(a,r) = \{x \in X : -r < x - a < r\}$$

$$\Rightarrow B(a,r) = \{x \in X : a - r < x < a + r\}$$

$$\Rightarrow B(a,r) =]a - r, a + r[$$

This is an open interval having length "2r".

OPEN SET:-

Let (X, d) be a metric space and set G is called open in X if for every $x \in G$, there exists an open ball $B(x, r) \subseteq A$.

SCHEME TO PROVE ANY SET TO BE AN OPEN SET:-

To prove any set "G" to be an open in X, we have to follow the following steps:-

- First, we will take an arbitrary element $x \in A$
- Secondly, we consider an open ball B(x, r).
- ➤ Thirdly, we have to prove $B(x,r) \subseteq A$

Theorem # 2:- Open Ball in a metric space is an open set.

Proof:-

```
Let B(x,r) be an open ball in (X, d).

We want to show that "B(x,r)" is open.

Let y \in B(x,r) then d(x,y) < r

Let d(x,y) = r_1 \implies r_1 < r

Put \varepsilon = r - r_1 and consider an open ball B(y,\varepsilon).

We prove that B(y,\varepsilon) \subseteq B(x,r)

For this let z \in B(y,\varepsilon) thend(y,z) < \varepsilon

By triangular property, we have

d(x,z) \le d(x,y) + d(y,z)

\Rightarrow d(x,z) < r_1 + \varepsilon

\Rightarrow d(x,z) < r - \varepsilon + \varepsilon

\Rightarrow d(x,z) < r

Hence z \in B(x,r) so that B(y,\varepsilon) \subseteq B(x,r)
```

Thus B(x, r) is an open set.

- Theorem # 3: Let (X, d) be a metric space, then
- (i) Both ϕ and X are open sets.
- (ii) Intersection of finite collection of open sets is open
- (iii) Union of any collection of open sets is open

PROOF: - (i)

Let us suppose ϕ is open.

Then for each $x \in \varphi$, there exist an open ball B(x, r) such that

 $B(x,r)\subseteq \varphi$

But since ϕ has no element.

Hence the condition is automatically satisfied. Hence $\,\phi$ is open.

PROOF:- (ii)

Suppose $\{A_i: i = 1, 2, ..., n\}$ be a finite number of open sets in X.

We show that $\underset{i=1}{\overset{n}{\cap}A_i} \cap A_i$ is open.

Case-1:-

If A_i is empty for some i = 1, 2, ..., n then $\prod_{i=1}^n \bigcap A_i = \varphi$ is an open set in X.

Case-2:-

If ${}_{i=1}^{n} \cap A_i \neq \varphi$.

Let
$$x \in \underset{i=1}{\overset{n}{\cap}} A_i$$
 then $x \in A_i \quad \forall i = 1, 2, \dots, n$

Since each A_i is an open set.

Then there exist an open ball $B(x, r_i)$ such that

$$B(x, r_i) \subseteq A_i \quad \forall \quad i = 1, 2, \dots, n$$
$$\implies B(x, r_i) \subseteq \bigcap_{i=1}^n A_i \quad \forall \ i$$

We choose $r_i = min\{r_1, r_2, \dots, r_n\}$, then

$$B(x,r) \subseteq B(x,r_i) \ \forall i = 1,2,\dots,n$$

Hence

$$B(x,r) \subseteq \bigcap_{i=1}^{n} A_{i}$$

Thus $\bigcap_{i=1}^{n} A_{i}$ is an open set.

PROOF:- (iii) Suppose A_i be a class of open sets in X. We show that $\bigcup_i A_i$ is open in X.

If
$$A_i$$
 is empty $\forall i$, then $\bigcup_i A_i = \varphi$.

Hence $\bigcup_i A_i$ is open in *X*.

But if $A_i \neq \varphi$, then

Let $x \in \bigcup_i A_i$ then $x \in A_i$

Since each A_i is open. Then there exist an open ball B(x, r) such that

$$B(x,r) \subseteq A_i \subseteq \bigcup_i A_i$$
$$\implies B(x,r) \subseteq \bigcup_i A_i$$

Hence $\bigcup_i A_i$ is open.

