UNIT \# 04

GRADIANT DIVERGENCE AND CURL

Introduction:

In this chapter, we will discuss about partial derivatives, differential operators Like Gradient of a scalar
,Directional derivative, curl and divergence of a vector .

Partial Derivative:

Let $\overrightarrow{\mathrm{F}}$ be a vector function of independent scalar variable $\mathrm{x}, \mathrm{y}, \mathrm{z}$ as

$$
\overrightarrow{\mathrm{F}}=\mathrm{F}_{1}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \hat{\imath}+\mathrm{F}_{2}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \hat{\jmath}+\mathrm{F}_{3}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \hat{\mathrm{k}}
$$

Then 1st Order partial derivatives w.r.t $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are define as

$$
\begin{aligned}
& \frac{\partial \overrightarrow{\mathrm{F}}}{\partial \mathrm{x}}=\frac{\partial}{\partial \mathrm{x}} \mathrm{~F}_{1}(\mathrm{x}) \hat{\imath}+\frac{\partial}{\partial \mathrm{x}} \mathrm{~F}_{2}(\mathrm{x}) \hat{\jmath}+\frac{\partial}{\partial \mathrm{x}} \mathrm{~F}_{3}(\mathrm{x}) \hat{\mathrm{k}} \\
& \frac{\partial \overrightarrow{\mathrm{~F}}}{\partial \mathrm{y}}=\frac{\partial}{\partial \mathrm{y}} \mathrm{~F}_{1}(\mathrm{y}) \hat{\imath}+\frac{\partial}{\partial \mathrm{y}} \mathrm{~F}_{2}(\mathrm{y}) \hat{\jmath}+\frac{\partial}{\partial \mathrm{y}} \mathrm{~F}_{3}(\mathrm{y}) \hat{\mathrm{k}} \\
& \frac{\partial \overrightarrow{\mathrm{~F}}}{\partial \mathrm{z}}=\frac{\partial}{\partial \mathrm{z}} \mathrm{~F}_{1}(\mathrm{z}) \hat{\imath}+\frac{\partial}{\partial \mathrm{z}} \mathrm{~F}_{2}(\mathrm{z}) \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \mathrm{~F}_{3}(\mathrm{z}) \hat{\mathrm{k}}
\end{aligned}
$$

(y, z behave as a constant)
(x, z behave as a constant)
(x, y behave as a constant)

Higher order partial derivatives of $\overrightarrow{\mathrm{F}} \boldsymbol{w} . \boldsymbol{r} . \boldsymbol{t} \mathrm{x}, \mathrm{y}, \mathrm{z}$ are define in a similar way.
The vector Differential Operator Del ($\vec{\nabla}$) :
A vector $\vec{\nabla}=\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{j}+\frac{\partial}{\partial z} \hat{k}$ is called Differential Operator Del $(\vec{\nabla})$.
Gradient of a scalar :
Let $\varphi(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is a scalar function in a space. Then Gradient of a scalar is define as;

$$
\overrightarrow{\operatorname{Grad} \varphi}=\vec{\nabla} \varphi=\left(\frac{\partial}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}\right) \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}}
$$

Properties of Gradient:
If φ and Ψ are scalar function and c is constant then
(i) $\vec{\nabla}(\mathbf{c} \varphi)=c \vec{\nabla} \varphi$

Proof: We know that $\vec{\nabla}=\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}$

Then $\vec{\nabla}(c \varphi)=\left(\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{l}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}\right)(\mathrm{c} \varphi)=\boldsymbol{c} \frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\mathrm{c} \frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\mathrm{c} \frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}}=\mathrm{c}\left(\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}}\right)=\boldsymbol{c} \vec{\nabla} \varphi$
(ii) $\vec{\nabla}(\varphi+\Psi)=\vec{\nabla} \varphi+\vec{\nabla} \boldsymbol{\Psi}$

Proof: We know that $\vec{\nabla}=\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{i}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}$

Then

$$
\begin{aligned}
\vec{\nabla}(\varphi+\Psi) & =\left(\frac{\partial}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}\right)(\varphi+\Psi)=\frac{\partial}{\partial \mathrm{x}}(\varphi+\Psi) \hat{\imath}+\frac{\partial}{\partial \mathrm{y}}(\varphi+\Psi) \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}}(\varphi+\Psi) \hat{\mathrm{k}} \\
& =\left(\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}}\right)+\left(\frac{\partial \Psi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \Psi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \Psi}{\partial \mathrm{z}} \hat{\mathrm{k}}\right)=\vec{\nabla} \varphi+\vec{\nabla} \Psi
\end{aligned}
$$

(iii) $\vec{\nabla}(\varphi \Psi)=\varphi \vec{\nabla} \Psi+\Psi \vec{\nabla} \varphi$

Proof: We know that $\vec{\nabla}=\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{i}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}$
Then $\vec{\nabla}(\varphi \Psi)=\left(\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{l}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}\right)(\varphi \Psi)=\frac{\partial}{\partial \mathrm{x}}(\varphi \Psi) \hat{\imath}+\frac{\partial}{\partial \mathrm{y}}(\varphi \Psi) \hat{\mathrm{\jmath}}+\frac{\partial}{\partial \mathrm{z}}(\varphi \Psi) \hat{\mathrm{k}}$

$$
\begin{aligned}
& =\left[\varphi \frac{\partial \Psi}{\partial x}+\Psi \frac{\partial \varphi}{\partial \mathrm{x}}\right] \hat{\imath}+\left[\varphi \frac{\partial \Psi}{\partial y}+\Psi \frac{\partial \varphi}{\partial y}\right] \hat{\jmath}+\left[\varphi \frac{\partial \Psi}{\partial z}+\varphi \frac{\partial \varphi}{\partial z}\right] \hat{\mathrm{k}} \\
& =\varphi\left(\frac{\partial \Psi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \Psi}{\partial y} \hat{\jmath}+\frac{\partial \Psi}{\partial z} \hat{\mathrm{k}}\right)+\Psi\left(\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}}\right)=\varphi \vec{\nabla} \Psi+\Psi \vec{\nabla} \varphi
\end{aligned}
$$

(iv) $\vec{\nabla}\left(\frac{\varphi}{\Psi}\right)=\frac{\Psi \vec{\nabla} \varphi-\varphi \vec{\nabla} \Psi}{\Psi^{2}}$

Proof: Let

$$
\vec{\nabla}\left(\frac{\varphi}{\Psi}\right)=\vec{\nabla}\left(\varphi \frac{1}{\Psi}\right)=\varphi \vec{\nabla}\left(\frac{1}{\Psi}\right)+\frac{1}{\Psi} \vec{\nabla} \varphi=\varphi\left(\frac{-1}{\Psi^{2}}\right) \vec{\nabla} \Psi+\frac{1}{\Psi} \vec{\nabla} \varphi=\frac{-\varphi \vec{\nabla} \Psi+\Psi \vec{\nabla} \varphi}{\Psi^{2}}=\frac{\varphi \vec{\nabla} \varphi-\varphi \vec{\nabla} \Psi}{\Psi^{2}}
$$

Laplacian Operator:

If $\vec{\nabla}=\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{l}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}$ Then $\quad \nabla^{2}=\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2}}{\partial \mathrm{z}^{2}} \quad$ is called Laplacian Operator.
$\therefore\left\{\nabla^{2}=\vec{\nabla} \cdot \vec{\nabla}=\left(\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{i}}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}\right) \cdot\left(\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}\right)=\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2}}{\partial \mathrm{z}^{2}}\right\}$

Laplacian Equation:

If $f(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is function then Laplacian Equation is written as $\quad \nabla^{2} \mathrm{f}=0 \quad$ or $\quad \frac{\partial^{2} \mathrm{f}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{f}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2} \mathrm{f}}{\partial \mathrm{z}^{2}}=0$.

Theorem: Prove that the gradient is a vector perpendicular to the level surface. $\varphi(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{c}$
Proof: Let $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\mathrm{\jmath}}+\mathrm{z} \hat{\mathrm{k}}$ be a position vector of any point P on the given surface. Then

$$
\mathrm{dr}=\boldsymbol{d} \mathrm{x} \hat{\mathrm{\imath}}+\mathrm{dy} \hat{\jmath}+\mathrm{dz} \hat{\mathrm{k}} \text { is a tangent vector to surface at point } \boldsymbol{P}(\mathrm{x}, \mathrm{y}, \mathrm{z}) .
$$

We have to prove $\quad \overrightarrow{\operatorname{Grad} \varphi} \perp \mathrm{d} \overrightarrow{\mathrm{r}}$
Now as

$$
\varphi(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{c}
$$

Then

$$
d \varphi=0
$$

By using calculus

$$
\begin{aligned}
& \text { lculus } \quad d \varphi=\frac{\partial \varphi}{\partial x} d x+\frac{\partial \varphi}{\partial y} d y+\frac{\partial \varphi}{\partial z} d z=0 \\
& \left(\frac{\partial \varphi}{\partial x} \hat{\imath}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial z} \hat{k}\right) \cdot(d x \hat{\imath}+d y \hat{\jmath}+d z \hat{k})=0
\end{aligned}
$$

$$
\vec{\nabla} \varphi \cdot d \vec{r}=0
$$

$$
\overrightarrow{\operatorname{Grad} \varphi} \cdot d \vec{r}=0
$$

This show that $\overrightarrow{\operatorname{Grad} \varphi} \perp \mathrm{d} \overrightarrow{\mathrm{r}}$
Hence, Show that the gradient is a vector perpendicular to level surface at point $P(\mathrm{x}, \mathrm{y}, \mathrm{z})$.
Theorem: Prove that the gradient of a scalar function $\varphi(x, y, z)=c$ is a directional derivative of φ perpendicular to the level surface at point P.

Proof: Let $P \& Q$ be the two neighboring points in a region of space.
Consider the level surfaces $\varphi(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{c} \quad \boldsymbol{\&} \quad \varphi(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{c}+\delta \mathrm{c}$ through $\boldsymbol{P} \& \boldsymbol{Q}$ respectively. Let the normal to the level surface through Pintersect the level surface through Q at point \boldsymbol{P}. Let $\widehat{\mathrm{s}}$ \& $\hat{\mathrm{r}}$ unit vectors along $\overrightarrow{\mathrm{PQ}} \& \overrightarrow{\mathrm{PR}}$.

We have to prove $\quad \frac{\mathrm{d} \varphi}{\mathrm{ds}}=\overrightarrow{\operatorname{Grad} \varphi} \cdot \hat{\mathrm{u}}$
Let $\quad \overrightarrow{\mathrm{PR}}=\delta \overrightarrow{\mathrm{r}} \quad \& \quad \overrightarrow{\mathrm{PQ}}=\delta \overrightarrow{\mathrm{s}} \quad$ then $\frac{\overrightarrow{\mathrm{PR}}}{\mathrm{PQ}}=\frac{\delta \mathrm{r}}{\delta \mathrm{s}}=\cos \theta$
Since $\quad \frac{\delta \varphi}{\delta s}=\frac{\delta \varphi}{\delta r} \cdot \frac{\delta r}{\delta s}=\frac{\delta \varphi}{\delta r} \cos \theta$
Applying limit when $P \rightarrow \mathrm{Q}$ then $\delta \mathrm{r} \rightarrow 0$

$$
\lim _{\delta r \rightarrow 0} \frac{\delta \varphi}{\delta s}=\lim _{\delta r \rightarrow 0} \frac{\delta \varphi}{\delta r} \cos \theta
$$

$$
\frac{\mathrm{d} \varphi}{\mathrm{ds}}=\frac{\mathrm{d} \varphi}{\mathrm{dr}} \cos \theta=\frac{\mathrm{d} \varphi}{\mathrm{dr}}|\hat{\mathrm{~s}}||\hat{\mathrm{r}}| \cos \theta=\frac{\mathrm{d} \varphi}{\mathrm{dr}}(\hat{\mathrm{~s}} . \hat{\mathrm{r}})=\hat{\mathrm{s}} . \hat{\mathrm{r}} \frac{\mathrm{~d} \varphi}{\mathrm{dr}}=\frac{\mathrm{d} \varphi}{\mathrm{ds}}=\overline{\operatorname{Grad} \varphi} \cdot \hat{\mathrm{s}}
$$

Here $\overrightarrow{\operatorname{Grad} \varphi}=\hat{\mathrm{r}} \frac{\mathrm{d} \varphi}{\mathrm{dr}}$. It is clear that $\overrightarrow{\operatorname{Grad} \varphi}$ lies in the directional of normal to the level surface
Type equation here.and measure the rate of change of φ in that direction.

$$
\begin{aligned}
& \frac{\mathrm{d} \varphi}{\mathrm{ds}}=\frac{\partial \varphi}{\partial \mathrm{x}} \frac{\mathrm{dx}}{\mathrm{ds}}+\frac{\partial \varphi}{\partial \mathrm{y}} \frac{\mathrm{dy}}{\mathrm{ds}}+\frac{\partial \varphi}{\partial \mathrm{z}} \frac{\mathrm{dz}}{\mathrm{ds}}=\left(\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}}\right) \cdot\left(\frac{\mathrm{dx}}{\mathrm{ds}} \hat{\imath}+\frac{\mathrm{dy}}{\mathrm{ds}} \hat{\jmath}+\frac{\mathrm{d} \mathrm{~d}}{\mathrm{ds}} \hat{\mathrm{k}}\right)=\vec{\nabla} \varphi \cdot \frac{\mathrm{dr}}{\mathrm{ds}} \\
& \text { Let } \frac{\mathrm{dr}}{\mathrm{ds}}=\hat{\mathrm{u}} \\
& \qquad \frac{\mathrm{~d} \varphi}{\mathrm{ds}}=\vec{\nabla} \varphi \cdot \hat{\mathrm{u}} \quad \Rightarrow \quad \frac{\mathrm{~d} \varphi}{\mathrm{ds}}=\overline{\operatorname{Grad} \varphi} \cdot \hat{\mathrm{u}}
\end{aligned}
$$

Hence proved that the gradient of a scalar function $\varphi(x, y, z)=c$ is a directional derivative of φ perpendicular to the level surface at point P.

Example\#01: If $\varphi=\mathrm{x}^{2} \mathrm{z}+\mathrm{e}^{\mathrm{y} / \mathrm{x}}$. Find $\vec{\nabla} \varphi \&|\vec{\nabla} \varphi|$ at $(1,0,-2)$.
Solution: Given function $\quad \varphi=\mathrm{x}^{2} \mathrm{z}+\mathrm{e}^{\mathrm{y} / \mathrm{x}}$
We know that $\vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}}=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{x}^{2} \mathrm{z}+\mathrm{e}^{\mathrm{y} / \mathrm{x}}\right) \hat{\imath} \hat{\mathrm{l}}+\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{x}^{2} \mathrm{z}+\mathrm{e}^{\mathrm{y} / \mathrm{x}}\right) \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{x}^{2} \mathrm{z}+\mathrm{e}^{\mathrm{y} / \mathrm{x}}\right) \hat{\mathrm{k}}$

$$
\vec{\nabla} \varphi=\left(2 x z+\mathrm{e}^{\mathrm{y} / \mathrm{x}} \cdot \frac{-\mathrm{y}}{\mathrm{x}^{2}}\right) \hat{\imath}+\left(\mathrm{e}^{\mathrm{y} / \mathrm{x}} \cdot \frac{1}{\mathrm{x}}\right) \hat{\jmath}+\left(\mathrm{x}^{2}\right) \hat{\mathrm{k}}
$$

$\boldsymbol{A t}(1,0,-2): \quad \vec{\nabla} \varphi=\left(2(1)(-2)+\mathrm{e}^{0 / 1} \cdot \frac{-0}{12}\right) \hat{\imath}+\left(\mathrm{e}^{0 / 1} \cdot \frac{1}{1}\right) \hat{\jmath}+\left(1^{2}\right) \hat{\mathrm{k}}=-4 \hat{\imath}+\hat{\jmath}+\hat{\mathrm{k}}$
Now $\quad|\vec{\nabla} \varphi|=\sqrt{(-4)^{2}+(1)^{2}+(1)^{2}}=\sqrt{16+1+1}=\sqrt{18}=3 \sqrt{2}$
Example\#02: Prove that $\vec{\nabla} \varphi(\mathrm{r})=\frac{\varphi^{\prime}(\mathrm{r}) \overrightarrow{\mathrm{r}}}{\mathrm{r}}$ use above result to evaluate the following.
(i) $\vec{\nabla} \mathrm{r}^{\mathrm{n}}$
(ii) $\vec{\nabla} \ln r$
(iii) $\nabla^{2}\left(\frac{1}{\mathrm{r}}\right)$

Solution: Let $\hat{\mathrm{r}}=\mathrm{x} \hat{\mathrm{i}}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}$ then $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}----(i)$

$$
\left.\begin{array}{c}
\vec{\nabla} \varphi(\mathrm{r})=\frac{\partial \varphi(\mathrm{r})}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \varphi(\mathrm{r})}{\partial y} \hat{\jmath}+\frac{\partial \varphi(\mathrm{r})}{\partial \mathrm{z}} \hat{\mathrm{k}}=\left[\varphi^{\prime}(\mathrm{r}) \frac{\partial \mathrm{r}}{\partial \mathrm{x}}\right] \hat{\imath}+\left[\varphi^{\prime}(\mathrm{r}) \frac{\partial \mathrm{r}}{\partial \mathrm{y}}\right] \hat{\jmath}+\left[\varphi^{\prime}(\mathrm{r}) \frac{\partial \mathrm{r}}{\partial \mathrm{z}}\right] \hat{\mathrm{k}} \\
=\left[\varphi^{\prime}(\mathrm{r}) \frac{\mathrm{x}}{\mathrm{r}}\right] \hat{\imath}+\left[\varphi^{\prime}(\mathrm{r}) \frac{\mathrm{y}}{\mathrm{r}}\right] \hat{\jmath}+\left[\varphi^{\prime}(\mathrm{r}) \frac{\mathrm{z}}{\mathrm{r}}\right] \hat{\mathrm{k}}: \therefore\left\{2 \mathrm{r} \frac{\partial \mathrm{r}}{\partial \mathrm{x}}=2 \mathrm{From(i)} \Rightarrow \frac{\partial \mathrm{r}}{\partial \mathrm{x}}=\frac{\mathrm{x}}{\mathrm{r}} \text { Similarly } \frac{\partial \mathrm{r}}{\partial \mathrm{y}}=\frac{\mathrm{y}}{\mathrm{r}}, \frac{\partial \mathrm{r}}{\partial \mathrm{z}}=\frac{\mathrm{z}}{\mathrm{r}}\right\}
\end{array}\right\} \begin{gathered}
\mathrm{r} \frac{\varphi^{\prime}(\mathrm{r})[\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}]}{\mathrm{r}}
\end{gathered}
$$

$$
\vec{\nabla} \varphi(\mathrm{r})=\frac{\varphi^{\prime}(\mathrm{r}) \overrightarrow{\mathrm{r}}}{\mathrm{r}} \quad \text { Hence proved. }
$$

(i) $\overrightarrow{\boldsymbol{\nabla}} \mathbf{r}^{\mathrm{n}}$

Solution: Let $\varphi(\mathrm{r})=\mathrm{r}^{\mathrm{n}} \quad$ then $\quad \varphi^{\prime}(\mathrm{r})=\mathrm{nr}^{\mathrm{n}-1}$
Using given equation.

$$
\vec{\nabla} \varphi(\mathrm{r})=\frac{\varphi^{\prime}(\mathrm{r}) \overrightarrow{\mathrm{r}}}{\mathrm{r}}=\frac{\left(\mathrm{nr}^{\mathrm{n}-1}\right) \overrightarrow{\mathrm{r}}}{\mathrm{r}} \Rightarrow \vec{\nabla} \mathrm{r}^{\mathrm{n}}=\mathrm{nr}^{\mathrm{n}-2} \overrightarrow{\mathrm{r}}
$$

(ii) $\vec{\nabla} \ln r$

Solution: Let $\varphi(\mathrm{r})=\ln \mathrm{r} \quad$ then $\quad \varphi^{\prime}(\mathrm{r})=\frac{1}{\mathrm{r}}$

Using given equation.

$$
\vec{\nabla} \varphi(\mathrm{r})=\frac{\varphi^{\prime}(\mathrm{r}) \overrightarrow{\mathrm{r}}}{\mathrm{r}}=\frac{\left(\frac{1}{\mathrm{r}}\right) \overrightarrow{\mathrm{r}}}{\mathrm{r}} \Rightarrow \vec{\nabla} \ln \mathrm{r}=\frac{1}{\mathrm{r}^{2}} \overrightarrow{\mathrm{r}}
$$

(iii) $\nabla^{2}\left(\frac{1}{\mathrm{r}}\right)$

Solution: Let $\quad \varphi(\mathrm{r})=\frac{1}{\mathrm{r}}=\mathrm{r}^{-1} \quad$ then $\quad \varphi^{\prime}(\mathrm{r})=(-1) \mathrm{r}^{-1-1} \neq-\mathrm{r}^{-2}$

Using given equation

$$
\vec{\nabla} \varphi(\mathrm{r})=\frac{\varphi^{\prime}(\mathrm{r}) \overrightarrow{\mathrm{r}}}{\mathrm{r}}=\frac{\left(-\mathrm{r}^{-2}\right) \overrightarrow{\mathrm{r}}}{\mathrm{r}} \Rightarrow \vec{\nabla}\left(\frac{1}{\mathrm{r}}\right)=-\mathrm{r}^{-3} \overrightarrow{\mathrm{r}}=-\mathrm{r}^{-3}(\mathrm{X} \hat{\imath}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}})=-\mathrm{r}^{-3} \mathrm{x} \hat{\imath}-\mathrm{r}^{-3} y \hat{\jmath}-r^{-3} \mathrm{z} \hat{\mathrm{k}}
$$

Now

$$
\begin{aligned}
\nabla^{2}\left(\frac{1}{r}\right) & =\vec{\nabla} \cdot \vec{\nabla}\left(\frac{1}{r}\right)=\left(\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}\right) \cdot\left(-r-3 x \hat{\imath}-r^{-3} y \hat{\jmath}-r^{-3} z \hat{k}\right) \\
& =\frac{\partial}{\partial x}\left(-r^{-3} x\right)+\frac{\partial}{\partial y}\left(-r^{-3} y\right)+\frac{\partial}{\partial z}\left(-r^{-3} z\right)=-\left[\frac{\partial}{\partial x}\left(r^{-3} x\right)+\frac{\partial}{\partial y}\left(r^{-3} y\right)+\frac{\partial}{\partial z}\left(r^{-3} z\right)\right] \\
& =-\left[\left(-3 r^{-4} \frac{\partial r}{\partial x} \cdot x+r^{-3} 1\right)+\left(-3 r^{-4} \frac{\partial r}{\partial y} \cdot y+r^{-3} \cdot 1\right)+\left(-3 r^{-4} \frac{\partial r}{\partial z} \cdot z+r^{-3} \cdot 1\right)\right] \\
& =-\left[-3 r^{-4} \frac{\partial r}{\partial x} \cdot x^{-}+r^{-3}-3 r^{-4} \frac{\partial r}{\partial y} \cdot y+r^{-3}+-3 r^{-4} \frac{\partial r}{\partial z} \cdot z+r^{-3}\right] \\
& =-\left[-3 r^{-4}\left\{\frac{\partial r}{\partial x} \cdot x+\frac{\partial r}{\partial y} \cdot y+\frac{\partial r}{\partial z} \cdot z\right\}+3 r^{-3}\right] \\
& =-\left[-3 r^{-4}\left\{\left(\frac{x}{r}\right) \cdot x+\left(\frac{y}{r}\right) \cdot y+\left(\frac{z}{r}\right) \cdot z\right\}+3 r^{-3}\right]\left\{2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r} \text { Similarly } \frac{\partial r}{\partial y}=\frac{y}{r}, \frac{\partial r}{\partial z}=\frac{z}{r}\right\} \\
& =-\left[-3 r^{-4}\left\{\frac{x^{2}}{r}+\frac{y^{2}}{r}+\frac{z^{2}}{r}\right\}+3 r^{-3}\right]=-\left[-3 r^{-4}\left\{\frac{x^{2}+y^{2}+z^{2}}{r}\right\}+3 r^{-3}\right] \\
& =-\left[-3 r^{-4}\left\{\frac{r^{2}}{r}\right\}+3 r^{-3}\right]=-\left[-3 r^{-4} \cdot r+3 r^{-3}\right]=-\left[-3 r^{-3}+3 r^{-3}\right]=-[0] \\
& \nabla^{2}\left(\frac{1}{r}\right)=0
\end{aligned}
$$

Example\#03:If φ is a function of \boldsymbol{u} and \boldsymbol{u} is a function of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ then show that $\vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{u}} \vec{\nabla} \mathrm{u}$
Solution: We know that $\vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{i}}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\mathrm{j}}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}}$
By using chain rule of differentiation

$$
\frac{\partial \varphi}{\partial x}=\frac{\partial \varphi}{\partial u} \cdot \frac{\partial u}{\partial x} \quad ; \quad \frac{\partial \varphi}{\partial y}=\frac{\partial \varphi}{\partial u} \cdot \frac{\partial u}{\partial y} \quad \& \quad \frac{\partial \varphi}{\partial z}=\frac{\partial \varphi}{\partial u} \cdot \frac{\partial u}{\partial z}
$$

Then $\quad \vec{\nabla} \varphi=\left(\frac{\partial \varphi}{\partial u} \cdot \frac{\partial u}{\partial x}\right) \hat{\imath}+\left(\frac{\partial \varphi}{\partial u} \cdot \frac{\partial u}{\partial y}\right) \hat{\jmath}+\left(\frac{\partial \varphi}{\partial u} \cdot \frac{\partial u}{\partial z}\right) \hat{k}=\frac{\partial \varphi}{\partial u}\left(\frac{\partial u}{\partial x} \hat{\imath}+\frac{\partial u}{\partial y} \hat{\jmath}+\frac{\partial u}{\partial z} \hat{k}\right)$

$$
\vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{u}} \vec{\nabla} \mathrm{u} \quad \text { Hence proved. }
$$

Example\#04: Find the scalar function φ such that (i) $\vec{\nabla} \varphi=\mathrm{x} \hat{\mathrm{\imath}}+2 \mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}} \quad$ (ii) $\vec{\nabla} \varphi=2 \mathrm{r}^{4} \overrightarrow{\mathrm{r}}$
(i) $\vec{\nabla} \varphi=x \hat{\imath}+2 y \hat{\jmath}+z \hat{k}$

Solution: We know that $\quad \vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}} \quad$ then $\quad\left(\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}}=\mathrm{x} \hat{\imath}+2 \mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}\right.$ Comparing coefficients of $\hat{\mathrm{i}}, \hat{\jmath} \& \hat{\mathrm{k}}$

$$
\begin{array}{ll}
\frac{\partial \varphi}{\partial \mathrm{x}}=\mathrm{x} & \Rightarrow \varphi=\int \mathrm{x} \partial \mathrm{x} \Rightarrow \varphi_{1}=\frac{\mathrm{x}^{2}}{2}+c_{1}(\mathrm{y}, \mathrm{z}) \\
\frac{\partial \varphi}{\partial \mathrm{y}}=2 \mathrm{y} & \Rightarrow \varphi=2 \int \mathrm{y} \partial \mathrm{x} \Rightarrow \varphi_{2}=\mathrm{y}^{2}+c_{2}(\mathrm{x}, \mathrm{z})- \\
\frac{\partial \varphi}{\partial \mathrm{z}}=\mathrm{z} & \Rightarrow \varphi=\int \mathrm{z} \partial \mathrm{x} \Rightarrow \varphi_{3}=\frac{\mathrm{z}^{2}}{2}+c_{3}(\mathrm{x}, \mathrm{z})- \tag{iii}
\end{array}
$$

Adding (i),(ii) \& (iii) :

$$
\varphi_{1}+\varphi_{2}+\varphi_{3}=\frac{x^{2}}{2}+y^{2}+\frac{z^{2}}{2}+c_{1}(y, z)+c_{2}(x, z)+c_{3}(x, z)
$$

Hence

$$
\varphi=\left[\frac{\mathrm{x}^{2}}{2}+\mathrm{y}^{2}+\frac{\mathrm{z}^{2}}{2}\right]+\mathrm{c}
$$

(ii) $\vec{\nabla} \varphi=2 \mathbf{r}^{4} \overrightarrow{\mathbf{r}}$

Solution: Let $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\mathrm{\imath}}+\mathrm{y} \hat{\mathrm{j}}+\mathrm{z} \hat{\mathrm{k}}$ then $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-\ldots-(i)$
We know that $\quad \vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{1}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}} \quad$ then
$\frac{\partial \varphi}{\partial x} \hat{\imath}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial z} \hat{k}=2 r^{4} \vec{r}=2 r^{4}(x \hat{\imath}+y \hat{\jmath}+z \hat{k})$
$\frac{\partial \varphi}{\partial x} \hat{\imath}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial z} \hat{k}=\left(x^{2}+y^{2}+z^{2}\right)^{2} \cdot 2 x \hat{\imath}+\left(x^{2}+y^{2}+z^{2}\right)^{2} \cdot 2 y \hat{\jmath}+\left(x^{2}+y^{2}+z^{2}\right)^{2} \cdot 2 z \hat{k}$

Comparing coefficients of $\hat{1}, \hat{\jmath} \& \hat{\mathrm{k}}$

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial \mathrm{x}}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{2} \cdot 2 \mathrm{x} \Rightarrow \varphi=\int\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{2} \cdot 2 \mathrm{x} \partial \mathrm{x} \Rightarrow \varphi=\frac{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{3}}{3}+\mathrm{c}_{1}(\mathrm{y}, \mathrm{z})-\cdots--(i) \\
& \frac{\partial \varphi}{\partial \mathrm{y}}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{2} \cdot 2 \mathrm{y} \Rightarrow \varphi=\int\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{2} \cdot 2 \mathrm{y} \partial \mathrm{x} \Rightarrow \varphi=\frac{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{3}}{3}+\mathrm{c}_{2}(\mathrm{x}, \mathrm{z})----(i i) \\
& \frac{\partial \varphi}{\partial \mathrm{z}}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{2} \cdot 2 \mathrm{z} \Rightarrow \varphi=\int\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{2} \cdot 2 \mathrm{z} \partial \mathrm{x} \Rightarrow \varphi=\frac{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{3}}{3}+c_{3}(\mathrm{x}, \mathrm{y})-\cdots-(i i i) \\
& \text { From (i),(ii) \& (iii) } \quad \Rightarrow \varphi=\frac{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{3}}{3}+c
\end{aligned}
$$

Example\#05: If $\varphi=\mathrm{r}^{2} \mathrm{e}^{-\mathrm{r}}$. Then show that $\vec{\nabla} \varphi=(2-\mathrm{r}) \mathrm{e}^{-\mathrm{r}} \overrightarrow{\mathrm{r}}$.
Solution: Let $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\mathrm{\imath}}+\mathrm{y} \hat{\mathrm{j}}+\mathrm{z} \hat{\mathrm{k}}$ then $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \cdots--(i)$

$$
\begin{aligned}
& \text { We know that } \quad \vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}} \\
& \vec{\nabla} \varphi=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{r}^{2} \mathrm{e}^{-\mathrm{r}}\right) \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{r}^{2} \mathrm{e}^{-\mathrm{r}}\right) \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{r}^{2} \mathrm{e}^{-\mathrm{r}}\right) \hat{\mathrm{k}} \\
& \vec{\nabla} \varphi=\left[2 \mathrm{r} \frac{\partial \mathrm{r}}{\partial \mathrm{x}} \mathrm{e}^{-\mathrm{r}}+\mathrm{r}^{2}\left(-\mathrm{e}^{-\mathrm{r}}\right) \frac{\partial \mathrm{r}}{\partial \mathrm{x}}\right] \hat{\mathrm{l}}+\left[2 \mathrm{r} \frac{\partial \mathrm{r}}{\partial \mathrm{y}} \mathrm{e}^{-\mathrm{r}}+\mathrm{r}^{2}\left(-\mathrm{e}^{-\mathrm{r}}\right) \frac{\partial \mathrm{r}}{\partial \mathrm{y}}\right] \hat{\jmath}+\left[2 \mathrm{r} \frac{\partial \mathrm{r}}{\partial \mathrm{z}} \mathrm{e}^{-\mathrm{r}}+\mathrm{r}^{2}\left(-\mathrm{e}^{-\mathrm{r}}\right) \frac{\partial \mathrm{r}}{\partial \mathrm{z}}\right] \hat{\mathrm{k}} \\
& \vec{\nabla} \varphi=[2-\mathrm{r}] \mathrm{re}^{-\mathrm{r}} \frac{\partial \mathrm{r}}{\partial \mathrm{x}} \hat{\imath}+[2-\mathrm{r}] \mathrm{re}^{-\mathrm{r}} \frac{\partial \mathrm{r}}{\partial \mathrm{y}} \hat{\jmath}+[2-\mathrm{r}] \mathrm{re}^{-\mathrm{r}} \frac{\partial \mathrm{r}}{\partial \mathrm{z}} \hat{\mathrm{k}} \\
& \vec{\nabla} \varphi=(2-r) r e^{-r}\left[\frac{\partial r}{\partial x} \hat{\imath}+\frac{\partial r}{\partial y} \hat{\jmath}+\frac{\partial r}{\partial z} \hat{k}\right] \quad \therefore\left\{\begin{array}{c}
\text { From(i) Differentiate w.r.t } x \\
2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r} \text { Similarly } \frac{\partial r}{\partial y}=\frac{y}{r}, \frac{\partial r}{\partial z}=\frac{z}{r}
\end{array}\right\} \\
& \vec{\nabla} \varphi=(2-r) \mathrm{re}^{-\mathrm{r}}\left[\frac{\mathrm{x}}{\mathrm{x}} \hat{\mathrm{r}}+\frac{\mathrm{y}}{\mathrm{r}} \hat{\mathrm{~J}}+\frac{\mathrm{z}}{\mathrm{z}} \hat{\mathrm{k}}\right] \\
& \vec{\nabla} \varphi=(2-r) e^{-r}\left[x_{\bullet} \hat{\imath}+(y \hat{\jmath}+z \hat{k}]\right. \\
& \vec{\nabla} \varphi=(2-r) e^{-r} \vec{r}
\end{aligned}
$$

Hence proved.

Example \#06: If $\vec{\nabla} \varphi=\frac{\vec{r}}{\mathrm{r}^{5}} \quad$ Then show that $\varphi(\mathrm{r})=\frac{1}{3}\left(1-\frac{1}{\mathrm{r}^{5}}\right) \quad$ at $\varphi(1)=0$.
Solution: Let $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}$ then $\mathrm{r}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{1 / 2} \ldots--(i)$
We know that $\quad \vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}} \quad$ then

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial x} \hat{\imath}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial z} \hat{\mathrm{k}}=\frac{\overrightarrow{\mathrm{r}}}{\mathrm{r}^{5}}=\mathrm{r}^{-5} \overrightarrow{\mathrm{r}} \Rightarrow \frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial z} \hat{\mathrm{k}}=r^{-5}(x \hat{\imath}+y \hat{\jmath}+z \hat{\mathrm{k}}) \\
& \frac{\partial \varphi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial z} \hat{\mathrm{k}}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-5 / 2} \cdot x \hat{\imath}+\left(x^{2}+y^{2}+z^{2}\right)^{-5 / 2} \cdot y \hat{\jmath}+\left(x^{2}+y^{2}+z^{2}\right)^{-5 / 2} \cdot z \hat{\mathrm{k}}
\end{aligned}
$$

Comparing coefficients of $\hat{\mathrm{\imath}}, \mathrm{\jmath} \& \hat{\mathrm{k}}$

$$
\begin{align*}
& \frac{\partial \varphi}{\partial \mathrm{x}}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-5 / 2} \cdot \mathrm{x} \Rightarrow \varphi=\frac{1}{2} \int\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-5 / 2} \cdot 2 \mathrm{x} \partial \mathrm{x} \Rightarrow \varphi=\frac{1}{2} \frac{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-3 / 2}}{-3 / 2}+\mathrm{c}_{1}(\mathrm{y}, \mathrm{z})-----(i) \\
& \frac{\partial \varphi}{\partial \mathrm{y}}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-5 / 2} \cdot \mathrm{y} \Rightarrow \varphi=\frac{1}{2} \int\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-5 / 2} \cdot 2 \mathrm{y} \partial \mathrm{x} \Rightarrow \varphi=\frac{1}{2} \frac{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-3 / 2}}{-3 / 2}+c_{2}(\mathrm{x}, \mathrm{z})----(i i) \tag{ii}\\
& \frac{\partial \varphi}{\partial \mathrm{z}}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-5 / 2} \cdot \mathrm{z} \Rightarrow \varphi=\frac{1}{2} \int\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-5 / 2} \cdot 2 \mathrm{z} \partial \mathrm{x} \Rightarrow \varphi=\frac{1}{2} \frac{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-3 / 2}}{-3 / 2}+c_{3}(\mathrm{x}, \mathrm{y})-\cdots---(i i i \tag{iii}
\end{align*}
$$

From (i), (ii) \& (iii): $\varphi=\frac{1}{2} \frac{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-3 / 2}}{-3 / 2} \Rightarrow \varphi=-\frac{1}{3}\left\{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{1 / 2}\right\}^{-3}+\mathrm{c} \Rightarrow \varphi=\frac{1}{3} \mathrm{r}^{-3}+\mathrm{c}$

$$
\text { Hence } \varphi(r)=-\frac{1}{3 r^{3}}+\text { c }--------(a)
$$

At $\varphi(1)=0 \Rightarrow-\frac{1}{3(1)^{3}}+\mathrm{c}=0 \Rightarrow-\frac{1}{3}+\mathrm{c}=0 \Rightarrow \mathrm{c}=\frac{1}{3}$
Hence equation (a) will become

$$
\begin{array}{r}
\varphi(\mathrm{r})=-\frac{1}{3 \mathrm{r}^{3}}+\frac{1}{3} \\
\Rightarrow \varphi(\mathrm{r})=\frac{1}{3}\left(1-\frac{1}{\mathrm{r}^{5}}\right)
\end{array}
$$

Hence proved.

Example\# 07: Show that $\vec{\nabla} \mathrm{r}^{\mathrm{n}+2}=(\boldsymbol{n}+2) \mathrm{r}^{\mathrm{n}} \overrightarrow{\mathrm{r}}$.
Solution: Let $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\mathrm{i}}+\mathrm{y} \hat{\mathrm{I}}+\mathrm{z} \hat{\mathrm{k}}$ then $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-----(\boldsymbol{i})$
Now

$$
\begin{aligned}
& \vec{\nabla} r^{n+2}=\frac{\partial}{\partial x} r^{n+2} \hat{\imath}+\frac{\partial}{\partial y} r^{n+2} \hat{\jmath}+\frac{\partial}{\partial z} r^{n+2} \hat{k} \\
& \vec{\nabla} r^{n+2}=\left[(n+2) r^{n+2-1} \frac{\partial r}{\partial x}\right] \hat{\imath}+\left[(n+2) r^{n+2-1} \frac{\partial r}{\partial y}\right] \hat{\jmath}+\left[(n+2) r^{n+2-1} \frac{\partial r}{\partial y}\right] \hat{k} \\
& \vec{\nabla} r^{n+2}=\left[(n+2) r^{n+1} \frac{\partial r}{\partial x}\right] \hat{\imath}+\left[(n+2) r^{n+1} \frac{\partial r}{\partial y}\right] \hat{\jmath}+\left[(n+2) r^{n+1} \frac{\partial r}{\partial y}\right] \hat{k} \\
& \vec{\nabla} r^{n+2}=(n+2) r^{n+1}\left[\frac{\partial r}{\partial x} \hat{\imath}+\frac{\partial r}{\partial y} \hat{\jmath}+\frac{\partial r}{\partial z} \hat{k}\right] \quad \therefore\left\{2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\text { From(i) Differentiate w.r.t } x}{\partial \mathrm{x}}=\frac{x}{r} \text { Similarly } \frac{\partial r}{\partial y}=\frac{y}{r} \frac{\partial r}{\partial z}=\frac{z}{r}\right\} \\
& \vec{\nabla} r^{n+2}=(n+2) r^{n+1}\left[\frac{x}{r} \hat{\imath}+\frac{y}{r} \hat{\jmath}+\frac{z}{r} \hat{k}\right] \\
& \vec{\nabla} r^{n+2}=(n+2) r^{n+1-1}[x \hat{\imath}+y \hat{\jmath}+z \hat{k}] \\
& \vec{\nabla} r^{n+2}=(n+2) r^{n} \vec{r} \quad \text { Hence proved. }
\end{aligned}
$$

Example\#08: Find a unit vector perpendicular to the surface $\varphi=\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{z}$ at $(1,2,3)$.
Solution: Given function $\varphi=x^{2}+y^{2}-\mathrm{z}$
We know that $\vec{\nabla} \varphi$ is perpendicular to the given surface. Therefore

$$
\begin{aligned}
\vec{\nabla} \varphi & =\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}} \\
& =\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{z}\right) \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{z}\right) \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{z}\right) \hat{\mathrm{k}} \\
\vec{\nabla} \varphi & =2 \mathrm{x} \hat{\mathrm{\imath}}+2 \mathrm{y} \hat{\jmath}-\hat{\mathrm{k}}
\end{aligned}
$$

At $\quad(1,2,3)$:

$$
\vec{\nabla} \varphi=2(1) \hat{\imath}+2(2) \hat{\jmath}-3 \hat{k}=2 \hat{\imath}+4 \hat{\jmath}-\hat{k}
$$

Now
Unit vector of $\vec{\nabla} \varphi=\frac{\vec{\nabla} \varphi}{|\vec{\nabla} \varphi|}=\frac{2 \hat{\imath}+4 \hat{\jmath}-\hat{k}}{\sqrt{2^{2}+4^{2}+(-1)^{2}}}=\frac{2 \hat{\imath}+4 \hat{\jmath}-\hat{k}}{\sqrt{4+16+1}}=\frac{2 \hat{1}+4 \hat{\jmath}-\hat{k}}{\sqrt{21}}$
Example\#09:Find the directional derivative of $\varphi=4 x^{3}-3 x^{2} y^{2}$ at $(2,-1,2)$ in the direction of $2 \hat{\imath}-3 \hat{\jmath}+6 \hat{k}$.