Theorem # 4: Let (X, d) be a metric space. A subset A of X is open if and only if it is the union of open balls.

PROOF:-

Suppose A be any subset of metric space (X, d).

Firstly, we will suppose that "A" is an open set. Then we show that A open balls.

Case-1:

If $A = \emptyset$ then A is regarded as union of is empty class of open balls.

Case-2:

If $A \neq \emptyset$ then let $x \in A$.

Since A is open. Then there exist an open ball B(x, r) such that

 $B(x,r) \subseteq A$ then $A = \bigcup B(x,r)$

Conversely, we suppose that A is union of open balls.

If union of open ball is an empty set, then A is trivially open.

If union of open ball is not empty.

Then for $x_o \in A$, there exist an open ball $B(x_o, r)$ such that

$$A = \cup B(x_o, r)$$

Since every open ball is an open set. That is, $\exists r_1 > 0$ such that

$$B(x_o, r_1) \subseteq B(x_o, r) \subseteq A$$

$$\Rightarrow B(x_o, r_1) \subseteq A$$

It follows that A is open.

Theorem # 5: The complement of a singleton set is open.

PROOF:

Let (X, d) be a metric space.

Let $F = \{x\}$ be a singleton set.

We want to show that " F^c is open".

Let $y \in F^c$ then $y \notin F$

Hence $y \neq x$. Then $d(x, y) \neq 0$: By definition

Let d(x, y) = r and consider an open ball B(y, r). Then,

 $B(y,r)\cap F=\emptyset$

$$\Rightarrow B(y,r) \subseteq F^c$$

Thus F^c is open.

DISCRETE METRIC SPACE:-

Let X be a non-empty set. Let R denote the set of real numbers. We define $d: X \times X \rightarrow R$ such that

$$d(x, y) = 0 \iff x = y$$

$$d(x, y) = 1 \iff x \neq y$$

This can also be written as

$$d(x, y) = \begin{cases} 0 & \text{if } x \neq y \\ 1 & \text{if } x \neq y \end{cases}$$

Then *X* is called discrete metric space or trivial metric space.

Theorem # 6: An open ball of radius 0 < r < 1 in a discrete metric space contain only its Centre.

Proof:

Let (X, d) be a discrete metric space and let 0 < r < 1.

Suppose B(x, r) be an open ball.

Then we shall prove that

"B(x, r) contains only its centre".

Let $x_o \in B(x,r) \& x \neq x_o$

$$\Rightarrow d(x, x_o) < r$$

 $\Rightarrow d(x, x_o) < 1 \quad \because 0 < r < 1$

$$\Rightarrow d(x, x_o) = 0$$

 $\Rightarrow x = x_o$:: X is discrete metric space

This contradicts our supposition. Hence our supposition $x_o \in B(x, r)$ is wrong. Therefore, B(x, r) contains only its Centre.

Theorem # 7: An open ball of radius r > 1 in a discrete metric space is a whole space.

Proof:

Let (X, d) be a discrete metric space and let r > 1.

Suppose B(x, r) be an open ball.

Then we shall prove that

B(x,r) = X

Let $x_o \in X - - - (a) \& x \neq x_o$ $\Rightarrow d(x, x_o) = 1 \quad \because X \text{ is discrete metric space}$ $\Rightarrow d(x, x_o) < r \quad \because r > 1$ $\Rightarrow x_o \in B(x, r) - - - (b)$

Therefore, from (a) & (b)

$$X \subseteq B(x,r) - - - (A)$$

∵ By definition, we know

$$B(x,r) \subseteq X - - - (B)$$

From (A) & (B), we have

$$B(x,r) = X$$

This completes the proof.

Theorem # 8: Every non-empty subset of a discrete metric space is open.

PROOF:

Let (X, d) be a discrete metric space.

Let $U \subseteq X$ such that $U \neq \emptyset$.