Solution: Given $\varphi=4 x^{3}-3 x^{2} y^{2}$
Then
$\overrightarrow{\operatorname{grad}} \varphi=\vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{i}}+\frac{\partial \varphi}{\partial y} \hat{\jmath} \hat{+}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}}=\frac{\partial}{\partial \mathrm{x}}\left(4 \mathrm{xz}^{3}-3 \mathrm{x}^{2} \mathrm{y}^{2}\right) \hat{\imath}+\frac{\partial}{\partial \mathrm{y}}\left(4 \mathrm{xz}^{3}-3 \mathrm{x}^{2} \mathrm{y}^{2}\right) \hat{\jmath}+\frac{\partial}{\partial z}\left(4 \mathrm{xz}^{3}-3 \mathrm{x}^{2} \mathrm{y}^{2}\right) \hat{\mathrm{k}}$ $\overrightarrow{\operatorname{grad}} \varphi=\left(4 z^{3}-6 x y^{2}\right) \hat{\imath}+\left(-6 x^{2} y\right) \hat{\jmath}+\left(12 x z^{2}\right) \hat{k}$

At $\quad \boldsymbol{P}(2,-1,2)$:

$$
\begin{aligned}
& \overrightarrow{\operatorname{grad} \varphi}=\left[4(2)^{3}-6(2)(-1)^{2}\right] \hat{\imath}+\left[-6(2)^{2}(-1)\right] \hat{\jmath}+\left[12(2)(2)^{2}\right] \hat{k} \\
& \overrightarrow{\operatorname{grad}} \varphi=[32-12] \hat{\imath}+[24] \hat{\jmath}+[96] \hat{k} \\
& \overrightarrow{\operatorname{grad}} \varphi=20 \hat{\imath}+24 \hat{\jmath}+96 \hat{k}
\end{aligned}
$$

Let $\overrightarrow{\mathrm{u}}=2 \hat{\imath}-3 \hat{\jmath}+6 \hat{\mathrm{k}}$ Then $\quad \hat{\mathrm{u}}=\frac{\overrightarrow{\mathrm{u}}}{|\overrightarrow{\mathrm{u}}|}=\frac{2 \hat{\imath}-3 \hat{\jmath}+6 \hat{\mathrm{k}}}{\sqrt{(2)^{2}+(-3)^{2}+(6)^{2}}}=\frac{2 \hat{1}-3 \hat{\jmath}+6 \hat{\mathrm{k}}}{\sqrt{4+9+36}}=\frac{2 \hat{\imath}-3 \hat{\jmath}+6 \hat{\mathrm{k}}}{\sqrt{49}}=\frac{2 \hat{1}-3 \hat{\jmath}+6 \hat{\mathrm{k}}}{7}$
Thus
Directional derivative of φ at Point Pin the of $\overrightarrow{\mathrm{u}}=\overrightarrow{\operatorname{grad}} \varphi \cdot \hat{u}=(20 \hat{\imath}+24 \hat{\jmath}+96 \hat{\mathrm{k}}) \cdot \frac{(2 \hat{1}-3 \hat{\jmath}+6 \hat{\mathrm{k}})}{7}$

$$
\begin{aligned}
& =\frac{40-72+576}{7} \\
& =\frac{544}{7}
\end{aligned}
$$

Example \#10: Find the Laplacian equation if \boldsymbol{f} if $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}^{2} \mathrm{yz}+\mathrm{xy}^{2} \mathrm{z}+\mathrm{xyz}^{2}$
Solution: Given function $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}^{2} \mathrm{yz}+\mathrm{xy}^{2} \mathrm{z}+\mathrm{xyz}^{2}$
We know that Laplacian Equation is $\quad \nabla^{2} \mathrm{f}=0 \quad$ or $\quad \frac{\partial^{2} \mathrm{f}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{f}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2} \mathrm{f}}{\partial \mathrm{z}^{2}}=0$

$$
\begin{gathered}
\frac{\partial^{2}}{\partial x^{2}}\left(x^{2} y z+x y^{2} z+x y z^{2}\right)+\frac{\partial^{2}}{\partial y^{2}}\left(x^{2} y z+x y^{2} z+x y z^{2}\right)+\frac{\partial^{2}}{\partial z^{2}}\left(x^{2} y z+x y^{2} z+x y z^{2}\right)=0 \\
\frac{\partial}{\partial x}\left[\frac{\partial}{\partial x}\left(x^{2} y z+x y^{2} z+x y z^{2}\right)\right]+\frac{\partial}{\partial y}\left[\frac{\partial}{\partial y}\left(x^{2} y z+x y^{2} z+x y z^{2}\right)\right]+\frac{\partial}{\partial x}\left[\frac{\partial}{\partial x}\left(x^{2} y z+x y^{2} z+x y z^{2}\right)\right]=0 \\
\frac{\partial}{\partial x}\left[2 x y z+y^{2} z+y z^{2}\right]+\frac{\partial}{\partial y}\left[x^{2} z+2 x y z+x z^{2}\right]+\frac{\partial}{\partial x}\left[x^{2} y+x y^{2}+2 x y z\right]=0 \\
2 y z+2 x z+2 x y=0 \quad \text { or } \quad y z+x z+x y=0
\end{gathered}
$$

This is required equation .

Exercise\# 4.1

Q\#01: Find $\vec{\nabla} \varphi$
(i) $\varphi=\sin x \cosh y$
(ii) $\quad \varphi=\mathrm{yz}+\mathrm{zx}+\mathrm{xy}+\mathrm{xyz}$
(iii) $\varphi=\mathrm{e}^{\mathrm{xyz}}$ at $(1,0,1)$
(iv) $\varphi=\tan \left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right) \boldsymbol{a t}(\mathbf{1 , 1 , 1})$
(i) $\varphi=\sin \mathrm{x} \cosh \mathrm{y}$

Solution: Given function $\quad \varphi=\sin \mathrm{x} \cosh \mathrm{y}$
We know that $\vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}}=\frac{\partial}{\partial \mathrm{x}}(\sin \mathrm{x} \cosh \mathrm{y}) \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}}(\sin \mathrm{x} \cosh \mathrm{y}) \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}}(\sin \mathrm{x} \cosh \mathrm{y}) \hat{\mathrm{k}}$

$$
\vec{\nabla} \varphi=\sin x \cosh y \hat{\imath}+\sin x \cosh y \hat{\jmath}+\sin x \cosh y \hat{k}
$$

(ii) $\varphi=\mathrm{yz}+\mathrm{zx}+\mathrm{xy}+\mathrm{xyz}$

Solution : Given function $\quad \varphi=\mathrm{yz}+\mathrm{zx}+\mathrm{xy}+\mathrm{xyz}$
We know that

$$
\begin{aligned}
\vec{\nabla} \varphi & =\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{i}}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial z} \hat{\mathrm{k}} \boldsymbol{x} \\
& =\frac{\partial}{\partial \mathrm{x}}(\mathrm{yz}+\mathrm{zx}+x y+x y z) \hat{\imath}+\frac{\partial}{\partial y}(y \mathrm{z}+z \mathrm{zx}+x y+x y z) \hat{\jmath}+\frac{\partial}{\partial z}(y z+z x+x y+x y z) \hat{k} \\
\vec{\nabla} \varphi & =(z+y+y z) \hat{\imath}+(z+x+\hat{x z}) \hat{\jmath}+(y+x+x y) \hat{k}
\end{aligned}
$$

(iii) $\varphi=\mathrm{e}^{\mathrm{xyz}}$ at $(1,0,1)$

Solution : Given function

$$
\varphi=e^{x y z}
$$

We know that 。

$$
\begin{aligned}
& \vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}}=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{e}^{\mathrm{xyz}}\right) \hat{\imath}+\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{e}^{\mathrm{xyz}}\right) \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{e}^{\mathrm{xyz}}\right) \hat{\mathrm{k}} \\
& \vec{\nabla} \varphi=\mathrm{yz}^{\mathrm{xyz}} \hat{\imath}+\mathrm{zxe}^{\mathrm{xyz}} \hat{\jmath}+\mathrm{xye}^{\mathrm{xyz}} \hat{\mathrm{k}} \\
& \vec{\nabla} \varphi=\mathrm{e}^{\mathrm{xyz}}[\mathrm{yz} \hat{\imath}+\mathrm{xz} \hat{\jmath}+\mathrm{xy} \hat{\mathrm{k}}]
\end{aligned}
$$

At $(1,0,1)$:

$$
\vec{\nabla} \varphi=\mathrm{e}^{0}[(0)(1) \hat{\imath}+(1)(1) \hat{\jmath}+(1)(0) \hat{\mathrm{k}}]=0 \hat{\imath}+1 \hat{\jmath}+0 \hat{\mathrm{k}}
$$

(iv) $\varphi=\tan \left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)$ at $(1,1,1)$

Solution: Given function $\quad \varphi=\tan \left(x^{2}+y^{2}+z^{2}\right)$
We know that $\quad \vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial z} \hat{\mathrm{k}} \boldsymbol{x}$

$$
\begin{aligned}
& \vec{\nabla} \varphi=\frac{\partial}{\partial \mathrm{x}} \tan \left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right) \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}} \tan \left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right) \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \tan \left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right) \hat{\mathrm{k}} \\
& \vec{\nabla} \varphi=2 \mathrm{x} \sec ^{2}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right) \hat{\imath}+2 \mathrm{y} \sec ^{2}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right) \hat{\jmath}+2 \mathrm{zsec}^{2}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right) \hat{\mathrm{k}} \\
& \vec{\nabla} \varphi=2 \sec ^{2}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)[\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}]
\end{aligned}
$$

$\boldsymbol{A} \boldsymbol{t}(1,1,1): \quad \vec{\nabla} \varphi=2 \sec ^{2}\left(1^{2}+1^{2}+1^{2}\right)[1 \hat{\imath}+1 \hat{\jmath}+1 \hat{\mathrm{k}}]=2 \sec ^{2}(3)[1 \hat{\imath}+1 \hat{\jmath}+1 \hat{\mathrm{k}}]$

Q\#02: Find $\vec{\nabla} \varphi$. Where $\varphi=\left(x^{2}+y^{2}+z^{2}\right) e^{-\sqrt{x^{2}+y^{2}+z^{2}}}$

Solution: Given function $\quad \varphi=\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right) \mathrm{e}^{-\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}}$

$$
\begin{aligned}
& \text { We know that } \quad \vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}} \\
& =\frac{\partial}{\partial x}\left(x^{2}+y^{2}+z^{2}\right) e^{-\sqrt{x^{2}+y^{2}+z^{2}}} \hat{\imath}+\frac{\partial}{\partial y}\left(x^{2}+y^{2}+z^{2}\right) e^{-\sqrt{x^{2}+y^{2}+z^{2}}} \hat{\jmath}+\frac{\partial}{\partial z}\left(x^{2}+y^{2}+z^{2}\right) e^{-\sqrt{x^{2}+y^{2}+z^{2}}} \hat{k} \\
& \vec{\nabla} \varphi=\left[2 x e^{\sqrt{x^{2}+y^{2}+z^{2}}}+\left(x^{2}+y^{2}+z^{2}\right) e^{-\sqrt{x^{2}+y^{2}+2 z^{2}}} \cdot \frac{-2 x}{2 \sqrt{x^{2}+y^{2}+z^{2}}}\right] \hat{\imath} \\
& +\left[2 y e^{\sqrt{x^{2}+y^{2}+z^{2}}}+\left(x^{2}+y^{2}+z^{2}\right) e^{-\sqrt{x^{2}+y^{2}+z^{2}}} \cdot \frac{-2 y}{2 \sqrt{x^{2}+y^{2}+z^{2}}}\right] \hat{\jmath} \\
& +\left[2 z e^{\sqrt{x^{2}+y^{2}+z^{2}}}+\left(x^{2}+\hat{y}^{2} t z^{2}\right) e^{-\sqrt{x^{2}+y^{2}+z^{2}}} \cdot \frac{-2 z}{2 \sqrt{x^{2}+y^{2}+z^{2}}}\right] \widehat{k} \\
& \vec{\nabla} \varphi=\left[2 x e^{\sqrt{x^{2}+y^{2}+z^{2}}}-x \sqrt{x^{2}+y^{2}+z^{2}} e^{-\sqrt{x^{2}+y^{2}+z^{2}}}\right] \hat{\imath}+\left[2 y e^{\sqrt{x^{2}+y^{2}+z^{2}}}-y \sqrt{x^{2}+y^{2}+z^{2}} e^{-\sqrt{x^{2}+y^{2}+z^{2}}}\right] \hat{\jmath} \\
& +\left[2 z e^{\sqrt{x^{2}+y^{2}+z^{2}}}-z \sqrt{x^{2}+y^{2}+z^{2}} e^{-\sqrt{x^{2}+y^{2}+z^{2}}}\right] \hat{k} \\
& \vec{\nabla} \varphi=x e \sqrt{\sqrt{x^{2}+y^{2}+z^{2}}}\left[2-\sqrt{x^{2}+y^{2}+z^{2}}\right] \hat{\imath}+y^{\sqrt{x^{2}+y^{2}+z^{2}}}\left[2-\sqrt{x^{2}+y^{2}+z^{2}}\right] \hat{\jmath} \\
& +\mathrm{ze}^{-\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}}\left[2-\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}\right] \hat{\mathrm{k}} \\
& \vec{\nabla} \varphi=\mathrm{e}^{-\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}}\left(2-\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}\right)[\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}] \\
& \therefore \text { Let } \overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\mathrm{\imath}}+\mathrm{y} \hat{\mathrm{j}}+\mathrm{z} \hat{\mathrm{k}} \text { Then } \mathrm{r}=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}} \quad \text { \& } \quad \mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \quad \text { Thus } \\
& \vec{\nabla} \varphi=\mathrm{e}^{-\mathrm{r}}(2-\mathrm{r}) \overrightarrow{\mathrm{r}}
\end{aligned}
$$

Q\#03: If $\varphi=2 \mathrm{xz}^{4}-\mathrm{x}^{2} \mathrm{y}$. Find $\vec{\nabla} \varphi$ \& $|\vec{\nabla} \varphi|$ at $(2,-2,1)$
Solution: Given function $\quad \varphi=2 \mathrm{xz}^{4}-\mathrm{x}^{2} \mathrm{y}$
We know that $\vec{\nabla} \varphi=\frac{\partial \varphi}{\partial x} \hat{\imath}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial z} \hat{k}=\frac{\partial}{\partial x}\left(2 x z^{4}-x^{2} y\right) \hat{\imath}+\frac{\partial}{\partial y}\left(2 x z^{4}-x^{2} y\right) \hat{\jmath}+\frac{\partial}{\partial z}\left(2 x z^{4}-x^{2} y\right) \hat{k}$

$$
\vec{\nabla} \varphi=\left(2 z^{4}-2 x y\right) \hat{\imath}+\left(-x^{2}\right) \hat{\jmath}+\left(8 x z^{3}\right) \hat{k}
$$

$\boldsymbol{A} \boldsymbol{t}(2,-2,1): \vec{\nabla} \varphi=\left[2(1)^{4}-2(2)(-2)\right] \hat{\imath}+\left[-(2)^{2}\right] \hat{\jmath}+\left[8(2)(1)^{3}\right] \hat{k}=[2+8] \hat{\imath}+[-4] \hat{\jmath}+[16] \hat{k}$

$$
\vec{\nabla} \varphi=10 \hat{\imath}-4 \hat{\jmath}+16 \hat{k}
$$

Now

$$
|\vec{\nabla} \varphi|=\sqrt{(10)^{2}+(-4)^{2}+(16)^{2}}=\sqrt{100+16+256}=\sqrt{372}=2 \sqrt{93}
$$

Q\#04: Find the Laplacian equation if $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{yz} \cos \mathrm{x}+\mathrm{xz} \cos \mathrm{y}+\mathrm{xy} \cos z$
Solution: Given function $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{yz} \cos \mathrm{x}+\mathrm{xz} \cos \mathrm{y}+\mathrm{xy} \cos z$
We know that Laplacian Equation is $\quad \nabla^{2} \mathrm{f}=0 \quad$ or $\quad \frac{\partial^{2} \mathrm{f}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{f}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2} \mathrm{f}}{\partial \mathrm{z}^{2}}=0$
$\frac{\partial^{2}}{\partial x^{2}}(y z \cos x+x z \cos y+x y \cos z)+\frac{\partial^{2}}{\partial y^{2}}(y z \cos x+x z \cos y+x y \cos z)+\frac{\partial^{2}}{\partial z^{2}}(y z \cos x+x z \cos y+x y \cos z)=0$
$\frac{\partial}{\partial x}\left[\frac{\partial}{\partial x}(y z \cos x+x z \cos y+x y \cos z)\right]+\frac{\partial}{\partial y}\left[\frac{\partial}{\partial y}(y z \cos x+x z \cos y+x y \cos z)\right]+\frac{\partial}{\partial x}\left[\frac{\partial}{\partial x}(y z \cos x+x z \cos y+x y \cos z)\right]=0$
$\frac{\partial}{\partial x}[-y z \sin x+z \cos y+y \cos z]+\frac{\partial}{\partial y}[z \cos x-x z \sin y+x \cos z]+\frac{\partial}{\partial x}[y \cos x+x \cos y-x y \sin z]=0$
$-y z \cos x+0+0+0-x z \cos y+0+0+0-x y \cos z=0$
$-y z \cos \mathrm{x}-\mathrm{xz} \cos \mathrm{y}-\mathrm{xy} \cos \mathrm{z}=0 \quad$ or $\quad \mathrm{yz} \cos \mathrm{x}+\mathrm{xz} \cos \mathrm{y}+\mathrm{xy} \cos \mathrm{z}=0 \quad$ This is required equation.
Q\#05: Find the scalar function φ such that (i) $\vec{\nabla} \varphi=x \hat{\imath}+y \hat{\jmath} \quad$ (ii) $\vec{\nabla} \varphi=3 x \hat{\imath}-2 y \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}$
(i) $\vec{\nabla} \varphi=x \hat{\imath}+y \hat{j}$

Solution: We know that $\vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}} \quad$ then $\quad \frac{\partial \varphi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}}=\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\jmath}+0 \hat{\mathrm{k}}$
Comparing coefficients of $\hat{\imath}, \hat{\jmath} \& \hat{\mathrm{k}}$

$$
\begin{array}{ll}
\frac{\partial \varphi}{\partial x}=x & \Rightarrow \varphi=\int x \partial x \Rightarrow \varphi_{1}=\frac{x^{2}}{2}+c_{1}(y, z) \\
\frac{\partial \varphi}{\partial y}=y & \Rightarrow \varphi=\int y \partial x \Rightarrow \varphi_{2}=\frac{y^{2}}{2}+c_{2}(x, z) \\
\frac{\partial \varphi}{\partial z}=0 & \Rightarrow \varphi=\int 0 \partial x \Rightarrow \varphi_{2}=c_{3}(x, y)-\cdots-\cdots \tag{iii}
\end{array}
$$

Adding (i), (ii) \& (iii) : $\varphi_{1}+\varphi_{2}+\varphi_{3}=\frac{\mathrm{x}^{2}}{2}+\frac{\mathrm{y}^{2}}{2}+\mathrm{c}_{1}(\mathrm{y}, \mathrm{z})+\mathrm{c}_{2}(\mathrm{x}, \mathrm{z})+\mathrm{c}_{3}(\mathrm{x}, \mathrm{y}) \Rightarrow \varphi=\left[\frac{\mathrm{x}^{2}}{2}+\frac{\mathrm{y}^{2}}{2}\right]+\mathrm{c}$
(ii) $\overrightarrow{\boldsymbol{\nabla}} \boldsymbol{\varphi}=\mathbf{3 x} \hat{\mathbf{\imath}}-\mathbf{2 y} \hat{\mathbf{j}}+\mathrm{z} \hat{\mathbf{k}}$

Solution: We know that $\quad \vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}} \quad$ then $\quad \frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}}=\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\jmath}+0 \hat{\mathrm{k}}$ Comparing coefficients of $\hat{1}, \hat{\jmath} \& \hat{\mathrm{k}}$

$$
\begin{array}{ll}
\frac{\partial \varphi}{\partial \mathrm{x}}=3 \mathrm{x} & \Rightarrow \varphi=3 \int \mathrm{x} \partial \mathrm{x} \Rightarrow \varphi_{1}=\frac{3 \mathrm{x}^{2}}{2}+c_{1}(\mathrm{y}, \mathrm{z})-- \\
\frac{\partial \varphi}{\partial \mathrm{y}}=-2 \mathrm{y} & \Rightarrow \varphi=-2 \int \mathrm{y} \partial \mathrm{x} \Rightarrow \varphi_{2}=-\mathrm{y}^{2}+c_{2}(\mathrm{x}, \mathrm{z}) \\
\frac{\partial \varphi}{\partial \mathrm{z}}=\mathrm{z} & \Rightarrow \varphi=\int \mathrm{z} \partial \mathrm{x} \quad \Rightarrow \varphi_{3}=\frac{\mathrm{z}^{2}}{2}+c_{3}(\mathrm{x}, \mathrm{y})-\cdots \tag{iii}
\end{array}
$$

Adding (i), (ii) \& (iii) : $\varphi_{1}+\varphi_{2}+\varphi_{3}=\frac{3 \mathrm{x}^{2}}{2}-\mathrm{y}^{2}+\frac{\mathrm{z}^{2}}{2}+\mathrm{c}_{1}(\mathrm{y}, \mathrm{z})+\mathrm{c}_{2}(\mathrm{x}, \mathrm{z})+{ }^{\prime} \mathrm{c}_{3}(\mathrm{x}, \mathrm{y})$

$$
\text { Hence } \quad \varphi=\left[\frac{3 x^{2}}{2}-y^{2}+\frac{z^{2}}{2}\right]+c
$$

Q\#06: Find the scalar function φ such that $\overrightarrow{\mathrm{F}}=\vec{\nabla} \varphi$ where
(i) $\overrightarrow{\mathrm{F}}=x \hat{\imath}+2 y \hat{\jmath}+z \hat{k}$
(ii) $\overrightarrow{\mathrm{F}}=\frac{\mathrm{x} \hat{\mathrm{i}}+\mathrm{y} \hat{1}}{\mathrm{x}^{2}+\mathrm{y}^{2}}$
(iii) $\overrightarrow{\mathrm{F}}=\mathrm{e}^{\mathrm{x}} \sin \mathrm{y} \hat{\imath}+\mathrm{e}^{\mathrm{x}} \sin \mathrm{y} \hat{\jmath}$
(iv) $\overrightarrow{\mathrm{F}}=\frac{\overrightarrow{\mathrm{r}}}{\mathrm{r}^{5}}$ at $\varphi(1)=0$ (v) $\overrightarrow{\mathrm{F}}=\left(\mathrm{y}^{2}-2 \mathrm{xyz}^{3}\right) \hat{\imath}+\left(3+2 x y-\mathrm{x}^{2} z^{3}\right) \hat{\jmath}+\left(6 z^{3}-3 x^{2} y z^{2}\right) \hat{\mathrm{k}}$
(i)

$$
\overrightarrow{\mathrm{F}}=x \hat{\imath}+2 y \hat{\jmath}+z \hat{k}
$$

Solution: Given $\overrightarrow{\mathrm{F}}=\mathrm{x} \hat{\imath}+2 \mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}$ such that $\overrightarrow{\mathrm{F}}=\vec{\nabla} \varphi$ The $\quad \vec{\nabla} \varphi=x \hat{\imath}+2 \mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}$
We know that $\vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{i}}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial z} \hat{\mathrm{k}}$
Then $\quad \frac{\partial \varphi}{\partial x} \hat{\imath}+\frac{\partial \varphi}{\partial y} \hat{1}+\frac{\partial \varphi}{\partial z} \hat{k}=x \hat{\imath}+2 y \hat{\jmath}+z \hat{k}$
Comparing coefficients of $\hat{1}, \hat{\jmath} \& \hat{\mathrm{k}}$

$$
\begin{array}{ll}
\frac{\partial \varphi}{\partial \mathrm{x}}=\mathrm{x} & \Rightarrow \varphi=\int \mathrm{x} \partial \mathrm{x} \Rightarrow \varphi_{1}=\frac{\mathrm{x}^{2}}{2}+\mathrm{c}_{1}(\mathrm{y}, \mathrm{z}) \\
\frac{\partial \varphi}{\partial \mathrm{y}}=2 \mathrm{y} & \Rightarrow \varphi=2 \int \mathrm{y} \partial \mathrm{y} \Rightarrow \varphi_{2}=\mathrm{y}^{2}+\mathrm{c}_{2}(\mathrm{x}, \mathrm{z})- \\
\frac{\partial \varphi}{\partial \mathrm{z}}=\mathrm{z} & \Rightarrow \varphi=\int \mathrm{z} \partial \mathrm{z} \Rightarrow \varphi_{3}=\frac{\mathrm{z}^{2}}{2}+c_{3}(\mathrm{x}, \mathrm{y})- \tag{iii}
\end{array}
$$

Adding (i), (ii) \& (iii) : $\quad \varphi_{1}+\varphi_{2}+\varphi_{3}=\frac{\mathrm{x}^{2}}{2}+\mathrm{y}^{2}+\frac{\mathrm{z}^{2}}{2}+\mathrm{c}_{1}(\mathrm{y}, \mathrm{z})+\mathrm{c}_{2}(\mathrm{x}, \mathrm{z})+\mathrm{c}_{3}(\mathrm{x}, \mathrm{y})$

Hence

$$
\varphi=\left[\frac{\mathrm{x}^{2}}{2}+\mathrm{y}^{2}+\frac{\mathrm{z}^{2}}{2}\right]+\mathrm{c}
$$

(ii)

$$
\overrightarrow{\mathbf{F}}=\frac{x \hat{\imath}+y \hat{\jmath}}{x^{2}+y^{2}}
$$

Solution: Given $\overrightarrow{\mathrm{F}}=\frac{\mathrm{x} \hat{1}+\mathrm{y} \hat{1}}{\mathrm{x}^{2}+\mathrm{y}^{2}}$ such that $\overrightarrow{\mathrm{F}}=\vec{\nabla} \varphi$
Then $\quad \vec{\nabla} \varphi=\frac{x \hat{\imath}+y \hat{\jmath}}{x^{2}+y^{2}}=\frac{x}{x^{2}+y^{2}} \hat{\imath}+\frac{y}{x^{2}+y^{2}} \hat{\jmath}$
We know that $\quad \vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{i}}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial z} \hat{\mathrm{k}}$
Then $\quad \frac{\partial \varphi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial z} \hat{k}=\frac{x}{x^{2}+y^{2}} \hat{\imath}+\frac{y}{x^{2}+y^{2}} \hat{\jmath}+0 \hat{k}$
Comparing coefficients of $\hat{\imath}, \hat{\jmath}$

$$
\begin{align*}
& \frac{\partial \varphi}{\partial \mathrm{x}}=\frac{\mathrm{x}}{\mathrm{x}^{2}+\mathrm{y}^{2}} \quad \Rightarrow \varphi=\frac{1}{2} \int \frac{2 \mathrm{x}}{\mathrm{x}^{2}+\mathrm{y}^{2}} \partial \mathrm{x} \quad \Rightarrow \varphi=\frac{1}{2} \ln \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)+c_{1}(\mathrm{y}, \mathrm{z})-- \tag{i}\\
& \frac{\partial \varphi}{\partial \mathrm{y}}=\frac{\mathrm{y}}{\mathrm{x}^{2}+\mathrm{y}^{2}} \quad \Rightarrow \varphi=\frac{1}{2} \int \frac{2 \mathrm{y}}{\mathrm{x}^{2}+\mathrm{y}^{2}} \partial \mathrm{y} \quad \Rightarrow \varphi=\frac{1}{2} \ln \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)+c_{2}(\mathrm{x}, \mathrm{z}) \tag{ii}
\end{align*}
$$

From (i) \& (ii)

$$
\Rightarrow \varphi=\frac{1}{2} \ln \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)+\mathrm{c}
$$

(iii)

$$
\vec{F}=e^{x} \sin y \hat{\imath}+e^{x} \sin y \hat{\jmath}
$$

Solution: Given $\overrightarrow{\mathrm{F}}=\mathrm{e}^{\mathrm{x}} \sin \mathrm{y} \hat{\mathrm{i}}+\mathrm{e}^{\mathrm{x}} \sin \mathrm{y} \hat{\jmath}$ such that $\overrightarrow{\mathrm{F}}=\vec{\nabla} \varphi$
Then $\quad \vec{\nabla} \varphi=\mathrm{e}^{\mathrm{x}} \sin \mathrm{y} \hat{\imath}+\mathrm{e}^{\mathrm{x}} \sin \mathrm{y} \hat{\jmath}$
We know that $\vec{\nabla} \varphi=\mathrm{e}^{\mathrm{x}} \sin y \hat{1}+\mathrm{e}^{\mathrm{x}} \sin \mathrm{y} \hat{\jmath}$
Then

$$
\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial z} \hat{\mathrm{k}}=\mathrm{e}^{\mathrm{x}} \sin \mathrm{y} \hat{\imath}+\mathrm{e}^{\mathrm{x}} \cos \mathrm{y} \hat{\jmath}+0 \hat{\mathrm{k}}
$$

Comparing coefficients of $\hat{\imath}, \hat{\jmath}$

$$
\begin{array}{ll}
\frac{\partial \varphi}{\partial x}=e^{x} \sin y & \Rightarrow \varphi=\sin y \int e^{x} \partial x \Rightarrow \varphi=e^{x} \sin y+c_{1}(y, z) \\
\frac{\partial \varphi}{\partial y}=e^{x} \cos y & \Rightarrow \varphi=e^{x} \int \cos y \partial y \Rightarrow \varphi=e^{x} \sin y+c_{2}(x, z) \tag{ii}
\end{array}
$$

From (i) \& (ii)

$$
\Rightarrow \varphi=e^{x} \sin y+c
$$

(iv)

$$
\overrightarrow{\mathbf{F}}=\frac{\overrightarrow{\mathbf{r}}}{\mathrm{r}^{5}} \quad \text { at } \varphi(\mathbf{\varphi})=0 .
$$

(Example \#06)
Solution: Let $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\mathrm{\imath}}+\mathrm{y} \hat{\mathrm{j}}+\mathrm{z} \hat{\mathrm{k}}$ then $\mathrm{r}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{1 / 2}$

$$
\begin{align*}
& \text { Given } \overrightarrow{\mathrm{F}}=\frac{\overrightarrow{\mathrm{r}}}{\mathrm{r}^{5}} \text { such that } \quad \overrightarrow{\mathrm{F}}=\vec{\nabla} \varphi \quad \text { Then } \quad \vec{\nabla} \varphi=\frac{\overrightarrow{\mathrm{r}}}{\mathrm{r}^{5}} \tag{i}\\
& \frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{l}}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}}=\frac{\vec{r}}{\mathrm{r}^{5}}=\mathrm{r}^{-5} \overrightarrow{\mathrm{r}} \Rightarrow \frac{\partial \varphi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}}=\mathrm{r}^{-5}(\mathrm{x} \hat{\mathrm{\imath}}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}) \\
& \frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-5 / 2} \cdot \mathrm{x} \hat{\imath}+\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-5 / 2} \cdot \mathrm{y} \hat{\jmath}+\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-5 / 2} \cdot \mathrm{z} \hat{\mathrm{k}}
\end{align*}
$$

Comparing coefficients of $\hat{1}, \hat{\jmath} \& \hat{k}$

$$
\begin{align*}
& \frac{\partial \varphi}{\partial \mathrm{x}}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-5 / 2} \cdot \mathrm{x} \Rightarrow \varphi=\frac{1}{2} \int\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-5 / 2} \cdot 2 \mathrm{x} \partial \mathrm{x} \Rightarrow \varphi=\frac{1}{2} \frac{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-3 / 2}}{-3 / 2}+\mathrm{c}_{1}(\mathrm{y}, \mathrm{z})-\cdots---(i) \\
& \frac{\partial \varphi}{\partial y}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-5 / 2} \cdot \mathrm{y} \Rightarrow \varphi=\frac{1}{2} \int\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-5 / 2} \cdot 2 \mathrm{y} \partial \mathrm{x} \Rightarrow \varphi=\frac{1}{2} \frac{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-3 / 2}}{-3 / 2}+c_{2}(\mathrm{x}, \mathrm{z})----(i i) \\
& \frac{\partial \varphi}{\partial \mathrm{z}}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-5 / 2} \cdot \mathrm{z} \Rightarrow \varphi=\frac{1}{2} \int\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-5 / 2} \cdot 2 \mathrm{z} \partial \mathrm{x} \Rightarrow \varphi=\frac{1}{2} \frac{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-3 / 2}}{-3 / 2}+c_{3}(\mathrm{x}, \mathrm{z})-\cdots---(i i i) \tag{iii}
\end{align*}
$$

From (i), (ii) \& (iii): $\quad \varphi=\frac{1}{2} \frac{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-3 / 2}}{-3 / 2}+\mathrm{c}$

$$
\begin{aligned}
\varphi & =-\frac{1}{3}\left\{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}\right\}^{-3}+c \\
\Rightarrow \varphi & =-\frac{1}{3} r^{-3}+c
\end{aligned}
$$

$$
\text { Hence } \varphi(r)=-\frac{1}{3 r^{3}}+c \cdot------(a)
$$

$$
\text { At } \varphi(1)=0 \Rightarrow-\frac{1}{3(1)^{3}}+c=0 \Rightarrow-\frac{1}{3}+c=0 \Rightarrow c=\frac{1}{3}
$$

Hence equation (a) will become

$$
\varphi(r)=-\frac{1}{3 r^{3}}+\frac{1}{3} \Rightarrow \varphi(r)=\frac{1}{3}\left(1-\frac{1}{r^{5}}\right)
$$

$$
\begin{equation*}
\overrightarrow{\mathbf{F}}=\left(y^{2}-2 x y z^{3}\right) \hat{\imath}+\left(3+2 x y-x^{2} z^{3}\right) \hat{\jmath}+\left(6 z^{3}-3 x^{2} y z^{2}\right) \hat{\mathbf{k}} \tag{v}
\end{equation*}
$$

Solution: Given $\overrightarrow{\mathrm{F}}=\left(\mathrm{y}^{2}-2 \mathrm{xyz}^{3}\right) \hat{\mathrm{i}}+\left(3+2 \mathrm{xy}-\mathrm{x}^{2} \mathrm{z}^{3}\right) \hat{\jmath}+\left(6 \mathrm{z}^{3}-3 \mathrm{x}^{2} y \mathrm{z}^{2}\right) \hat{\mathrm{k}}$ such that $\overrightarrow{\mathrm{F}}=\vec{\nabla} \varphi$
Then $\quad \vec{\nabla} \varphi=\left(y^{2}-2 x y z^{3}\right) \hat{\imath}+\left(3+2 x y-x^{2} z^{3}\right) \hat{\jmath}+\left(6 z^{3}-3 x^{2} y z^{2}\right) \hat{k}$
We know that $\quad \vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{i}}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial z} \hat{\mathrm{k}}$
Then $\quad \frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{i}}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial z} \hat{\mathrm{k}}=\left(\mathrm{y}^{2}-2 x y z^{3}\right) \hat{\imath}+\left(3+2 x y-\mathrm{x}^{2} \mathrm{z}^{3}\right) \hat{\jmath}+\left(6 z^{3}-3 x^{2} y z^{2}\right) \hat{k}$
Comparing coefficients of $\hat{\imath}, \hat{\jmath} \& \hat{\mathrm{k}}$
$\frac{\partial \varphi}{\partial x}=\left(y^{2}-2 x y z^{3}\right) \Rightarrow \varphi=\int\left(y^{2}-2 x y z^{3}\right) \partial x \Rightarrow \quad \varphi_{1}=x y^{2}-\frac{2 y z^{3} x^{2}}{2}+c_{1}(y, z)$
$\frac{\partial \varphi}{\partial y}=\left(3+2 x y-x^{2} z^{3}\right) \Rightarrow \varphi=\int\left(3+2 x y-x^{2} z^{3}\right) \partial y \Rightarrow \varphi_{2}=3 y+\frac{2 x y^{2}}{2}-x^{2} z^{3} y+c_{2}(x, z)--(i i)$
$\frac{\partial \varphi}{\partial z}=\left(6 z^{3}-3 x^{2} y z^{2}\right) \Rightarrow \varphi=\int\left(6 z^{3}-3 x^{2} y z^{2}\right) \partial z \Rightarrow \varphi_{3}=\frac{6 z^{4}}{4}-\frac{3 x^{2} y z^{3}}{3}+c_{3}(x, y)-\cdots-\cdots-(i i i)$
Adding (i),(ii) \& (iii)

$$
\begin{aligned}
\varphi_{1}+\varphi_{2}+\varphi_{3} & =x y^{2}-\frac{2 y z^{3} x^{2}}{2}+3 y+\frac{2 x y^{2}}{2}-x^{2} z^{3}+\frac{6 z^{4}}{4}-\frac{3 x^{2} y z^{3}}{3}+c_{1}(y, z)+c_{2}(x, z)+c_{3}(x, z) \\
\varphi & =\left[x y^{2}-x^{2} y z^{3}+3 y+x y^{2}-x^{2} y z^{3}+\frac{3 z^{4}}{2}-x^{2} y^{3}\right]+c \\
\varphi & =\left[-3 x^{2} y z^{3}+3 y+2 x y^{2}+\frac{3 z^{4}}{2}\right]+c
\end{aligned}
$$

Q\#07: Evaluate the directional derivative of $\varphi=\mathrm{x}^{2}-\mathrm{y}^{2}+2 \mathrm{z}^{2}$ at $(1,2,3)$ in the direction of $\overrightarrow{\mathrm{PQ}}$ where \boldsymbol{Q} has coordinates $(5,0,4)$

Solution: Given $\varphi=x^{2}-y^{2}+2 z^{2}$ Then

$$
\overrightarrow{\operatorname{grad}} \varphi=\vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial z} \hat{k}=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{x}^{2}-\mathrm{y}^{2}+2 \mathrm{z}^{2}\right) \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{x}^{2}-\mathrm{y}^{2}+2 \mathrm{z}^{2}\right) \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{x}^{2}-\mathrm{y}^{2}+2 \mathrm{z}^{2}\right) \hat{\mathrm{k}}
$$

$$
\overrightarrow{\operatorname{grad}} \varphi=(2 x) \hat{\imath}+(-2 y) \hat{\jmath}+(4 z) \hat{k}
$$

At $\quad \boldsymbol{P}(1,2,3): \quad \underset{\operatorname{grad}}{ } \varphi=[2(1)] \hat{\imath}+[-2(2)] \hat{\jmath}+[4(3)] \hat{\mathrm{k}}$

$$
\overrightarrow{\operatorname{grad}} \varphi=2 \hat{\imath}-4 \hat{\jmath}+12 \hat{k}
$$

$$
\text { Let } \overrightarrow{\mathrm{u}}=\overrightarrow{\mathrm{PQ}}=\mathrm{Q}(5,0,4)-\mathrm{P}(1,2,3)=(5-1) \hat{\imath}+(0-2) \hat{\jmath}+(4-3) \hat{\mathrm{k}}=4 \hat{\imath}-2 \hat{\jmath}+1 \hat{\mathrm{k}}
$$

Then $\hat{\mathrm{u}}=\frac{\overrightarrow{\mathrm{u}}}{|\overrightarrow{\mathrm{u}}|}=\frac{4 \hat{\imath}-2 \hat{\jmath}+1 \hat{\mathrm{k}}}{\sqrt{(4)^{2}+(-2)^{2}+(1)^{2}}}=\frac{4 \hat{\imath}-2 \hat{\jmath}+1 \hat{\mathrm{k}}}{\sqrt{16+4+1}}=\frac{4 \hat{1}-2 \hat{\jmath}+1 \hat{\mathrm{k}}}{\sqrt{21}}$

Thus

Directional derivative of φ at Point P in the of $\overrightarrow{\mathrm{PQ}}=\overrightarrow{\operatorname{grad}} \varphi$. $\hat{\mathrm{u}}$

$$
=(2 \hat{\imath}-4 \hat{\jmath}+12 \hat{\mathrm{k}}) \cdot \frac{4 \hat{\imath}-2 \hat{\jmath}+1 \hat{\mathrm{k}}}{\sqrt{21}}=\frac{8+8+12}{\sqrt{21}}=\frac{28}{\sqrt{21}}
$$

Q\#08: Find the directional derivative of φ at P in the direction of $\overrightarrow{\mathrm{u}}$ where
(i)

$$
\varphi=x+2 y-z \quad \text { at } P(1,4,0) \text { and } \quad \vec{u}=\hat{\jmath}-\hat{k}
$$

(ii)

$$
\varphi=x^{2}+y^{2}+z^{2} \quad \text { at } P(2,0,3) \quad \text { and } \quad \vec{u}=2 \hat{\imath}-\hat{\jmath}
$$

(iii)

$$
\varphi=\mathrm{e}^{2 \mathrm{x}-\mathrm{y}+\mathrm{z}} \text { at } \mathrm{P}(1,1,1) \quad \text { and } \quad \overrightarrow{\mathrm{u}}=-3 \hat{\imath}+5 \hat{\jmath}+6 \hat{\mathrm{k}}
$$

(i) $\varphi=x+2 y-z$ at $P(1,4,0) \quad$ and $\overrightarrow{\mathbf{u}}=\hat{\mathbf{\jmath}}-\hat{\mathbf{k}}$

Solution: Given $\varphi=\mathrm{x}+2 \mathrm{y}-\mathrm{z}$ Then

$$
\begin{aligned}
\overrightarrow{\operatorname{grad}} \varphi & =\vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial z} \hat{\mathrm{k}}=\frac{\partial}{\partial \mathrm{x}}(\mathrm{x}+2 \mathrm{y}-\mathrm{z}) \hat{\imath}+\frac{\partial}{\partial \mathrm{y}}(\mathrm{x}+2 \mathrm{y}-\mathrm{z}) \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}}(\mathrm{x}+2 \mathrm{y}-\mathrm{f}) \hat{\mathrm{k}} \\
& =1 \hat{\imath}+2 \hat{\jmath}-1 \hat{\mathrm{k}}
\end{aligned}
$$

At $\quad \boldsymbol{P}(1,4,0): \quad \overrightarrow{\operatorname{grad}} \varphi=1 \hat{\imath}+2 \hat{\jmath}-1 \hat{\mathrm{k}}$
Let $\overrightarrow{\mathrm{u}}=\hat{\jmath}-\hat{\mathrm{k}}$
Then

$$
\hat{\mathrm{u}}=\frac{\overrightarrow{\mathrm{u}}}{|\overrightarrow{\mathrm{u}}|}=\frac{\hat{\mathrm{\jmath}}-\hat{\mathrm{k}}}{\sqrt{(0)^{2}+(1)^{2}+(-1)^{2}}}=\frac{\hat{\mathrm{C}}}{\sqrt{0+1+1}}=\frac{\hat{\mathrm{\jmath}}-\hat{\mathrm{k}}}{\sqrt{2}}
$$

Thus
Directional derivative of φ at Point P in the direction of $\vec{u}=\overrightarrow{\operatorname{grad}} \varphi \cdot \hat{u}=(1 \hat{\imath}+2 \hat{\jmath}-1 \hat{k}) \cdot \frac{\hat{\jmath}-\hat{k}}{\sqrt{2}}=\frac{0+2+1}{\sqrt{2}}=\frac{3}{\sqrt{2}}$
(ii) $\varphi=x^{2}+y^{2}+z^{2}$ at $P(2,0,3)$ and $\vec{u}=2 \hat{i}-\hat{\jmath}$

Solution: Given $\varphi=x^{2}+y^{2}+z^{2}$ Then

$$
\overrightarrow{\operatorname{grad}} \varphi=\vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\mathrm{\jmath}}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}}=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right) \hat{\imath}+\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right) \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right) \hat{\mathrm{k}}
$$

$$
\overrightarrow{\operatorname{grad}} \varphi=(2 x) \hat{\imath}+(2 y) \hat{\jmath}+(2 z) \hat{k}
$$

At $\quad \boldsymbol{P}(2,0,3):$
$\overrightarrow{\operatorname{grad}} \varphi=[2(2)] \hat{\imath}+[2(0)] \hat{\jmath}+[2(3)] \hat{k}=4 \hat{\imath}+0 \hat{\jmath}+6 \hat{k}$

$$
\text { Let } \vec{u}=2 \hat{\imath}-\hat{\jmath}
$$

Then

$$
\hat{u}=\frac{\overrightarrow{\mathrm{u}}}{|\overrightarrow{\mathrm{u}}|}=\frac{2 \hat{\imath}-\hat{\jmath}}{\sqrt{(2)^{2}+(-1)^{2}+(0)^{2}}}=\frac{2 \hat{\imath}-\hat{\jmath}}{\sqrt{4+1+0}}=\frac{2 \hat{1}-\hat{\jmath}}{\sqrt{5}}
$$

Thus
Directional derivative of φ at Point P in the direction of $\overrightarrow{\mathrm{u}}=\overrightarrow{\operatorname{grad}} \varphi . \hat{\mathrm{u}}$

$$
\begin{aligned}
& =(2 \hat{\imath}-4 \hat{\jmath}+12 \hat{k}) \cdot \frac{2 \hat{\imath}-\hat{\jmath}}{\sqrt{5}}=\frac{4+4+0}{\sqrt{5}} \\
& =\frac{8}{\sqrt{5}}
\end{aligned}
$$

(iii) $\varphi=\mathrm{e}^{2 \mathrm{x}-\mathrm{y}+\mathrm{z}}$ at $\mathrm{P}(\mathbf{1}, 1,1)$ and $\overrightarrow{\mathrm{u}}=-3 \hat{\mathbf{\imath}}+5 \hat{\jmath}+6 \hat{\mathbf{k}}$