We shall prove that U is an open set.

Suppose that $x_o \in U$

Since every open ball $B(x_o, r)$ of radius 0 < r < 1 in a discrete metric space contain only its Centre. That is,

 $B(x_o, r) = \{x_o\}$ then U is open.

Since every open ball $B(x_0, r)$ of radius r > 1 in a discrete metric space is a whole space. That is,

 $B(x_o, r) = X$

Since X is open. Therefore, $B(x_o, r)$ is also open.

It follows that U is open.

CLOSE BALL

Let (X, d) be a metric space. If "a" is a point of X and "r" is positive real number, that is, r > 10 then the subset

 $\overline{B}(a,r) = \{x \in X : d(a,x) \le r\}$

is called close ball centered at "a" and radius "r".

Theorem # 9:- Close ball in a metric space is an open interval.

Proof:-

17

Let (X, d) be a metric space.

Let $\overline{B}(a, r)$ be a close ball.

The close ball is defined as follow:-

$$\overline{B}(a,r) = \{x \in X \colon d(a,x) \le r\} - - -(i)$$

The metric "d" on real line "R" is defined by

$$d(x, y) = |x - y|$$
$$\Rightarrow d(a, x) = |a - x|$$

>

Thus equation (i) will become

$$\overline{B}(a,r) = \{x \in X : |a - x| \le r\}$$

$$\Rightarrow \overline{B}(a,r) = \{x \in X : |x - a| \le r\}$$

$$\Rightarrow \overline{B}(a,r) = \{x \in X : -r \le x - a \le r\}$$

$$\Rightarrow \overline{B}(a,r) = \{x \in X : a - r \le x \le a + r\}$$

$$\Rightarrow \overline{B}(a,r) = [a - r, a + r]$$

This is a closed interval having length "2r".

✤ CLOSE SET:

A subset "A" of metric space is said to be closed if and only if its complement is open.

Theorem # 10: Close ball in a metric space is close.

PROOF:

Let (X, d) be a metric space and $\overline{B}(a, r)$ be a closed ball.

Then we show $\overline{B}(a, r)$ is close.

For this we shall prove $\overline{B}^{c}(a,r) = X - \overline{B}(a,r)$ is open.

Let $y \in \overline{B}^{c}(a, r)$ then $y \notin \overline{B}(a, r) \Longrightarrow d(a, y) > r$

Put $\varepsilon = d(a, y) - r$ and consider an open ball $B(y, \varepsilon)$.

Now we prove $B(y, \varepsilon) \subseteq \overline{B}^c(a, r)$

For this let $z \in B(y, \varepsilon)$ then $d(y, z) < \varepsilon$

By triangular property, we have

$$d(a, y) \leq d(a, z) + d(y, z)$$

$$\Rightarrow \varepsilon + r < d(a, z) + \varepsilon$$

$$\Rightarrow r < d(a, z) \text{ Or } d(a, z) < r$$

$$\Rightarrow z \in \overline{B}^{c}(a, r)$$

Hence $B(y, \varepsilon) \subseteq \overline{B}^{c}(a, r)$. It follows that $\overline{B}^{c}(a, r)$ is open.

Thus $\overline{B}(a, r)$ is closed.

✤ LIMIT POINT:

Let (X, d) be a metric space. Then a point $x \in X$ is called limit point of A if every open ball B(x, r) with center "x" contains a point of A other than "x". that is,

 $B(x,r)\cap A-\{x\}\neq \emptyset$

✤ ALTERNATIVE DEFINITION OF CLOSED SET:

A subset "A" of metric space is said to be closed if it contains all of its limit point.

Theorem # 11: A subset of metric space is close if and only if its complement is open.

PROOF:

Let (X, d) be a metric space and let $A \subseteq X$.

Suppose A is close and we wanted to show " A^c is close".

Let $y \in A^c$ then $y \notin A$

 \Rightarrow y is not limit point of A.