Solution: Given $\varphi=\mathrm{e}^{2 \mathrm{x}-\mathrm{y}+\mathrm{z}}$

Then

$$
\begin{aligned}
& \overrightarrow{\operatorname{grad}} \varphi=\vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{l}}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}}=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{e}^{2 \mathrm{x}-\mathrm{y}+\mathrm{z}}\right) \hat{\imath}+\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{e}^{2 \mathrm{x}-\mathrm{y}+\mathrm{z}}\right) \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{e}^{2 \mathrm{x}-\mathrm{y}+\mathrm{z}}\right) \hat{\mathrm{k}} \\
& \overrightarrow{\operatorname{grad}} \varphi=\left(2 \mathrm{e}^{2 \mathrm{x}-\mathrm{y}+\mathrm{z}}\right) \hat{\imath}+\left(-\mathrm{e}^{2 \mathrm{x}-\mathrm{y}+\mathrm{z}}\right) \hat{\jmath}+\left(\mathrm{e}^{2 \mathrm{x}-\mathrm{y}+\mathrm{z}}\right) \hat{\mathrm{k}} \\
& \overrightarrow{\operatorname{grad}} \varphi=\mathrm{e}^{2 \mathrm{x}-\mathrm{y}+\mathrm{z}}[2 \hat{\imath}+\hat{\jmath}+\hat{\mathrm{k}}]
\end{aligned}
$$

$$
\boldsymbol{A} \boldsymbol{t} \quad \boldsymbol{P}(2,0,3): \quad \overrightarrow{\operatorname{grad}} \varphi=\mathrm{e}^{2(1)-(1)+(1)}[2 \hat{\imath}+\hat{\jmath}+\hat{\mathrm{k}}]=\mathrm{e}^{2}[2 \hat{\imath}+\hat{\jmath}+\hat{\mathrm{k}}]
$$

$$
\text { Let } \overrightarrow{\mathrm{u}}=-3 \hat{\imath}+5 \hat{\jmath}+6 \hat{\mathrm{k}}
$$

Then

$$
\hat{\mathrm{u}}=\frac{\overrightarrow{\mathrm{u}}}{|\overrightarrow{\mathrm{u}}|}=\frac{-3 \hat{1}+5 \hat{\jmath}+6 \hat{\mathrm{k}}}{\sqrt{(-3)^{2}+(5)^{2}+(6)^{2}}}=\frac{-3 \hat{\imath}+5 \hat{\jmath}+6 \hat{k}}{\sqrt{9+25+36}}=\frac{-3 \hat{1}+5 \hat{\jmath}+6 \hat{\mathrm{k}}}{\sqrt{70}}
$$

Thus Directional derivative of φ at Point P in the direction of $\overrightarrow{\mathrm{u}}=\overrightarrow{\operatorname{grad}} \varphi \leqslant \hat{u}$

$$
\begin{aligned}
& =\mathrm{e}^{2}[2 \hat{\imath}+\hat{\jmath}+\hat{\mathrm{k}}] \cdot \frac{-3 \hat{\imath}+5 \hat{\jmath}+6 \hat{\mathrm{k}}}{\sqrt{70}} \\
& =\frac{\mathrm{e}^{2}[-6+5+6]}{\sqrt{70}} \\
& =\frac{5 \mathrm{e}^{2}}{\sqrt{70}}
\end{aligned}
$$

Q\#09: Find the directional derivative of the function
(i) $\varphi=x y^{2}+y z^{2}$ at $(2,-1,1)$ in the direction of $\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$
(ii) $\varphi=\mathrm{xyz}$ at $(1,1,1)$ in the direction of $\hat{\imath}+\hat{\jmath}+\hat{k}$
(iii) $\varphi=4 x^{3}-3 x y z^{2}$ at $(2,-1,1)$ along z-axis.
(i)

$$
\varphi=\mathrm{xy}^{2}+\mathrm{yz}^{2} \text { at }(2,-1,1) \text { in the direction of } \hat{\mathbf{\imath}}+2 \hat{\jmath}+2 \hat{\mathbf{k}}
$$

Solution: Given $\varphi=x y^{2}+y^{2} \quad$ Then

Thus Directional derivative of φ at Point Pin the direction of $\overrightarrow{\mathrm{u}}=\overrightarrow{\operatorname{grad}} \varphi . \hat{\mathrm{u}}$

$$
=(1 \hat{\imath}-3 \hat{\jmath}-2 \hat{k}) \cdot \frac{\hat{1}+2 \hat{\jmath}+2 \hat{k}}{3}=\frac{1-6-4}{3}=\frac{-9}{3}=-3
$$

$$
\begin{aligned}
& \overrightarrow{\operatorname{grad}} \varphi=\vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{i}}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial z} \hat{k}=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{xy}^{2}+\mathrm{yz}^{2}\right) \hat{\imath}+\frac{\partial}{\partial y}\left(\mathrm{xy}^{2}+\mathrm{yz}^{2}\right) \hat{\jmath}+\frac{\partial}{\partial z}\left(\mathrm{xy}^{2}+\mathrm{yz}^{2}\right) \hat{k} \quad \overrightarrow{\operatorname{grad}} \varphi \\
& =\left(y^{2}\right) \hat{\imath}+\left(2 x y+z^{2}\right) \hat{\jmath}+(2 y z) \hat{k} \\
& \text { At } \quad \boldsymbol{P}(2,-1,1): \quad \overrightarrow{\operatorname{grad}} \varphi=\left[(-1)^{2}\right] \hat{\imath}+\left[2(2)(-1)+(1)^{2}\right] \hat{\jmath}+[2(-1)(1)] \hat{\mathrm{k}}=1 \hat{\imath}-3 \hat{\jmath}-2 \hat{\mathrm{k}} \quad \text { Let } \overrightarrow{\mathrm{u}} \\
& =\hat{\imath}+2 \hat{\jmath}+2 \hat{k} \quad \text { Then } \hat{u}=\frac{\vec{u}}{|\overrightarrow{\mathrm{u}}|}=\frac{\hat{\mathrm{\imath}}+2 \hat{\jmath}+2 \widehat{k}}{\sqrt{(1)^{2}+(2)^{2}+(2)^{2}}}=\frac{\hat{\imath}+2 \hat{\jmath}+2 \hat{k}}{\sqrt{1+4+4}}=\frac{\hat{\imath}+2 \hat{\jmath}+2 \widehat{k}}{\sqrt{9}}=\frac{\hat{\imath}+2 \hat{\jmath}+2 \widehat{k}}{3}
\end{aligned}
$$

(ii) $\quad \varphi=\mathrm{xyz}$ at $(\mathbf{1}, 1,1)$ in the direction of $\hat{\mathbf{\imath}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$

Solution: Given $\varphi=\mathrm{xyz}$
Then

$$
\overrightarrow{\operatorname{grad}} \varphi=\vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}}=\frac{\partial}{\partial \mathrm{x}}(\mathrm{xyz}) \hat{\mathrm{i}}+\frac{\partial}{\partial \mathrm{y}}(\mathrm{xyz}) \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}}(\mathrm{xyz}) \hat{\mathrm{k}}
$$

$$
\overrightarrow{\operatorname{grad}} \varphi=y z \hat{\imath}+x z \hat{\jmath}+x y \hat{k}
$$

At $\quad \boldsymbol{P}(1,1,1): \quad \overrightarrow{\operatorname{grad}} \varphi=[(1)(1)] \hat{\imath}+[(1)(1)] \hat{\jmath}+[(1)(1)] \hat{\mathrm{k}}=\hat{\imath}+\hat{\jmath}+\hat{\mathrm{k}}$

$$
\text { Let } \overrightarrow{\mathrm{u}}=\hat{\imath}+\hat{\jmath}+\hat{\mathrm{k}} \quad \text { Then } \quad \hat{\mathrm{u}}=\frac{\overrightarrow{\mathrm{u}}}{|\overrightarrow{\mathrm{u}}|}=\frac{\hat{\hat{1}}+\hat{\hat{\jmath}}+\hat{\mathrm{k}}}{\sqrt{(1)^{2}+(1)^{2}+(1)^{2}}}=\frac{\hat{\imath}+\hat{\hat{j}}+\hat{\mathrm{k}}}{\sqrt{1+1+1}}=\frac{\hat{1}+\hat{\jmath}+\hat{k}}{\sqrt{3}}=\frac{\hat{i}+\hat{\jmath}+\hat{k}}{\sqrt{3}}
$$

Thus Directional derivative of φ at Point P in the direction of $\vec{u}=\overrightarrow{\operatorname{grad}} \varphi \cdot \hat{u}=(\hat{1}+\hat{\jmath}+\hat{k}) \cdot \frac{\hat{i}+\hat{\jmath}+\hat{k}}{\sqrt{3}}$

$$
=\frac{1+1+1}{\sqrt{3}}=\frac{3}{\sqrt{3}}=\sqrt{3}
$$

(iii)

$$
\varphi=4 x^{3}-3 x_{y z}^{2} \quad \text { at }(2,-1,1) \text { along } z \text {-axis. }
$$

Solution: Given $\varphi=4 x^{3}-3 x^{3} z^{2} \quad$ Then

$$
\begin{aligned}
& \overrightarrow{\operatorname{grad} \varphi}=\vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial z} \hat{\mathrm{k}}=\frac{\partial}{\partial \mathrm{x}}\left(4 \mathrm{xz}^{3}-3 \mathrm{xyz}^{2}\right) \hat{\imath}+\frac{\partial}{\partial y}\left(4 x z^{3}-3 \mathrm{xyz}^{2}\right) \hat{\jmath}+\frac{\partial}{\partial z}\left(4 \mathrm{xz}^{3}-3 \mathrm{xyz}^{2}\right) \hat{\mathrm{k}} \quad \overrightarrow{\operatorname{grad}} \varphi \\
& =\left(4 z^{3}-3 \mathrm{yz}^{2}\right) \hat{\imath}+\left(-3 \mathrm{xz}^{2}\right) \hat{\jmath}+\left(12 \mathrm{xz}^{2}-6 x y z\right) \hat{\mathrm{k}} \\
& \text { At } \quad \boldsymbol{P}(2,-1,1): \\
& \overrightarrow{\operatorname{grad} \varphi}=\left[4(1)^{3}-3(-1)(1)^{2}\right] \hat{\imath}+\left[-3(2)(1)^{2}\right] \hat{\jmath}+\left[12(2)(1)^{2}-6(2)(-1)(1)\right] \hat{\mathrm{k}} \\
& \quad=[4+3] \hat{\imath}+[-6] \hat{\jmath}+[24+12] \hat{\mathrm{k}}=12 \hat{\imath}-6 \hat{\jmath}+36 \hat{\mathrm{k}}
\end{aligned}
$$

$$
\text { Let } \overrightarrow{\mathrm{u}}=\hat{\mathrm{k}} \text { (along z-axis) } \quad \text { Then } \hat{\mathrm{u}}=\hat{\mathrm{k}}
$$

Thus
Directional derivative of φ at Point P in the direction of $\vec{u}=\overrightarrow{\operatorname{grad}} \varphi \cdot \hat{u}=(12 \hat{\imath}-6 \hat{\jmath}+36 \hat{k}) \cdot \hat{k}=36$

Q\#10: Prove that

(i) $\vec{\nabla} \varphi^{\mathrm{n}}=n \varphi^{\mathrm{n}-1} \vec{\nabla} \varphi^{\mathrm{n}}$
(ii) $\nabla^{2}(\varphi \Psi)=\Psi \nabla^{2} \varphi+2 \vec{\nabla} \varphi \cdot \vec{\nabla} \Psi+\varphi \nabla^{2} \Psi$
(iii) $\nabla^{2} \mathrm{r}^{\mathrm{n}}=\mathrm{n}(\mathrm{n}+1) \mathrm{r}^{\mathrm{n}-2}$
(i)

$$
\vec{\nabla} \varphi^{\mathrm{n}}=n \varphi^{\mathrm{n}-1} \vec{\nabla} \varphi^{\mathrm{n}}
$$

Solution: We know that $\vec{\nabla}=\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}-----(\boldsymbol{i})$
Then $\quad \vec{\nabla} \varphi^{\mathrm{n}}=\left[\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}\right] \varphi^{\mathrm{n}}=\frac{\partial}{\partial \mathrm{x}} \varphi^{\mathrm{n}} \hat{\imath}+\frac{\partial}{\partial \mathrm{y}} \varphi^{\mathrm{n}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \varphi^{\mathrm{n}} \hat{\mathrm{k}}$

$$
\vec{\nabla} \varphi^{\mathrm{n}}=\left[\begin{array}{ll}
\mathrm{n} \varphi^{\mathrm{n}-1} & \frac{\partial \varphi}{\partial \mathrm{x}}
\end{array}\right] \hat{\mathrm{i}}+\left[\begin{array}{ll}
\mathrm{n} \varphi^{\mathrm{n}-1} & \frac{\partial \varphi}{\partial y}
\end{array}\right] \hat{\jmath}+\left[\mathrm{n} \varphi^{\mathrm{n}-1} \frac{\partial \varphi}{\partial y}\right] \hat{\mathrm{k}}
$$

$$
\vec{\nabla} \varphi^{\mathrm{n}}=\mathrm{n} \varphi^{\mathrm{n}-1}\left[\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}}\right]
$$

$$
\vec{\nabla} \varphi^{\mathrm{n}}=\mathrm{n} \varphi^{\mathrm{n}-1}\left[\frac{\partial}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}\right] \varphi
$$

$$
\vec{\nabla} \varphi^{\mathrm{n}}=\mathrm{n} \varphi^{\mathrm{n}-1} \quad \vec{\nabla} \varphi^{\mathrm{n}} \quad \therefore \text { From (i) }
$$

Hence proved.

(ii) $\quad \nabla^{2}(\varphi \Psi)=\Psi \nabla^{2} \varphi+2 \vec{\nabla} \varphi \cdot \vec{\nabla} \Psi+\varphi \nabla^{2} \Psi$

Solution: We know that $\nabla^{2}=\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2}}{\partial \mathrm{z}^{2}} \quad$ then

$$
\begin{aligned}
& \nabla^{2}(\varphi \Psi)=\left[\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2}}{\partial \mathrm{z}^{2}}\right](\varphi \Psi)=\frac{\partial^{2}}{\partial \mathrm{x}^{2}}(\varphi \Psi)+\frac{\partial^{2}}{\partial \mathrm{y}^{2}}(\varphi \Psi)+\frac{\partial^{2}}{\partial \mathrm{z}^{2}}(\varphi \Psi) \\
& \left.=\frac{\partial}{\partial \mathrm{x}}\left[\frac{\partial}{\partial \mathrm{x}}(\varphi \Psi)\right]+\frac{\partial}{\partial \mathrm{y}}\left[\frac{\partial}{\partial \mathrm{y}}(\varphi \Psi)\right]+\frac{\partial}{\partial \mathrm{z}} \frac{\partial}{\partial \mathrm{z}}(\varphi \Psi)\right] \\
& =\frac{\partial}{\partial \mathrm{x}}\left[\frac{\partial \varphi}{\partial \mathrm{x}} \Psi+\varphi \frac{\partial \Psi}{\partial \mathrm{x}}\right]+\frac{\partial}{\partial y}\left[\frac{\partial \varphi}{\partial y} \Psi+\varphi \frac{\partial \Psi}{\partial y}\right]+\frac{\partial}{\partial z}\left[\frac{\partial \varphi}{\partial z} \Psi+\varphi \frac{\partial \Psi}{\partial z}\right] \\
& =\frac{\partial}{\partial \mathrm{x}}\left[\frac{\partial \varphi}{\partial \mathrm{x}} \Psi\right]+\frac{\partial}{\partial \mathrm{x}}\left[\varphi \frac{\partial \Psi}{\partial \mathrm{x}}\right]+\frac{\partial}{\partial \mathrm{y}}\left[\frac{\partial \varphi}{\partial \mathrm{y}} \Psi\right]+\frac{\partial}{\partial \mathrm{y}}\left[\varphi \frac{\partial \Psi}{\partial \mathrm{y}}\right]+\frac{\partial}{\partial \mathrm{z}}\left[\frac{\partial \varphi}{\partial \mathrm{z}} \Psi\right]++\frac{\partial}{\partial \mathrm{z}}\left[\varphi \frac{\partial \Psi}{\partial \mathrm{z}}\right] \\
& =\left[\frac{\partial^{2} \varphi}{\partial \mathrm{x}^{2}} \Psi+\frac{\partial \varphi}{\partial \mathrm{x}} \cdot \frac{\partial \Psi}{\partial \mathrm{x}}\right]+\left[\frac{\partial \varphi}{\partial \mathrm{x}} \cdot \frac{\partial \Psi}{\partial \mathrm{x}}+\varphi \frac{\partial^{2} \Psi}{\partial \mathrm{x}^{2}}\right]+\left[\frac{\partial^{2} \varphi}{\partial \mathrm{y}^{2}} \Psi+\frac{\partial \varphi}{\partial \mathrm{y}} \cdot \frac{\partial \Psi}{\partial \mathrm{y}}\right]+\left[\frac{\partial \varphi}{\partial \mathrm{y}} \cdot \frac{\partial \Psi}{\partial \mathrm{y}}+\varphi \frac{\partial^{2} \Psi}{\partial \mathrm{y}^{2}}\right]+\left[\frac{\partial^{2} \varphi}{\partial \mathrm{z}^{2}} \Psi+\frac{\partial \varphi}{\partial \mathrm{z}} \cdot \frac{\partial \Psi}{\partial \mathrm{z}}\right]+\left[\frac{\partial \varphi}{\partial \mathrm{z}} \cdot \frac{\partial \Psi}{\partial \mathrm{z}}+\varphi \frac{\partial^{2} \Psi}{\partial \mathrm{z}^{2}}\right] \\
& =\frac{\partial^{2} \varphi}{\partial \mathrm{x}^{2}} \Psi+\frac{\partial \varphi}{\partial \mathrm{x}} \cdot \frac{\partial \Psi}{\partial \mathrm{x}} \pm \frac{\partial \varphi}{\partial \mathrm{x}} \cdot \frac{\partial \Psi}{\partial \mathrm{x}}+\varphi \frac{\partial^{2} \Psi}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \varphi}{\partial \mathrm{y}^{2}} \Psi+\frac{\partial \varphi}{\partial \mathrm{y}} \cdot \frac{\partial \Psi}{\partial \mathrm{y}}+\frac{\partial \varphi}{\partial \mathrm{y}} \cdot \frac{\partial \Psi}{\partial \mathrm{y}}+\varphi \frac{\partial^{2} \Psi}{\partial \mathrm{y}^{2}}+\frac{\partial^{2} \varphi}{\partial \mathrm{z}^{2}} \Psi+\frac{\partial \varphi}{\partial \mathrm{z}} \cdot \frac{\partial \Psi}{\partial \mathrm{z}}+\frac{\partial \varphi}{\partial \mathrm{z}} \cdot \frac{\partial \Psi}{\partial \mathrm{z}}+\varphi \frac{\partial^{2} \Psi}{\partial \mathrm{z}^{2}} \\
& =\left[\frac{\partial^{2} \varphi}{\partial \mathrm{x}^{2}} \Psi+\frac{\partial^{2} \varphi}{\partial \mathrm{y}^{2}} \Psi+\frac{\partial^{2} \varphi}{\partial \mathrm{z}^{2}} \Psi\right]+\left[2 \frac{\partial \varphi}{\partial \mathrm{x}} \cdot \frac{\partial \Psi}{\partial \mathrm{x}}+2 \frac{\partial \varphi}{\partial \mathrm{y}} \cdot \frac{\partial \Psi}{\partial \mathrm{y}}++2 \frac{\partial \varphi}{\partial \mathrm{z}} \cdot \frac{\partial \Psi}{\partial \mathrm{z}}\right]+\left[\varphi \frac{\partial^{2} \Psi}{\partial \mathrm{x}^{2}}+\varphi \frac{\partial^{2} \Psi}{\partial \mathrm{y}^{2}}+\varphi \frac{\partial^{2} \Psi}{\partial \mathrm{z}^{2}}\right] \\
& =\Psi\left[\frac{\partial^{2} \varphi}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \varphi}{\partial \mathrm{y}^{2}}+\frac{\partial^{2} \varphi}{\partial \mathrm{z}^{2}}\right]+2\left[\frac{\partial \varphi}{\partial \mathrm{x}} \cdot \frac{\partial \Psi}{\partial \mathrm{x}}+\frac{\partial \varphi}{\partial \mathrm{y}} \cdot \frac{\partial \Psi}{\partial \mathrm{y}}++\frac{\partial \varphi}{\partial \mathrm{z}} \cdot \frac{\partial \Psi}{\partial \mathrm{z}}\right]+\varphi\left[\frac{\partial^{2} \Psi}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \Psi}{\partial \mathrm{y}^{2}}+\frac{\partial^{2} \Psi}{\partial \mathrm{z}^{2}}\right] \\
& =\Psi\left[\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2}}{\partial \mathrm{z}^{2}}\right] \varphi+2\left[\left(\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}}\right) \cdot\left(\frac{\partial \Psi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \Psi}{\partial y} \hat{\jmath}+\frac{\partial \Psi}{\partial \mathrm{z}} \hat{\mathrm{k}}\right)\right]+\varphi\left[\frac{\partial^{2} \Psi}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \Psi}{\partial \mathrm{y}^{2}}+\frac{\partial^{2} \Psi}{\partial \mathrm{z}^{2}}\right] \\
& \nabla^{2}(\varphi \Psi)=\Psi \nabla^{2} \varphi+2 \vec{\nabla} \varphi \cdot \vec{\nabla} \Psi+\varphi \nabla^{2} \Psi \quad \text { Hence proved. }
\end{aligned}
$$

(iii) $\quad \boldsymbol{\nabla}^{2} \mathbf{r}^{\mathbf{n}}=\mathbf{n}(\mathbf{n}+1) \mathbf{r}^{\mathbf{n - 2}}$

Solution: We know that $\nabla^{2}=\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2}}{\partial \mathrm{z}^{2}} \quad$ then

$$
\begin{align*}
& \nabla^{2} r^{n}=\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right] r^{n}=\frac{\partial^{2}}{\partial x^{2}} r^{n}+\frac{\partial^{2}}{\partial y^{2}} r^{n}+\frac{\partial^{2}}{\partial z^{2}} r^{n}=\frac{\partial}{\partial x}\left[\frac{\partial}{\partial x} r^{n}\right]+\frac{\partial}{\partial y}\left[\frac{\partial}{\partial y} r^{n}\right]+\frac{\partial}{\partial z}\left[\frac{\partial}{\partial z} r^{n}\right] \\
& =\frac{\partial}{\partial x}\left[n r^{n-1} \frac{\partial r}{\partial x}\right]+\frac{\partial}{\partial y}\left[n r^{n-1} \frac{\partial r}{\partial y}\right]+\frac{\partial}{\partial z}\left[n^{n-1} \frac{\partial r}{\partial z}\right] \\
& =n\left\{\frac{\partial}{\partial x}\left(r^{n-1} \frac{\partial r}{\partial x}\right)+\frac{\partial}{\partial y}\left(r^{n-1} \frac{\partial r}{\partial y}\right)+\frac{\partial}{\partial z}\left(r^{n-1} \frac{\partial r}{\partial z}\right)\right\} \\
& =n\left[\left\{(n-1) r^{n-2} \frac{\partial r}{\partial x} \cdot \frac{\partial r}{\partial x}+r^{n-1} \frac{\partial^{2} r}{\partial x^{2}}\right\}+\left\{(n-1) r^{n-2} \frac{\partial r}{\partial y} \cdot \frac{\partial r}{\partial y}+r^{n-1} \frac{\partial^{2} r}{\partial y^{2}}\right\}+\left\{(n-1) r^{n-2} \frac{\partial r}{\partial z} \cdot \frac{\partial r}{\partial z}+r^{n-1} \frac{\partial^{2} r}{\partial z^{2}}\right\}\right] \\
& =n\left[(n-1) r^{n-2}\left(\frac{\partial r}{\partial x}\right)^{2}+r^{n-1} \frac{\partial^{2} r}{\partial x^{2}}+(n-1) r^{n-2}\left(\frac{\partial r}{\partial y}\right)^{2}+r^{n-1} \frac{\partial^{2} r}{\partial y^{2}}+(n-1) r^{n-2}\left(\frac{\partial r}{\partial z}\right)^{2}+r^{n-1} \frac{\partial^{2} r}{\partial z^{2}}\right] \\
& =n\left[(n-1) r^{n-2}\left\{\left(\frac{\partial r}{\partial x}\right)^{2}+\left(\frac{\partial r}{\partial y}\right)^{2}+\left(\frac{\partial r}{\partial z}\right)^{2}\right\}+r^{n-1}\left\{\frac{\partial^{2} r}{\partial x^{2}}+\frac{\partial^{2} r}{\partial y^{2}}+\frac{\partial^{2} r}{\partial z^{2}}\right\}\right] \\
& =n\left[(n-1) r^{n-2}\left\{\left(\frac{x}{r}\right)^{2}+\left(\frac{y}{r}\right)^{2}+\left(\frac{z}{r}\right)^{2}\right\}+r^{n-1}\left\{\frac{\partial^{2} r}{\partial x^{2}}+\frac{\partial^{2} r}{\partial y^{2}}\left\{\frac{\partial^{2} r}{\partial z^{2}}\right\}\right]\right. \tag{a}
\end{align*}
$$

Let $\quad \vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ then $r^{2}=x^{2}+y^{2}+z^{2}-\cdots---(i)$
\therefore From(i) Differentiate w. $\boldsymbol{\text { r.t }} \boldsymbol{x} \quad 2 r \frac{\partial \mathrm{r}}{\partial \mathrm{x}}=2 \boldsymbol{x} \Rightarrow \frac{\partial \mathrm{r}}{\partial \mathrm{x}}=\frac{\mathrm{x}}{\mathrm{r}} \quad$ Similarly $\quad \frac{\partial \mathrm{r}}{\partial \mathrm{y}}=\frac{\mathrm{y}}{\mathrm{r}} \quad \& \quad \frac{\partial \mathrm{r}}{\partial \mathrm{z}}=\frac{\mathrm{z}}{\mathrm{r}}$
Again differentiate w. r.t $\boldsymbol{x} \quad \frac{\partial^{2} r}{\partial x^{2}}=\frac{r(1)-x \frac{\partial r}{\partial x}}{r^{2}}=\frac{r-x\left(\frac{x}{r}\right)}{r^{2}}=\frac{\frac{r^{2}-x^{2}}{r}}{r^{2}}=\frac{x^{2}+y^{2}+z^{2}-x^{2}}{r^{3}} \Rightarrow \frac{\partial^{2} r}{\partial x^{2}}=\frac{y^{2}+z^{2}}{r^{3}}$

$$
\text { Similarly } \quad \frac{\partial^{2} r}{\partial y^{2}}=\frac{x^{2}+z^{2}}{r^{3}} \quad \& \quad \frac{\partial^{2} r}{\partial z^{2}}=\frac{x^{2}+y^{2}}{r^{3}}
$$

$$
\nabla^{2} r^{n}=n\left[(n-1) r^{n-2}\left\{\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}+\frac{z^{2}}{r^{2}}\right\}+r^{n-1}\left\{\frac{y^{2}+z^{2}}{r^{3}}+\frac{x^{2}+z^{2}}{r^{3}}+\frac{x^{2}+y^{2}}{r^{3}}\right\}\right]
$$

$$
\nabla^{2} r^{n}=n\left[(n-1) r^{n-2}\left\{\frac{x^{2}+y^{2}+z^{2}}{r^{2}}\right\}+r^{n-1}\left\{\frac{y^{2}+z^{2}+x^{2}+z^{2}+x^{2}+y^{2}}{r^{3}}\right\}\right]
$$

$$
\nabla^{2} r^{n}=n\left[(n-1) r^{n-2}\left\{\frac{r^{2}}{r^{2}}\right\}+r^{n-1}\left\{\frac{2\left(x^{2}+y^{2}+z^{2}\right)}{r^{3}}\right\}\right]
$$

$$
\nabla^{2} r^{n}=n\left[(n-1) r^{n-2}(1)+r^{n-1}\left\{\frac{2 r^{2}}{r^{3}}\right\}\right]
$$

$$
\nabla^{2} r^{n}=n\left[(n-1) r^{n-2}+r^{n-1}\left\{\frac{2}{r}\right\}\right]
$$

$$
\nabla^{2} r^{n}=n\left[(n-1) r^{n-2}+2 r^{n-2}\right]=n\left[(n-1+2) r^{n-2}\right]
$$

$$
\nabla^{2} \mathrm{r}^{\mathrm{n}}=\mathrm{n}(\mathrm{n}+1) \mathrm{r}^{\mathrm{n}-2}
$$

Hence proved.

Q\#11: Prove that (i) $\vec{\nabla} \mathrm{r}^{3}=3 \mathrm{r} \overrightarrow{\mathrm{r}} \quad$ (ii) $\vec{\nabla} \mathrm{e}^{\mathrm{r}^{2}}=2 \mathrm{e}^{\mathrm{r}^{2}} \overrightarrow{\mathrm{r}}$

(i) $\quad \vec{\nabla} \mathrm{r}^{3}=3 r \vec{r}$

Solution: Let $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\mathrm{\imath}}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}$ then $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \cdots---(i)$
We know that $\vec{\nabla}=\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}$
Then $\vec{\nabla} \mathrm{r}^{3}=\left[\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}\right] \mathrm{r}^{3}=\frac{\partial}{\partial \mathrm{x}} \mathrm{r}^{3} \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}} \mathrm{r}^{3} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \mathrm{r}^{3} \hat{\mathrm{k}}$

$$
=\left[\begin{array}{ll}
3 r^{3-1} & \frac{\partial r}{\partial x}
\end{array}\right] \hat{\imath}+\left[\begin{array}{ll}
3 r^{3-1} & \frac{\partial r}{\partial y}
\end{array}\right] \hat{\jmath}+\left[\begin{array}{ll}
3 r^{3-1} & \frac{\partial r}{\partial y}
\end{array}\right] \hat{k}
$$

$$
=\left[\begin{array}{lll}
3 r^{2} & \frac{x}{r}
\end{array}\right] \hat{\imath}+\left[\begin{array}{ll}
3 r^{3-1} & \frac{y}{r}
\end{array}\right] \hat{\jmath}+\left[\begin{array}{ll}
3 r^{2} & \frac{z}{r}
\end{array}\right] \hat{k}:\left\{\begin{array}{c}
\text { From(i) Differentiate w.r.t } x \\
2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r} \text { Similarly } \frac{\partial r}{\partial y}=\frac{y}{r}, \frac{\partial r}{\partial z}=\frac{z}{r}
\end{array}\right\}
$$

$$
=[3 r x \hat{\imath}+3 r y \hat{\jmath}+3 r z \hat{k}]
$$

$$
=3 r[x \hat{\imath}+y \hat{\jmath}+z \hat{k}]
$$

$$
\vec{\nabla} \mathrm{r}^{3}=3 r \overrightarrow{\mathrm{r}}
$$

Hence proved.

(ii)

$$
\vec{\nabla} \mathrm{e}^{\mathrm{r}^{2}}=2 \mathrm{e}^{\mathrm{r}^{2}} \overrightarrow{\mathrm{r}}
$$

Solution: Let $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\mathrm{\imath}}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}$ then $\mathrm{r}^{\overline{2}}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-\ldots--(i)$
We know that $\vec{\nabla}=\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{i}}+\frac{\partial}{\partial \mathrm{y}} \hat{\mathrm{\jmath}}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}$

Hence proved.

$$
\begin{aligned}
& \text { Then } \vec{\nabla} \mathrm{e}^{\mathrm{r}^{2}}=\left[\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath} \hat{+}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}\right] \mathrm{e}^{\mathrm{r}^{2}}=\frac{\partial}{\partial \mathrm{x}} \mathrm{e}^{\mathrm{r}^{2}} \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}} \mathrm{e}^{\mathrm{r}^{2}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \mathrm{e}^{\mathrm{r}^{2}} \hat{\mathrm{k}} \\
& =\left[\mathrm{e}^{\mathrm{r}^{2}} \cdot 2 \mathrm{r}^{2-1} \frac{\partial \mathrm{r}}{\partial \mathrm{x}}\right] \hat{\mathrm{l}}+\left[\mathrm{e}^{\mathrm{r}^{2}} \cdot 2 \mathrm{r}^{2-1} \frac{\partial \mathrm{r}}{\partial \mathrm{y}}\right] \hat{\jmath}+\left[\mathrm{e}^{\mathrm{r}^{2}} \cdot 2 \mathrm{r}^{2-1} \frac{\partial \mathrm{r}}{\partial \mathrm{y}}\right] \hat{\mathrm{k}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[2 \mathrm{e}^{\mathrm{r}^{2}} \mathrm{x} \hat{\mathrm{i}}+2 \mathrm{e}^{\mathrm{r}^{2}} \mathrm{y} \hat{\jmath}+2 \mathrm{e}^{\mathrm{r}^{2}} \mathrm{z} \hat{\mathrm{k}}\right] \\
& =2 \mathrm{e}^{\mathrm{r}^{2}}[\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}] \\
& \vec{\nabla} \mathrm{e}^{\mathrm{r}^{2}}=2 \mathrm{e}^{\mathrm{r}^{2}} \overrightarrow{\mathrm{r}} \\
& \therefore \text { From(i) }
\end{aligned}
$$

Q\#12: Prove that (i) $\quad \vec{\nabla} \mathrm{r}=\hat{\mathrm{r}} \quad$ (ii) $\quad \vec{\nabla}\left(\frac{1}{\mathrm{r}}\right)=-\frac{\overrightarrow{\mathrm{r}}}{\mathrm{r}^{3}}$
(i) $\quad \vec{\nabla} \mathbf{r}=\hat{\mathbf{r}}$

Solution: Let $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ then $r^{2}=x^{2}+y^{2}+z^{2}----(i)$
We know that $\vec{\nabla}=\frac{\partial}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{\mathrm{k}}$
Then

$$
\begin{aligned}
\vec{\nabla} r & =\left[\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}\right] r=\frac{\partial r}{\partial x} \hat{\imath}+\frac{\partial r}{\partial y} \hat{\jmath}+\frac{\partial r}{\partial z} \hat{k} \\
& =\frac{x}{r} \hat{\imath}+\frac{y}{r} \hat{\jmath}+\frac{z}{r} \hat{k} \quad \therefore\left\{\begin{array}{l}
\text { From(i) Differentiate w.r.t } \frac{\partial r}{x} \\
\\
\end{array} \quad=\frac{x \hat{l}+y \hat{\jmath}+z \hat{k}}{r}=\frac{\vec{r}}{r} \quad\right.
\end{aligned}
$$

$$
\vec{\nabla} r^{3}=\hat{r}
$$

Hence proved.
(ii) $\vec{\nabla}\left(\frac{1}{\mathrm{r}}\right)=-\frac{\overrightarrow{\mathrm{r}}}{\mathrm{r}^{3}}$

Solution: Let $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ then $r^{2}=x^{2}+y^{2}+z^{2} \cdots---(i)$
We know that $\vec{\nabla}=\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \bar{z}} \hat{k}$
Then $\vec{\nabla}\left(\frac{1}{r}\right)=\left[\frac{\partial}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}\right]\left(\mathrm{r}^{-1}\right)=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{r}^{-1}\right) \hat{\imath}+\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{r}^{-1}\right) \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{r}^{-1}\right) \hat{\mathrm{k}}$

$$
\begin{aligned}
& =(-1) r^{-1}-1 \cdot \frac{\partial r}{\partial x} \hat{1}+(-1) r^{-1-1} \cdot \frac{\partial r}{\partial y} \hat{\jmath}+(-1) r^{-1-1} \cdot \frac{\partial r}{\partial z} \hat{k} \\
& =-r^{-2} \frac{\frac{\lambda}{r}}{r}-r^{-2} \cdot \frac{y}{r} \hat{\jmath}-r^{-2} \cdot \frac{z}{r} \hat{k} \quad \therefore\left\{\begin{array}{c}
\text { From(i) Differentiate w.r.t } x \\
\left.2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r} \text { Similarly } \frac{\partial r}{\partial y}=\frac{y}{r}, \frac{\partial r}{\partial z}=\frac{z}{r}\right\}
\end{array}\right.
\end{aligned}
$$

$$
=-\frac{1}{r^{2}}\left[\frac{x \hat{\imath}+y \hat{\jmath}+z \hat{k}}{r}\right]=-\left[\frac{x \hat{i}+y \hat{\jmath}+z \hat{k}}{r^{3}}\right]
$$

$\vec{\nabla} r^{3}=-\frac{\vec{r}}{r^{3}}$
Hence proved.

Q\#13: Let \vec{a} be a constant vector show that $\vec{\nabla}(\vec{a} \cdot \vec{r})=\vec{a}$ where \vec{r} is a position vector.
Solution: Let $\overrightarrow{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}} \quad \& \quad \overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}$
Then $\quad \vec{a} \cdot \vec{r}=\left(a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}\right) \cdot(x \hat{\imath}+y \hat{\jmath}+z \hat{k})=a_{1} x+a_{2} y+a_{3} z$
We know that $\vec{\nabla}=\frac{\partial}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{\mathrm{k}}$
Then $\vec{\nabla}(\vec{a} \cdot \vec{r})=\left[\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}\right](\vec{a} \cdot \vec{r})=\frac{\partial}{\partial x}(\vec{a} \cdot \vec{r}) \hat{\imath}+\frac{\partial}{\partial y}(\vec{a} \cdot \vec{r}) \hat{\jmath}+\frac{\partial}{\partial z}(\vec{a} \cdot \vec{r}) \hat{k}$

$$
=\frac{\partial}{\partial x}\left(a_{1} x+a_{2} y+a_{3} z\right) \hat{\imath}+\frac{\partial}{\partial y}\left(a_{1} x+a_{2} y+a_{3} z\right) \hat{\jmath}+\frac{\partial}{\partial z}\left(a_{1} x+a_{2} y+a_{3} z\right) \hat{k}
$$

$$
\vec{\nabla}(\vec{a} \cdot \vec{r})=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}
$$

$$
\vec{\nabla}(\vec{a} \cdot \vec{r})=\vec{a} \quad \text { Hence proved. }
$$

Q\#14: Find $\quad \overrightarrow{\operatorname{grad} f}(r)$ where $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\mathrm{\imath}}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}$
Solution: Given that $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\mathrm{i}}+\mathrm{y} \hat{\mathrm{j}}+\mathrm{z} \hat{\mathrm{k}} \quad$ then $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-\ldots--(\boldsymbol{i})$
Then $\overrightarrow{\operatorname{grad} f}(r)=\vec{\nabla} f(r)=\left[\frac{\partial}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}\right] \mathrm{f}(\mathrm{r})$ $\therefore \vec{\nabla}=\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}$

$$
\begin{aligned}
& =\frac{\partial}{\partial x} f(r) \hat{\imath}+\frac{\partial}{\partial y} f(r) \hat{\jmath}+\frac{\partial}{\partial z} f(r) \hat{k} \\
& =f^{\prime}(r) \frac{\partial r}{\partial y} \hat{\imath}+f^{\prime}(r) \frac{\partial r}{\partial y} \hat{\jmath}+f^{\prime}(r) \frac{\partial r}{\partial z} \hat{k} \\
& =f^{\prime}(r)\left[\frac{x}{r} \hat{\imath}+\frac{y}{r} \hat{\jmath}+\frac{z}{r} \hat{k}\right] \because\left\{\begin{array}{c}
\text { From(i) Differentiate w.r.t } x \\
\left.2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r} \text { Similarly } \frac{\partial r}{\partial y}=\frac{y}{r}, \frac{\partial r}{\partial z}=\frac{z}{r}\right\} \\
=\left[\frac{x}{r}+y \hat{\jmath}+2 \hat{k}\right] \\
f^{\prime}(r)
\end{array}\right.
\end{aligned}
$$

$\overrightarrow{\operatorname{grad} f(r)}=\frac{\vec{r}}{r} f^{\prime}(r)$

Q\#15: If $\varphi=2 z-x^{3} y$ and $\vec{a}=2 x^{2} \hat{\imath}-3 y z \hat{\jmath}+x z^{2} \hat{k}$. Find $\vec{a} \cdot \vec{\nabla} \varphi$ \& $\vec{a} \times \vec{\nabla} \varphi$ at $(1,-1,1)$
Solution: : Given that If $\varphi=2 z-x^{3} y$ and $\vec{a}=2 x^{2} \hat{\imath}-3 y z \hat{\jmath}+x z^{2} \hat{k}$
We know that $\vec{\nabla}=\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial z} \hat{\mathrm{k}}$
Then

$$
\begin{aligned}
& \vec{\nabla} \varphi=\left[\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}\right] \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial \varphi}{\partial \mathrm{y}} \hat{\mathrm{\jmath}}+\frac{\partial \varphi}{\partial \mathrm{z}} \hat{\mathrm{k}} \\
& =\frac{\partial}{\partial x}\left(2 z-x^{3} y\right) \hat{\imath}+\frac{\partial}{\partial y}\left(2 z-x^{3} y\right) \hat{\jmath}+\frac{\partial}{\partial z}\left(2 z-x^{3} y\right) \hat{k} \\
& \vec{\nabla} \varphi=-3 x^{2} y \hat{\imath}-x^{3} \hat{\jmath}+2 \hat{k}
\end{aligned}
$$

Now

$$
\begin{aligned}
\overrightarrow{\mathrm{a}} \cdot \vec{\nabla} \varphi & =\left(2 x^{2} \hat{\imath}-3 y z \hat{\jmath}+x z^{2} \hat{k}\right) \cdot\left(-3 x^{2} y \hat{\imath}-x^{3} \hat{\jmath}+2 \hat{k}\right) \\
& =\left(2 x^{2}\right)\left(-3 x^{2} y\right)+(-3 y z)\left(-x^{3}\right)+\left(x z^{2}\right)(2)
\end{aligned}
$$

$$
\vec{a} \cdot \vec{\nabla} \varphi=-6 x^{4} y+3 x^{3} y z+2 x z^{2}
$$

At 1, -1,1):

$$
\overrightarrow{\mathrm{a}} \cdot \vec{\nabla} \varphi=-6(1)^{4}(-1)+3(1)^{3}(-1)(1)+2(1)(1)^{2}=6-3+2=5
$$

Now $\vec{a} \times \vec{\nabla} \varphi=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 x^{2} & -3 y z & x z^{2} \\ -3 x^{2} y & -x^{3} & 2\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}-3 y z & x z^{2} \\ -x^{3} & 2\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}2 x^{2} & x z^{2} \\ -3 x^{2} y & 2\end{array}\right|+\hat{k}\left|\begin{array}{cc}2 x^{2} & -3 y z \\ -3 x^{2} y & -x^{3}\end{array}\right|$

$$
\vec{a} \times \vec{\nabla} \varphi=\hat{\imath}\left(-6 y z+x^{4} z^{2}\right)-\hat{\jmath}\left(4 x^{2}+3 x^{3} y z^{2}\right)+\hat{k}\left(-2 x^{5}-9 x^{2} y^{2} z\right)
$$

At 1, -1,1):

$$
\begin{aligned}
\vec{a} \times \vec{\nabla} \varphi & =\hat{\imath}\left[-6(-1)(1)+(1)^{4}(1)^{2}\right]-\hat{\jmath}\left[4(1)^{2}+3(1)^{3}(-1)(1)^{2}\right]+\hat{k}\left[-2(1)^{5}-9(1)^{2}(-1)^{2}(1)\right] \\
& =\hat{\imath}[6+1]-\hat{\imath}[4-3]+\hat{k}[-2-9] \\
\vec{a} \times \vec{\nabla} \varphi & =7 \hat{\imath}-\hat{\imath}-11 \hat{k}
\end{aligned}
$$

Q\#16: If $\varphi=\mathrm{x}^{\mathrm{n}}+\mathrm{y}^{\mathrm{n}}+\mathrm{z}^{\mathrm{n}}$. Show that $\overrightarrow{\mathrm{r}} \cdot \vec{\nabla} \varphi=\mathrm{n} \varphi$.
Solution: Given that $\varphi=\mathrm{x}^{\mathrm{n}}+\mathrm{y}^{\mathrm{n}}+\mathrm{z}^{\mathrm{n}} \quad$ Let $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\mathrm{i}}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}$ then $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-----(i)$
We know that $\vec{\nabla}=\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial z} \hat{\mathrm{k}}$
Then $\vec{\nabla} \varphi=\left[\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{i}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}\right]\left(\mathrm{x}^{\mathrm{n}}+\mathrm{y}^{\mathrm{n}}+\mathrm{z}^{\mathrm{n}}\right)$

$$
\begin{aligned}
& \vec{\nabla} \varphi=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{x}^{\mathrm{n}}+\mathrm{y}^{\mathrm{n}}+\mathrm{z}^{\mathrm{n}}\right) \hat{\imath}+\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{x}^{\mathrm{n}}+\mathrm{y}^{\mathrm{n}}+\mathrm{z}^{\mathrm{n}}\right) \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{x}^{\mathrm{n}}+\mathrm{y}^{\mathrm{n}}+\mathrm{z}^{\mathrm{n}}\right) \hat{\mathrm{k}} \\
& \vec{\nabla} \varphi=\left[\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}\right] \hat{\imath}+\left[\mathrm{n} \mathrm{y}^{\mathrm{n}-1}\right] \hat{\jmath}+\left[\mathrm{n} \mathrm{z}^{\mathrm{n}-1}\right] \hat{\mathrm{k}}
\end{aligned}
$$

Now $\quad \vec{r} \cdot \vec{\nabla} \varphi=(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \cdot\left(\left[n x^{n-1}\right] \hat{\imath}+\left[n y^{n-1}\right] \hat{\jmath}+\left[n z^{n-1}\right] \hat{k}\right)$

$$
=\mathrm{x} \cdot \mathrm{nx} \mathrm{x}^{\mathrm{n}-1}+\mathrm{y} . \mathrm{n} \mathrm{y}^{\mathrm{n}-1}+\mathrm{z} \cdot \mathrm{n} \mathrm{z}^{\mathrm{n}-1}=\boldsymbol{n}\left[\mathrm{x}^{\mathrm{n}}+\mathrm{y}^{\mathrm{n}}+\mathrm{z}^{\mathrm{n}}\right]
$$

$\overrightarrow{\mathrm{r}} . \vec{\nabla} \varphi=\mathrm{n} \varphi$

Hence proved.