Then by definition of a limit point there exists an open ball B(y, r) such that

$$B(y,r) \cap A - \{y\} = \emptyset$$

$$\Rightarrow B(y,r) \cap A = \emptyset \quad \because A - \{y\} \subseteq A$$

$$\Rightarrow B(y,r) \subseteq A^c$$

 $\Rightarrow A^c$ is open.

Conversely, we suppose that A^c is open.

Then we show A is close.

Let x be the limit point of A which does not belong to A. That is,

 $x \notin A$ then $x \in A^c$

Then there exists an open ball B(x, r) such that $B(x, r) \subseteq A^c$ and

 $B(x,r) \cap A = \emptyset$

This implies x is not limit point of A which is contradiction to our supposition.

Hence $x \in A$. Accordingly A is close.

Theorem 12: Let (X, d) be a metric space, then

(i) Both \emptyset and X are close.

(ii) Union of finite collection of close sets is a close.

(iii) Intersection of any collection of close sets is close.

PROOF:

As $\phi^c = X - \phi$ then $\phi^c = X$

Since *X* is open then ϕ^c is open. It follows that ϕ is close.

Again, since $X^c = X - X$ then $X^c = \emptyset$

Since \emptyset is open then X^c is open. It follows that X is close.

(ii)

Let $\{O_{\alpha}: \alpha = 1, 2, \dots, n\}$ be a finite class of close sets.

Then we show $\bigcup_{\alpha=1}^{n} O_{\alpha}$ is close.

Suppose that,

$$F = \bigcup_{\alpha=1}^{n} O_{\alpha} \text{ then } F^{c} = \left[\bigcup_{\alpha=1}^{n} O_{\alpha}\right]^{c}$$
$$\implies F^{c} = \bigcap_{\alpha=1}^{n} O_{\alpha}^{c} \quad \because \text{ De - Morgan theorem}$$

Since $O_{\alpha}^{\ c}$ being the complement of a finite class of close sets will be open and consequently $\bigcap_{\alpha=1}^{n} O_{\alpha}^{\ c}$ is open. Therefore, F^c is open.

This implies that F is closed

This complete the proof.

(iii)

Let $\{O_{\alpha} : \alpha \in I\}$ be a class of infinite collection of close sets.

Then we prove $\bigcap_{\alpha \in I} O_{\alpha}$ is close.

Suppose that $F = \bigcap_{\alpha \in I} O_{\alpha}$, then

$$F^{c} = \left(\bigcap_{\alpha \in I} O_{\alpha}\right)^{c}$$
$$\implies F^{c} = \bigcup_{\alpha \in I} O_{\alpha}^{c} \quad \because \text{ by De - Margan law}$$

: O_{α} be the collection of close sets. Then, $O_{\alpha}{}^{c}$ is open and consequently $\bigcup_{\alpha \in I} O_{\alpha}{}^{c}$ is open set. Therefore, F^{c} is open.

this implies *F* is close.

This completes the proof.

DIAMETER OF A SET:

Let (X, d) be a metric space. The diameter of a non-empty subset A of metric space is defined as

$$\delta(A) = \sup \left\{ d(x, y) \right\}$$

***** Theorem # 13: The diameter of a close ball in a metric space is $\leq 2r$.

PROOF:-

Let (X, d) be a metric space.

Let $\overline{B}(a, r)$ denote a close ball.

Let $x, y \in \overline{B}(a, r)$ then $d(a, x) \le r \& d(a, y) \le r$

By triangular inequality, we have

$$d(x, y) \le d(x, a) + d(a, y)$$

$$\Rightarrow d(x, y) \le r + r$$

 $\Rightarrow d(x, y) \leq 2r$

This completes the proof.

* NEIGHBORHOOD:-

Let (X, d) be a metric space and "a" be any point of X. A subset N of X is called neighborhood of "a" if there exist an open set G such that $a \in G$ and G is contained in N. That is,

 $x\in G\subseteq N$

Theorem # 14: Let (X, d) be a metric space and $A \subseteq X$. Then A is open iff A is nhd of each of its point.

PROOF:

Let (X, d) be a metric space and $A \subseteq X$.