Q\#17: If $\varphi=3 \mathrm{x}^{2} \mathrm{y} \quad \& \quad \psi=\mathrm{xz}^{2}-\mathrm{zy}$. Evaluate $\vec{\nabla}(\vec{\nabla} \varphi \cdot \vec{\nabla} \psi)$
Solution: Given that $\varphi=3 x^{2} \mathrm{y}$ \& $\psi=\mathrm{xz}^{2}-\mathrm{zy} \quad$ We know that $\vec{\nabla}=\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{I}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}$
Then $\vec{\nabla} \varphi=\left[\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}\right]\left(3 x^{2} y\right)=\frac{\partial}{\partial x}\left(3 x^{2} y\right) \hat{\imath}+\frac{\partial}{\partial y}\left(3 x^{2} y\right) \hat{\jmath}+\frac{\partial}{\partial z}\left(3 x^{2} y\right) \hat{k}$

$$
\vec{\nabla} \varphi=6 x y \hat{\imath}+3 x^{2} \hat{\jmath}+0 \hat{k}
$$

\&

$$
\begin{aligned}
& \vec{\nabla} \psi=\left[\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}} \hat{\mathrm{\jmath}}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}\right]\left(\mathrm{xz}^{2}-\mathrm{zy}\right) \\
& \vec{\nabla} \psi=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{xz}^{2}-\hat{z y}\right) \hat{\mathrm{i}}+\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{xz}^{2}-\mathrm{zy}\right) \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{xz}^{2}-\mathrm{zy}\right) \hat{\mathrm{k}} \\
& \vec{\nabla} \psi=\mathrm{z}^{2} \hat{\mathrm{i}}-\mathrm{z} \hat{\mathrm{j}}+(2 \mathrm{xz}-\mathrm{y}) \hat{\mathrm{k}}
\end{aligned}
$$

Now taking dot product of $\vec{\nabla} \varphi$ \& $\vec{\nabla} \psi$.
$\vec{\nabla} \varphi \cdot \vec{\nabla} \psi=\left[6 x y \hat{\imath}+3 x^{2} \hat{\jmath}+0 \hat{k}\right] \cdot\left[z^{2} \hat{\imath}-z \hat{\jmath}+(2 x z-y) \hat{k}\right]=6 x y z^{2}-3 x^{2} z$

Now applying $\vec{\nabla}$ operator

$$
\begin{aligned}
\vec{\nabla}(\vec{\nabla} \varphi \cdot \vec{\nabla} \psi) & =\vec{\nabla}\left(6 x y z^{2}-3 x^{2} z\right)=\left[\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}\right]\left(6 x y z^{2}-3 x^{2} z\right) \\
& =\frac{\partial}{\partial x}\left(6 x y z^{2}-3 x^{2} z\right) \hat{\imath}+\frac{\partial}{\partial y}\left(6 x y z^{2}-3 x^{2} z\right) \hat{\jmath}+\frac{\partial}{\partial z}\left(6 x y z^{2}-3 x^{2} z\right) \hat{k} \\
\vec{\nabla}(\vec{\nabla} \varphi \cdot \vec{\nabla} \psi) & =\left(6 y z^{2}-6 x z\right) \hat{\imath}+\left(6 x z^{2}\right) \hat{\jmath}+\left(12 x y z-3 x^{2}\right) \hat{k}
\end{aligned}
$$

Q\#18: Show that $\vec{\nabla} f(r) \times \vec{r}=0$.
Solution: Let $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}$ then $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}----(\boldsymbol{i})$
Then $\quad \vec{\nabla} f(r)=\left[\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}\right] \mathrm{f}(\mathrm{r})$
$\therefore \vec{\nabla}=\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}$
$=\frac{\partial}{\partial \mathrm{x}} \mathrm{f}(\mathrm{r}) \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}} \mathrm{f}(\mathrm{r}) \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \mathrm{f}(\mathrm{r}) \hat{\mathrm{k}}$
$=f^{\prime}(r) \frac{\partial r}{\partial y} \hat{\imath}+f^{\prime}(r) \frac{\partial r}{\partial y} \hat{\jmath}+f^{\prime}(r) \frac{\partial r}{\partial z} \hat{k}$
$=f^{\prime}(r)\left[\frac{x}{r} \hat{\imath}+\frac{y}{r} \hat{\jmath}+\frac{z}{r} \hat{k}\right]: \therefore\left\{\begin{array}{c}\text { From(i) Differentiate w.r.t } x \\ \left.2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r} \text { Similarly } \frac{\partial r}{\partial y}=\frac{y}{r}, \frac{\partial r}{\partial z}=\frac{z}{r}\right\}\end{array}\right\}$
$=f^{\prime}(r)\left[\frac{x \hat{i}+y \hat{\jmath}+z \hat{k}}{r}\right]$

$$
\vec{\nabla} f(r)=f^{\prime}(r) \frac{\vec{r}}{r}
$$

Now taking cross product with $\overrightarrow{\mathrm{r}}$

$\vec{\nabla} f(r) \times \vec{r}=f^{\prime}(r) \frac{\vec{r}}{r} \times \vec{r}==\frac{f^{\prime}(r)}{r}(\vec{r} \times \vec{r})=\frac{f^{\prime}(r)}{r}(0)$
$\therefore \overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{r}}=0$
$\vec{\nabla} f(r) \times \vec{r}=0$

Hence proved.

Q\#19: Show that $(\vec{a} \cdot \vec{\nabla}) \vec{r}=\vec{a}$. Where \vec{a} is a constant vector.
Solution: Let $\overrightarrow{\mathrm{a}}=\mathrm{a}_{1} \hat{\mathrm{i}}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}} \quad$ \& $\quad \overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\mathrm{i}}+\mathrm{y} \hat{\mathrm{\jmath}}+\mathrm{z} \hat{\mathrm{k}}$
We know that $\vec{\nabla}=\frac{\partial}{\partial x} \hat{1}+\frac{\partial}{\partial y} \hat{f}+\frac{\partial}{\partial z} \hat{k}$
Then $\quad \vec{a} \cdot \vec{\nabla}=\left(a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}\right) \cdot\left(\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}\right)=a_{1} \frac{\partial}{\partial x}+a_{2} \frac{\partial}{\partial y}+a_{3} \frac{\partial}{\partial z}$
Now $\quad(\vec{a} \cdot \vec{\nabla}) \vec{r}=\left[a_{1} \frac{\partial}{\partial x}+a_{2} \frac{\partial}{\partial y}+a_{3} \frac{\partial}{\partial z}\right](x \hat{\imath}+y \hat{\jmath}+z \hat{k})$

$$
=a_{1} \frac{\partial}{\partial x}(x \hat{\imath}+y \hat{\jmath}+z \hat{k})+a_{2} \frac{\partial}{\partial y}(x \hat{\imath}+y \hat{\jmath}+z \hat{k})+a_{3} \frac{\partial}{\partial z}(x \hat{\imath}+y \hat{\jmath}+z \hat{k})
$$

$(\vec{a} \cdot \vec{\nabla}) \vec{r}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$(\vec{a} \cdot \vec{\nabla}) \vec{r}=\vec{a}$
Hence proved.

Divergence of a Vector:

Le $\overrightarrow{\mathrm{F}}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is a vector .Then Divergence of a vector $\overrightarrow{\mathrm{F}}$ is defined as; \quad Div $\overrightarrow{\mathrm{F}}=\vec{\nabla} \cdot \overrightarrow{\mathrm{F}}$.

Solenoid Vector:

A vector $\overrightarrow{\mathrm{F}}$ is said to be Solenoid, if \quad Div $\overrightarrow{\mathrm{F}}=0$.

Properties of the Divergence:

If $\overrightarrow{\mathrm{a}} \& \overrightarrow{\mathrm{~b}}$ are two vector \& φ is a scalar function then
(i) Div $(\vec{a}+\vec{b})=\vec{\nabla} \cdot(\vec{a}+\vec{b})=\vec{\nabla} \cdot \vec{a}+\vec{\nabla} \cdot \vec{b}$
(ii) $\operatorname{Div}(\varphi \vec{a})=\vec{\nabla} \cdot(\varphi \vec{a})=\varphi(\vec{\nabla} \cdot \vec{a})+(\vec{\nabla} \varphi) \cdot \vec{a}$

Curl of a Vector:

Le $\overrightarrow{\mathrm{F}}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is a vector .Then Curl of a vector $\overrightarrow{\mathrm{F}}$ is defined as; Curl $\overrightarrow{\mathrm{F}}=\vec{\nabla} \times \overrightarrow{\mathrm{F}}$.

Irrotational Vector:

A vector $\overrightarrow{\mathrm{F}}$ is said to be Irrotational, if $\operatorname{Curl} \overrightarrow{\mathrm{F}}=0$.

Properties of the Curl:

If $\overrightarrow{\mathrm{a}} \& \overrightarrow{\mathrm{~b}}$ are two vector $\& \varphi$ is a scalar function then
(i) $\quad \operatorname{Curl}(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}})=\vec{\nabla} \times(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}})=\vec{\nabla} \times \overrightarrow{\mathrm{a}}+\vec{\nabla} \times \overrightarrow{\mathrm{b}}$
(ii) $\operatorname{Curl}(\varphi \vec{a})=\vec{\nabla} \times(\varphi \vec{a})=\varphi(\vec{\nabla} \times \vec{a})+(\vec{\nabla} \varphi) \times \vec{a}$
(iii) $\operatorname{Curl}(\overline{\operatorname{grad} \varphi})=\operatorname{Curl}(\vec{\nabla} \varphi)=\vec{\nabla} \times(\vec{\nabla} \varphi)=0$
(iv) $\operatorname{Curl}(\mathrm{Div} \overrightarrow{\mathrm{a}})=\operatorname{Curl}(\vec{\nabla} \cdot \overrightarrow{\mathrm{a}})=\vec{\nabla} \times(\vec{\nabla} \cdot \overrightarrow{\mathrm{a}})=0$

Theorems: If $\overrightarrow{\mathrm{F}} \& \overrightarrow{\mathrm{G}}$ are two vector functions. Then prove that
(i) $\vec{\nabla} \times(\vec{\nabla} \times \vec{F})=(\vec{\nabla} \cdot \vec{F}) \vec{\nabla}-\nabla^{2} \vec{F}$

Prove that $\vec{\nabla} \times(\vec{\nabla} \times \vec{F})=(\vec{\nabla} \cdot \vec{F}) \vec{\nabla}-\nabla^{2} \vec{F}$
Proof: We know that

Then

$$
\begin{aligned}
\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}) & =(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{b}}-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}) \overrightarrow{\mathrm{c}} \\
\vec{\nabla} \times(\vec{\nabla} \times \overrightarrow{\mathrm{F}}) & =(\vec{\nabla} \cdot \overrightarrow{\mathrm{F}}) \vec{\nabla}-(\vec{\nabla} \cdot \vec{\nabla}) \overrightarrow{\mathrm{F}} \\
\vec{\nabla} \times(\vec{\nabla} \times \overrightarrow{\mathrm{F}}) & =(\vec{\nabla} \cdot \overrightarrow{\mathrm{F}}) \vec{\nabla}-\nabla^{2} \overrightarrow{\mathrm{~F}} \quad \text { Here } \vec{\nabla} \cdot \vec{\nabla}=\nabla^{2}
\end{aligned}
$$

Example\#01: Find the divergence of \vec{F} where $\vec{F}=\frac{x \hat{1}+y \hat{\jmath}+z \widehat{k}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$
Solution: Given $\overrightarrow{\mathrm{F}}=\frac{\mathrm{x} \hat{\mathrm{\imath}}+\mathrm{y} \hat{\hat{\jmath}}+\mathrm{z} \hat{\mathrm{k}}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{3 / 2}}=\frac{\mathrm{x} \hat{\mathrm{\imath}}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{3 / 2}}+\frac{\mathrm{y} \hat{\mathrm{\jmath}}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{3 / 2}}+\frac{\mathrm{z} \hat{\mathrm{k}}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{3 / 2}}$
We know that $\quad \operatorname{Div} \overrightarrow{\mathrm{F}}=\vec{\nabla} \cdot \overrightarrow{\mathrm{F}}$

$$
\begin{aligned}
& =\left(\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}\right) \cdot\left(\frac{x \hat{l}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{y \hat{y}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{z \hat{k}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right) \\
& =\frac{\partial}{\partial x} \frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{\partial}{\partial y} \frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{\partial}{\partial z} \frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \\
& =\frac{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}(1)-x \cdot \frac{3}{2}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}(2 x)}{\left(x^{2}+y^{2}+z^{2}\right)^{3}}+\frac{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}(1)-y \cdot \frac{3}{2}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}(2 y)}{\left(x^{2}+y^{2}+z^{2}\right)^{3}}+\frac{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}(1)-x \cdot \frac{3}{2}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}(2 z)}{\left(x^{2}+y^{2}+z^{2}\right)^{3}} \\
& \left.=\frac{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}\left[x^{2}+y^{2}+z^{2}-3 x^{2}\right]}{\left(x^{2}+y^{2}+z^{2}\right)^{3}}+\frac{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}\left[x^{2}+y^{2}+z^{2}-3 y^{2}\right]}{\left(x^{2}+y^{2}+z^{2}\right)^{3}}+\frac{\left.\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}\left[x^{2}+y^{2}+z^{2}-3 z^{2}\right]\right)}{\left(x^{2}+y^{2}+z^{2}\right)^{3}}\right) \\
& =\frac{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}}{\left(x^{2}+y^{2}+z^{2}\right)^{3}}\left[x^{2}+y^{2}+z^{2}-3 x^{2}+x^{2}+y^{2}+z^{2}-3 y^{2}+x^{2}+y^{2}+z^{2}-3 z^{2}\right]
\end{aligned}
$$

$$
=\frac{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}}{\left(x^{2}+y^{2}+z^{2}\right)^{3}}[0]
$$

Hence Div $\overrightarrow{\mathrm{F}}=0$

Example\#02: If $\overrightarrow{\mathrm{F}}=2 \mathrm{yz} \hat{\mathrm{\imath}}+\mathrm{x}^{2} \mathrm{y} \hat{\jmath}+\mathrm{xz}^{2} \hat{\mathrm{k}} ; \overrightarrow{\mathrm{G}}=\mathrm{x}^{2} \hat{\mathrm{\imath}}+\mathrm{yz} \hat{\jmath}+\mathrm{xy} \hat{\mathrm{k}}$ and $\varphi=2 \mathrm{x}^{2} \mathrm{yz}^{3}$
Find
(i) $(\overrightarrow{\mathrm{F}} . \vec{\nabla}) \varphi \quad$ (ii) $(\overrightarrow{\mathrm{F}} \times \vec{\nabla}) \varphi$
(ii) $\overrightarrow{\mathrm{F}} \times \vec{\nabla} \varphi$
(iv) $(\vec{\nabla} \times \vec{F}) \times \vec{G}$

Solution: Given $\overrightarrow{\mathrm{F}}=2 \mathrm{yz} \hat{\imath}+\mathrm{x}^{2} \mathrm{y} \hat{\jmath}+\mathrm{xz}^{2} \hat{\mathrm{k}} ; \overrightarrow{\mathrm{G}}=\mathrm{x}^{2} \hat{\imath}+\mathrm{yz} \hat{\jmath}+\mathrm{xy} \hat{\mathrm{k}}$ and $\varphi=2 \mathrm{x}^{2} \mathrm{yz}^{3}$
(i) $(\overrightarrow{\mathbf{F}} . \overrightarrow{\boldsymbol{V}}) \varphi$

$$
(\overrightarrow{\mathrm{F}} \cdot \vec{\nabla}) \varphi=\left[\left(2 \mathrm{yz} \hat{\imath}+\mathrm{x}^{2} \mathrm{y} \hat{\jmath}+\mathrm{xz}^{2} \hat{\mathrm{k}}\right) \cdot\left(\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{i}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}\right)\right]\left(2 \mathrm{x}^{2} \mathrm{yz}^{3}\right)
$$

$$
\begin{aligned}
& =\left(2 y z \frac{\partial}{\partial x}+x^{2} y \frac{\partial}{\partial y}+x z^{2} \frac{\partial}{\partial z}\right)\left(2 x^{2} y z^{3}\right) \\
& =2 y z \frac{\partial}{\partial x}\left(2 x^{2} y z^{3}\right)+x^{2} y \frac{\partial}{\partial y}\left(2 x^{2} y z^{3}\right)+x z^{2} \frac{\partial}{\partial z}\left(2 x^{2} y z^{3}\right) \\
& =2 y z\left(4 x y z^{3}\right)+x^{2} y\left(2 x^{2} z^{3}\right)+x z z^{2}\left(6 x^{2} y z z^{2}\right)
\end{aligned}
$$

$$
\left.(\overrightarrow{\mathrm{F}} . \vec{\nabla}) \varphi=8 \mathrm{xy}^{2} \mathrm{z}^{4}+2 \mathrm{x}^{4} \mathrm{yz}^{3}+6 \mathrm{x}^{3} \mathrm{yz}^{4}\right)
$$

(ii) $(\overrightarrow{\mathbf{F}} \times \overrightarrow{\boldsymbol{\nabla}}) \boldsymbol{\varphi}$
$\overrightarrow{\mathrm{F}} \times \vec{\nabla} \varphi=\left[2 y z \hat{\imath}+x^{2} y \hat{\jmath}+x z^{2} \hat{k}\right] \times\left[\frac{\partial}{\partial x} \varphi \hat{\imath}+\frac{\partial}{\partial y} \varphi \hat{\jmath}+\frac{\partial}{\partial z} \varphi \hat{\mathrm{k}}\right]$

$$
=\left[2 y z \hat{\imath}+x^{2} y \hat{\jmath}+x z^{2} \hat{k}\right] \times\left[\frac{\partial}{\partial x}\left(2 x^{2} y z^{3}\right) \hat{\imath}+\frac{\partial}{\partial y}\left(2 x^{2} y z^{3}\right) \hat{\jmath}+\frac{\partial}{\partial z}\left(2 x^{2} y z^{3}\right) \hat{k}\right]
$$

$$
=\left[2 y z \hat{\imath}+x^{2} y \hat{\jmath}+x z^{2} \hat{k}\right] \times\left[4 x y z^{3}+2 x^{2} z^{3} \hat{\jmath}+6 x^{2} y z^{2} \hat{k}\right]=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
2 y z & x^{2} y & x z^{2} \\
4 x y z^{3} & 2 x^{2} z^{3} & 6 x^{2} y z^{2}
\end{array}\right|
$$

$$
=\left[\hat{\imath}\left|\begin{array}{cc}
x^{2} y & x z^{2} \\
2 x^{2} z^{3} & 6 x^{2} y z^{2}
\end{array}\right|<\hat{\jmath}\left|\begin{array}{cc}
2 y z & x z^{2} \\
2 x y z^{3} & 6 x^{2} y z^{2}
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
2 y z & x^{2} y \\
4 x y z^{3} & 2 x^{2} z^{3}
\end{array}\right|\right]
$$

$$
=\hat{i}\left[x^{2} y\left(6 x^{2} y z^{2}\right)-x^{2}\left(2 x^{2} z^{3}\right)\right]-\hat{\jmath}\left[2 y z\left(6 x^{2} y z^{2}\right)-x z^{2}\left(4 x y z^{3}\right)\right]+\hat{\mathrm{k}}\left[2 y z\left(2 x^{2} z^{3}\right)-x^{2} y\left(4 x y z^{3}\right)\right]
$$

$$
=\hat{i}\left[6 x^{4} y^{2} z^{4}-2 x^{3} z^{5}\right]-\hat{\jmath}\left[12 x^{2} y^{2} z^{3}-4 x^{2} y z^{5}\right]+\hat{k}\left[2 x^{2} y z^{4}-4 x^{3} y^{2} z^{3}\right]
$$