Suppose "A" is open.

We show "A is nhd of each of its point".

Let $x \in A$. Then,

 $x \in A \subseteq A$: every set is subset of itself

 \Rightarrow A is nhd of x.

As "x" be an arbitrary point of A. So, A is nhb of each of its point.

Conversely, we suppose that "A is nhb of each of its point."

Let x be any point of A.

Since A is nhd of x. Therefore, \exists an open set G such that

 $x \in G \subseteq A$

and

 $A = \cup \{\{x\}: x \in A\} \subseteq \cup \{G_x: x \in A\} \subseteq A$

Thus A is open.

INHERIDITY PROPERTY:

If $A \subseteq B$ then we read A is a subset of B and B is superset of A. If any property contains in superset then it must also be contained in subset. This property is said to be inherdity property.

★ Theorem # 15:Let (X, d) be a metric space and "A" is infinite subset of X. If $x \in X$ is a limit point of A, then every nhd of x contains infinite points of A.

PROOF:

Let (X, d) be a metric space and A is infinite subset of X.

Let $x \in X$ is a limit point of A and let N_x be the neighborhood of x. Then by definition of neighborhood \exists an open set "O" such that

 $x \in O \subseteq N_x$

Then we will show " N_x contains infinite point of A".

To prove this, we shall prove

"O contains infinite points of A".

Since "O" is open. So by definition, \exists an open ball B(x,r) such that

 $B(x,r) \subseteq 0$

Suppose to contrary that 0 contain only finite number of points of A.

It follows that B(x,r) contains only finite number of points of A, say $a_1, a_2, ..., a_n$ only, that is, $\prod_{i=1}^n a_i \in B(x,r)$ then $d(\prod_{i=1}^n a_i, x) < r$

Let,

 $d(x, a_1) = r_1$ $d(x, a_2) = r_2$ \dots \dots $d(x, a_n) = r_n$

And,

 $r' = \min \{r_1, r_2, \dots, r_n\}$

Then the open ball B(x, r') does not contain any point of A other than x.

This is contradiction, since x is a limit point of A.

Hence B(x, r') contains at least one point of A other than x.

Hence every neighborhood of x contains infinite point of X.

CLOSURE OF A SET:

Let A be a subset of a metric space (X, d). Then we define closure of A as "the union of A and all limit points of A". It is denoted as \overline{A} . Mathematically, it is defined as

$$\overline{A} = A \cup A^d$$
,

where A^d denotes set of limit points of A.

* Adharent Point:

Let (X, d) be a metric space and $A \subseteq X$, then $x \in X$ is said to be adharent

to A if

 $A \cap N(x) \neq \emptyset$

***** Theorem # 16: Let (X, d) be a metric space and $A \subseteq X$. Then $\overline{A} = A \cup A^d$.

PROOF:

Let (X, d) be a metric space and $A \subseteq X$.

Let A^d be the closed set consisting of all of its limit point.

Let $x \in A^d - - - (a)$

 \Rightarrow x is limit point of A. Therefore,

 $A - \{x\} \cap N(x) \neq \emptyset$

 $\Rightarrow A \cap N(x) \neq \emptyset \qquad \because \ A - \{x\} \subseteq A$

 \Rightarrow x is adharent point to A. Therefore,

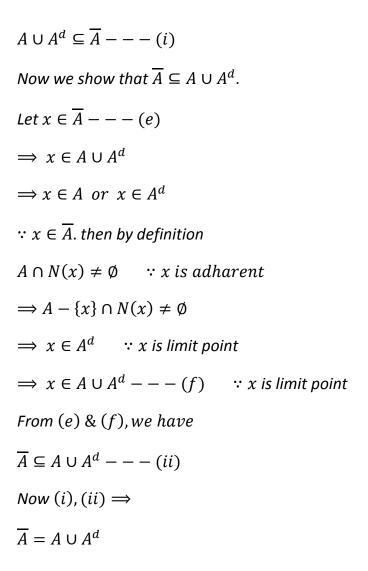
$$x\in\overline{A}---(b)$$

From (a) & (b), we have

 $A^d\subseteq \overline{A}---(c)$

Since by definition $A \subseteq \overline{A} - - - (d)$

From (c) & (d), we have



Theorem # 17: In any metric space (X, d), show that A is closed if and only if $\overline{A} = A$

PROOF:-

Let (X, d) be a metric space and $A \subseteq X$.

First we suppose $\overline{A} = A$

We show that "A is closed".

As $\overline{A} = A \cup A^d$

 $\Rightarrow A = A \cup A^d :: \overline{A} = A$

- $\Longrightarrow A^d \subseteq A$
- \Rightarrow A is close.

Conversely, we suppose " A is close".

- $\Longrightarrow A^d \subseteq A$
- $\Longrightarrow A \cup A^d = A$
- $\Longrightarrow \overline{A} = A$

This completes the proof.

Theorem # 18: Let (X, d) be a metric space and let $A \otimes B$ be two arbitrary subsets of X. Then (i) $\phi = \overline{\phi}$ (ii) $X = \overline{X}$ (iii) $\overline{A \cup B} = \overline{A} \cup \overline{B}$ (iv) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$ (v) $\overline{\overline{A}} = \overline{A}$ (vi) If $A \subseteq B$ then $\overline{A} \subseteq \overline{B}$

PROOF:- (i)

Since Ø is close. Therefore,

- $\emptyset^d \subseteq \emptyset$
- $\Rightarrow \emptyset \cup \emptyset^d = \emptyset$: if $A \subseteq B$ then $A \cup B = B$
- $\Rightarrow \overline{\emptyset} = \emptyset$

This completes the proof.

PROOF:- (ii)

Since X is close. Therefore,

 $X^d \subseteq X$: by definition

 $\Rightarrow X \cup X^d = X \quad \because if A \subseteq B then A \cup B = B$

 $\Longrightarrow \overline{X} = X$

This completes the proof.

PROOF:- (iii)

As we know

 $A \subseteq A \cup B \& B \subseteq A \cup B$

 $\Longrightarrow \overline{A} \subseteq \overline{A \cup B} \And \overline{B} \subseteq \overline{A \cup B}$

 $\Rightarrow \overline{A} \cup \overline{B} \subseteq \overline{A \cup B} - - - (a)$

As by definition, we have

 $A\subseteq \overline{A} \And B\subseteq \overline{B}$

 $\Rightarrow A \cup B \subseteq \overline{A} \cup \overline{B} - - - (i)$

 $\Rightarrow \overline{A} \cup \overline{B}$ is the superset of $A \cup B$.

But we know the smallest superset of $A \cup B$ is $\overline{A \cup B}$. hence,

$$A \cup B \subseteq \overline{A \cup B}$$

 $(i) \Longrightarrow \overline{A \cup B} \subseteq \overline{A} \cup \overline{B} - - - (b)$

from (a) & (b), we have

 $\overline{A \cup B} = \overline{A} \cup \overline{B}$

This completes the proof.

PROOF:- (iv)

As we know

$$A \cap B \subseteq A \And A \cap B \subseteq B$$
$$\Rightarrow \overline{A \cap B} \subseteq \overline{A} \And \overline{A \cap B} \subseteq \overline{B}$$
$$\Rightarrow \overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$$

PROOF:- (v) If A is close. Then $\overline{A} = A$ $\Rightarrow \overline{A}$ is close. If \overline{A} is close, then by definition $\overline{\overline{A}} = \overline{A}$ This completes the proof.

As it is given

- $A\subseteq B \And B\subseteq \overline{B}$
- $\Longrightarrow A \subseteq B \subseteq \overline{B}$
- $\Longrightarrow A \subseteq \overline{B}$
- As \overline{A} is the smallest superset of A. so,
- $A\subseteq \overline{A}$
- $\Longrightarrow A \subseteq \overline{A} \subseteq \overline{B}$
- $\Longrightarrow \overline{A} \subseteq \overline{B}$