(iv) $(\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\mathbf{F}}) \times \overrightarrow{\mathbf{G}}$

$$
\begin{aligned}
(\vec{\nabla} \times \overrightarrow{\mathrm{F}}) & \times \overrightarrow{\mathrm{G}}=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\jmath} & \hat{\mathrm{k}} \\
\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial y} & \frac{\partial}{\partial \mathrm{z}} \\
2 \mathrm{yz} & \mathrm{x}^{2} \mathrm{y} & \mathrm{xz}^{2}
\end{array}\right| \times \overrightarrow{\mathrm{G}}=\left[\left.\begin{array}{cc}
\hat{\mathrm{i}} & \frac{\partial}{\partial \mathrm{y}} \\
\frac{\partial}{\partial \mathrm{z}} \\
\mathrm{x}^{2} \mathrm{y} & \mathrm{xz}
\end{array}|-\hat{\jmath}| \begin{array}{cc}
\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial \mathrm{z}} \\
2 \mathrm{yz} & x z^{2}
\end{array}|+\hat{\mathrm{k}}| \begin{array}{cc}
\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial \mathrm{y}} \\
2 \mathrm{yz} & x^{2} \mathrm{y}
\end{array} \right\rvert\,\right] \times \overrightarrow{\mathrm{G}} \\
& =\left\{\hat{\imath}\left[\frac{\partial}{\partial y} \mathrm{xz}^{2}-\frac{\partial}{\partial \mathrm{z}} \mathrm{x}^{2} \mathrm{y}\right]-\hat{\jmath}\left[\frac{\partial}{\partial \mathrm{x}} \mathrm{xz}^{2}-\frac{\partial}{\partial \mathrm{z}} 2 \mathrm{yz}\right]+\hat{\mathrm{k}}\left[\frac{\partial}{\partial \mathrm{x}} \mathrm{x}^{2} \mathrm{y}-\frac{\partial}{\partial \mathrm{y}} 2 \mathrm{yz}\right]\right\} \times \overrightarrow{\mathrm{G}} \\
& =\left\{\hat{\imath}[0-0]-\hat{\mathrm{\jmath}}\left[\mathrm{z}^{2}-2 \mathrm{y}\right]+\hat{\mathrm{k}}[2 \mathrm{xy}-2 \mathrm{z}]\right\} \times \overrightarrow{\mathrm{G}}
\end{aligned}
$$

$$
\begin{aligned}
& (\overrightarrow{\mathrm{F}} \times \vec{\nabla}) \varphi=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
2 y z & \mathrm{x}^{2} \mathrm{y} & \mathrm{xz} \\
\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial y} & \frac{\partial}{\partial \mathrm{z}}
\end{array}\right| \varphi=\left[\hat{\mathrm{i}}\left|\begin{array}{cc}
\mathrm{x}^{2} y & x z^{2} \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial z}
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
2 y z & x z^{2} \\
\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial \mathrm{z}}
\end{array}\right|+\hat{\mathrm{k}}\left|\begin{array}{cc}
2 \mathrm{zz} & \mathrm{x}^{2} \mathrm{y} \\
\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial y}
\end{array}\right|\right] \varphi \\
& =\hat{\imath}\left[x^{2} y \frac{\partial}{\partial z}-x z^{2} \frac{\partial}{\partial y}\right] \varphi-\hat{\jmath}\left[2 y z \frac{\partial}{\partial z}-x z^{2} \frac{\partial}{\partial x}\right] \varphi+\hat{k}\left[2 y z \frac{\partial}{\partial y}-x^{2} y \frac{\partial}{\partial x}\right] \varphi \\
& =\hat{1}\left[\mathrm{x}^{2} \mathrm{y} \frac{\partial}{\partial \mathrm{z}} \varphi-\mathrm{xz}^{2} \frac{\partial}{\partial \mathrm{y}} \varphi\right]-\hat{\jmath}\left[2 \mathrm{yz} \frac{\partial}{\partial \mathrm{z}} \varphi-\mathrm{xz}^{2} \frac{\partial}{\partial \mathrm{x}} \varphi\right]+\hat{\mathrm{k}}\left[2 \mathrm{yz} \frac{\partial}{\partial \mathrm{y}} \varphi-\mathrm{x}^{2} \mathrm{y} \frac{\partial}{\partial \mathrm{x}} \varphi\right] \\
& =\hat{1}\left[x^{2} y \frac{\partial}{\partial z}\left(2 x^{2} y z^{3}\right)-x z^{2} \frac{\partial}{\partial y}\left(2 x^{2} y z^{3}\right)\right]-\hat{\jmath}\left[2 y z \frac{\partial}{\partial z}\left(2 x^{2} y z^{3}\right)-x z^{2} \frac{\partial}{\partial x}\left(2 x^{2} y z^{3}\right)\right] \\
& +\hat{\mathrm{k}}\left[2 \mathrm{yz} \frac{\partial}{\partial \mathrm{y}}\left(2 \mathrm{x}^{2} \mathrm{yz} \mathrm{z}^{3}\right)-\mathrm{x}^{2} \mathrm{y} \frac{\partial}{\partial \mathrm{x}}\left(2 \mathrm{x}^{2} \mathrm{yz} \mathrm{z}^{3}\right)\right] \\
& =\hat{1}\left[x^{2} y\left(6 x^{2} y z^{2}\right)-x z^{2}\left(2 x^{2} z^{3}\right)\right]-\hat{\jmath}\left[2 y z\left(6 x^{2} y z^{2}\right)-x z^{2}\left(4 x y z^{3}\right)\right]+\hat{\mathrm{k}}\left[2 y z\left(2 x^{2} z^{3}\right)-x^{2} y\left(4 x y z^{3}\right)\right] \\
& (\overrightarrow{\mathrm{F}} \times \vec{\nabla}) \varphi=\hat{i}\left[6 x^{4} y^{2} z^{4}-2 x^{3} z^{5}\right]-\hat{\jmath}\left[12 x^{2} y^{2} z^{3}-4 x^{2} y z^{5}\right]+\hat{\mathrm{k}}\left[2 x^{2} y z^{4}-4 x^{3} y^{2} z^{3}\right] \\
& \text { (iii) } \overrightarrow{\mathbf{F}} \times \overrightarrow{\boldsymbol{\nabla}} \boldsymbol{\varphi}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{0 \hat{\imath}+\left[2 y-z^{2}\right] \hat{\jmath}+[2 x y-2 z] \hat{k}\right\} \times\left\{x^{2} \hat{\imath}+y z \hat{\jmath}+x y \hat{k}\right\} \\
& =\left|\begin{array}{cc}
\hat{\imath} & \hat{\jmath} \\
0 & 2 y-z^{2} \\
x^{2} & 2 x y-2 z \\
y z & x y
\end{array}\right|=\left[\begin{array}{cc}
\hat{\imath} & \left.\left.\begin{array}{cc}
2 y-z^{2} & 2 x y-2 z \\
y z & x y
\end{array}|-\hat{\jmath}| \begin{array}{cc}
0 & 2 x y-2 z \\
x^{2} & x y
\end{array}|+\hat{k}| \begin{array}{cc}
0 & 2 y-z^{2} \\
x^{2} & y z
\end{array} \right\rvert\,\right] \\
=\left\{\begin{array}{c}
\hat{\imath}\left[\left(2 y-z^{2}\right) x y-(2 x y-2 z) y z\right]-\hat{\jmath}\left[0(x y)-(2 x y-2 z) x^{2}\right] \\
\\
+\hat{k}\left[0(y z)-\left(2 y-z^{2}\right) x^{2}\right]
\end{array}\right\} \\
=\left\{\hat{\imath}\left[2 x y^{2}-x^{2} y^{2}-2 x y^{2} z+2 y z^{2}\right]-\hat{\jmath}\left[0-2 x^{3} y-2 x^{2} z\right]+\hat{k}\left[0-2 x^{2} y+x^{2} z^{2}\right]\right\} \\
=\hat{\imath}\left[2 x y^{2}-x y z^{2}-2 x y^{2} z+2 y z^{2}\right]-\hat{\jmath}\left[2 x^{3} y-2 x^{2} z\right]+\hat{k}\left[x^{2} z^{2}-2 x^{2} y\right]
\end{array}\right.
\end{aligned}
$$

Example\#03: If $\varphi=2 \mathrm{x}^{3} \mathrm{y}^{2} \mathrm{z}^{4}$, Find $\operatorname{Div}(\overline{\operatorname{grad} \varphi})$.
Solution: We know that
$\overrightarrow{\operatorname{grad} \varphi}=\vec{\nabla} \varphi=\frac{\partial \varphi}{\partial x} \hat{\imath}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial z} \hat{k}=\frac{\partial}{\partial x}\left(2 x^{3} y^{2} z^{4}\right) \hat{\imath}+\frac{\partial}{\partial y}\left(2 x^{3} y^{2} z^{4}\right) \hat{\jmath}+\frac{\partial}{\partial z}\left(2 x^{3} y^{2} z^{4}\right) \hat{k}$
$\overrightarrow{\operatorname{grad} \varphi}=6 x^{2} y^{2} z^{4} \hat{\imath}+4 x^{3} y z^{4} \hat{\jmath}+8 x^{3} y^{2} z^{3} \hat{k}$
Now

$$
\begin{aligned}
\operatorname{Div}(\overrightarrow{\operatorname{grad} \varphi})= & \vec{\nabla} \cdot \vec{\nabla} \varphi=\left(\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}\right) \cdot\left(6 x^{2} \hat{y}^{2} z^{4} \hat{\imath}+4 x^{3} y z^{4} \hat{\jmath}+8 x^{3} y^{2} z^{3} \hat{k}\right) \\
& =\frac{\partial}{\partial x}\left(6 x^{2} y^{2} z^{4}\right)+\frac{\partial}{\partial y}\left(6 x^{2} y z^{4}\right)+\frac{\partial}{\partial z}\left(8 x^{3} y^{2} z^{3}\right) \\
\operatorname{Div}(\overrightarrow{\operatorname{grad} \varphi}) & =12 x y^{2} z^{4}+12 x^{2} y z^{4}+24 x^{3} y^{2} z^{2}
\end{aligned}
$$

Example\#04:Show that Div $\mathrm{r}^{7} \overrightarrow{\mathrm{r}}=10 \mathrm{r}^{7}$.

Solution: Let $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\hat{1}}+\hat{\hat{\jmath}}+\mathrm{z} \hat{\mathrm{k}}$ Then $\boldsymbol{r}=|\overrightarrow{\mathrm{r}}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$ or $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$ \qquad
Now Div $\mathrm{r}^{7} \overrightarrow{\mathrm{r}}=\vec{\nabla} \cdot\left(\mathrm{r}^{7} \overrightarrow{\mathrm{r}}^{\prime}\right)=\left(\frac{\partial}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}\right) \cdot\left(\mathrm{r}^{7}[\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}]\right)$

$$
\begin{aligned}
& =\left(\frac{\partial}{\partial x} \hat{\imath} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}\right) \cdot\left(r^{7} x \hat{i}+r^{7} y \hat{\jmath}+r^{7} z \hat{k}\right)=\frac{\partial}{\partial x}\left(r^{7} x\right)+\frac{\partial}{\partial y}\left(r^{7} y\right)+\frac{\partial}{\partial z}\left(r^{7} z\right) \\
& =\left[r^{7}(1)+x \cdot 7 r^{6} \frac{\partial r}{\partial x}\right]+\left[r^{7}(1)+y \cdot 7 r^{6} \frac{\partial r}{\partial y}\right]+\left[r^{7}(1)+z \cdot 7 r^{6} \frac{\partial r}{\partial z}\right] \\
& =\left[r^{7}+x \cdot 7 r^{6} \frac{\partial r}{\partial x}+r^{7}+y \cdot 7 r^{6} \frac{\partial r}{\partial y}+r^{7}+z \cdot 7 r^{6} \frac{\partial r}{\partial z}\right] \\
& =\left[3 r^{7}+7 r^{6}\left(x \cdot \frac{\partial r}{\partial x}+y \cdot \frac{\partial r}{\partial y}+z \cdot \frac{\partial r}{\partial z}\right)\right] \\
& =\left[3 r^{7}+7 r^{6}\left(x \cdot \frac{x}{r}+y \cdot \frac{y}{r}+z \cdot \frac{z}{r}\right)\right] \quad \therefore\left\{\begin{array}{c}
\text { From(i) Differentiate w.r.t } x \\
\left.2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r} \text { Similarly } \frac{\partial r}{\partial y}=\frac{y}{r}, \frac{\partial r}{\partial z}=\frac{z}{r}\right\}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\left[3 r^{7}+7 r^{6}\left(\frac{x^{2}+y^{2}+z^{2}}{r}\right)\right] \\
& =\left[3 r^{7}+7 r^{6}\left(\frac{r^{2}}{r}\right)\right] \\
& =\left[3 r^{7}+7 r^{6} \cdot r\right] \\
& =\left[3 r^{7}+7 r^{7}\right]
\end{aligned}
$$

Div $\mathrm{r}^{7} \overrightarrow{\mathrm{r}}=10 \mathrm{r}^{7}$

Hence proved.

Example\#05: Show that Div $\frac{\overrightarrow{\mathrm{r}}}{\mathrm{r}^{3}}=0$.
Solution: Let $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\mathrm{i}}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}$ Then $r=|\overrightarrow{\mathrm{r}}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$ or $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}--------(\boldsymbol{i})$
Now

$$
\begin{aligned}
& \operatorname{Div} \frac{\overrightarrow{\mathrm{r}}}{\mathrm{r}^{3}}=\operatorname{Div} \mathrm{r}^{-3} \overrightarrow{\mathrm{r}}=\vec{\nabla} \cdot\left(\mathrm{r}^{-3} \overrightarrow{\mathrm{r}}\right)=\left(\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}\right) \cdot\left(\mathrm{r}^{-3}[\mathrm{x} \hat{\mathrm{\imath}}+\mathrm{y} \hat{\mathrm{j}}+\mathrm{z} \hat{\mathrm{k}}]\right) \\
& =\left(\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}\right) \cdot\left(r^{-3} x \hat{\imath}+r^{-3} y \hat{\jmath}+r^{-3} z \hat{k}\right) \\
& =\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{r}^{-3} \mathrm{x}\right)+\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{r}^{-3} \mathrm{y}\right)+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{r}^{-3} \mathrm{z}\right) \\
& =\left[r^{-3}(1)+x \cdot(-3) r^{-4} \frac{\partial r}{\partial x}\right]+\left[r^{7}(1)+y \cdot(-3) r^{-4} \frac{\partial r}{\partial y}\right]+\left[r^{7}(1)+z \cdot(-3) r^{-4} \frac{\partial r}{\partial z}\right] \\
& =\left[r^{-3}-x \cdot 3 r^{-4} \frac{\partial r}{\partial x}+r^{-3}+y \cdot 3 r^{-3} \frac{\partial r}{\partial y}+r^{-3}+z \cdot 3 r^{-3} \frac{\partial r}{\partial z}\right] \\
& =\left[3 r^{-3}-3 r^{-4}\left(x \cdot \frac{\partial r}{\partial x}+y \cdot \frac{\partial r}{\partial y}+z \cdot \frac{\partial r}{\partial z}\right)\right] \\
& =\left[3 r^{-3}-3 r^{-4}\left(x \cdot \frac{x}{r}+y \cdot \frac{y}{r}+z \cdot \frac{z}{r}\right)\right] \\
& =\left[3 r^{-3}-3 r^{-4}\left(\frac{x^{2}+y^{2}+z^{2}}{r}\right)\right] \\
& =\left[3 r^{-3}-3 r^{-4}\left(\frac{r^{2}}{r}\right)\right] \\
& =\left[3 r^{-3}-3 r^{-4} \cdot r\right] \\
& =\left[3 r^{-3}-3 r^{3}\right]
\end{aligned}
$$

Div $\frac{\overrightarrow{\mathrm{r}}}{\mathrm{r}^{3}}=0$
Hence proved.

Example\#06: If $\overrightarrow{\mathrm{a}}=\mathrm{xy} \hat{\imath}-2 \mathrm{xz} \hat{\jmath}+2 \mathrm{yz} \mathrm{k}$. Show that $\operatorname{Curl}(\operatorname{curl} \overrightarrow{\mathrm{a}})=3 \hat{\mathrm{j}}$.

$$
\begin{aligned}
& =\hat{i}\left[\frac{\partial}{\partial y} 2 y z-\frac{\partial}{\partial z}(-2 x z)\right]-\hat{\jmath}\left[\frac{\partial}{\partial \mathrm{x}} 2 \mathrm{yz}-\frac{\partial}{\partial \mathrm{z}} \mathrm{xy}\right]+\hat{\mathrm{k}}\left[\frac{\partial}{\partial \mathrm{x}}(-2 \mathrm{xz})-\frac{\partial}{\partial \mathrm{y}} \mathrm{xy}\right] \\
& =\hat{i}[2 \mathrm{z}-(-2 \mathrm{x})]-\hat{\jmath}[0-0]+\hat{\mathrm{k}}[-2 \mathrm{z}-\mathrm{x}]
\end{aligned}
$$

$$
\operatorname{curl} \vec{a}=[2 z+2 x] \hat{\imath}+0 \hat{\jmath}+[-2 z-x] \hat{k}
$$

Now $\operatorname{Curl}(\operatorname{curl} \overrightarrow{\mathrm{a}})=\vec{\nabla} \times \operatorname{curl} \overrightarrow{\mathrm{a}}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{\mathrm{k}} \\ \frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial y} & \frac{\partial}{\partial \mathrm{z}} \\ 2 \mathrm{z}+2 \mathrm{x} & 0 & -2 \mathrm{z}-\mathrm{x}\end{array}\right|$

$$
\begin{aligned}
& =\left[\hat{\imath}\left|\begin{array}{cc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
0 & -2 z-x
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\
2 z+2 x & -2 z-x
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
2 z+2 x & 0
\end{array}\right|\right] \\
& =\hat{\imath}\left[\frac{\partial}{\partial y}(-2 z-x)-\frac{\partial}{\partial z} 0\right]-\hat{\jmath}\left[\frac{\partial}{\partial x}(-2 z-x)-\frac{\partial}{\partial z}(2 z+2 x)\right]+\hat{k}\left[\frac{\partial}{\partial x} 0-\frac{\partial}{\partial y}(2 z+2 x)\right] \\
& =\hat{\imath}[0]-\hat{\jmath}[-2-1]+\hat{k}[0]=0 \hat{\imath}-\hat{\jmath}[-3]+0 \hat{k}
\end{aligned}
$$

$\operatorname{Curl}(\operatorname{curl} \overrightarrow{\mathrm{a}})=3 \hat{\jmath}$

Hence proved.

Example\#08: If $\overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{r}}$ then prove that $\overrightarrow{\mathrm{a}}=\frac{1}{2} \operatorname{curl} \overrightarrow{\mathrm{v}}$, where $\overrightarrow{\mathrm{a}}$ is a constant vector.
Solution: Let $\overrightarrow{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \widehat{\mathrm{k}} \quad \& \overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}$
Then $\quad \vec{v}=\vec{a} \times \overrightarrow{\mathrm{r}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ x & y & z\end{array}\right|=\left[\hat{\imath}\left|\begin{array}{cc}a_{2} & a_{3} \\ y & z\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}a_{1} & a_{3} \\ x & z\end{array}\right|+\hat{k}\left|\begin{array}{cc}a_{1} & a_{2} \\ x & y\end{array}\right|\right]$
$=\hat{\imath}\left[a_{2} z-a_{3} y\right]-\hat{\jmath}\left[a_{1} z-a_{3} x\right]+\hat{k}\left[a_{1} y-a_{2} z\right]$
$\vec{v}=\left[a_{2} z-a_{3} y\right] \hat{i}+\left[a_{3} x-a_{1} z\right] \hat{\jmath}+\left[a_{1} y-a_{2} z\right] \hat{k}$
Now $\quad \operatorname{curl} \vec{v}=\vec{\nabla} \times \vec{v}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ a_{2} z-a_{3} y & a_{3} x-a_{1} z & a_{1} y-a_{2} z\end{array}\right|$

$$
\left.=\left[\left.\hat{\imath}\left|\begin{array}{cc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
a_{3} x-a_{1} z & a_{1} y-a_{2} z
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\
a_{2} z-a_{3} y & a_{1} y-a_{2} z
\end{array}\right|+\hat{k} \right\rvert\, \begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
a_{2} z-a_{3} y & a_{3} x-a_{1} z
\end{array}\right]\right]
$$

$$
\begin{aligned}
& =\hat{\imath}\left[\frac{\partial}{\partial y}\left(a_{1} y-a_{2} z\right)-\frac{\partial}{\partial z}\left(a_{3} x-a_{1} z\right)\right]-\hat{\jmath}\left[\frac{\partial}{\partial x}\left(a_{1} y-a_{2} z\right)-\frac{\partial}{\partial z}\left(a_{2} z-a_{3} y\right)\right]+ \\
& \hat{k}\left[\frac{\partial}{\partial x}\left(a_{3} x-a_{1} z\right)-\frac{\partial}{\partial y}\left(a_{2} z-a_{3} y\right)\right] \\
& =\hat{i}\left[a_{1}+a_{1}\right]-\hat{\jmath}\left[a_{2}+a_{2}\right]+\hat{k}\left[a_{3}+a_{3}\right] \\
& =2 a_{1} \hat{\imath}+2 a_{2} \hat{\jmath}+2 a_{3} \hat{k}
\end{aligned}
$$

$$
\operatorname{curl} \vec{v} \quad=2\left(a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}\right)
$$

$\operatorname{curl} \overrightarrow{\mathrm{v}}=2 \overrightarrow{\mathrm{a}}$

$$
\Rightarrow \overrightarrow{\mathrm{a}}=\frac{1}{2} \operatorname{curl} \overrightarrow{\mathrm{v}}
$$

Exercise\# 4.2

Q\#01: Fin the divergence \& curl of the vector functions.

(i) $\overrightarrow{\mathrm{F}}=\left(\mathrm{x}^{2}+\mathrm{yz}\right) \hat{\imath}+\left(\mathrm{y}^{2}+\mathrm{zx}\right) \hat{\jmath}+\left(\mathrm{z}^{2}+x y\right) \hat{\mathrm{k}}$
(ii) $\overrightarrow{\mathrm{F}}=(\mathrm{x}-\mathrm{y}) \hat{\mathrm{\imath}}+(\mathrm{y}-\mathrm{z}) \hat{\jmath}+(\mathrm{z}-\mathrm{x}) \hat{\mathrm{k}}$
(i) $\overrightarrow{\mathrm{F}}=\left(\mathrm{x}^{2}+\mathrm{yz}\right) \hat{\mathrm{\imath}}+\left(\mathrm{y}^{2}+\mathrm{zx}\right) \hat{\jmath}+\left(\mathrm{z}^{2}+\mathrm{xy}\right) \hat{\mathrm{k}}$

Solution: We know that
Div $\overrightarrow{\mathrm{F}}=\vec{\nabla} \cdot \overrightarrow{\mathrm{F}}=\left(\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}} \hat{\mathrm{y}}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}\right) \cdot\left[\left(\mathrm{x}^{2}+\mathrm{yz}\right) \hat{\imath}+\left(\mathrm{y}^{2}+\mathrm{zx}\right) \hat{\jmath}+\left(\mathrm{z}^{2}+\mathrm{xy}\right) \hat{\mathrm{k}}\right]$

$$
=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{x}^{2}+\mathrm{yz}\right)+\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{y}^{2}+\mathrm{zx}\right)+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{z}^{2}+\mathrm{xy}\right)
$$

$\operatorname{Div} \overrightarrow{\mathrm{F}}=2 x+2 y+2 z$

$$
\begin{aligned}
\operatorname{curl} \overrightarrow{\mathrm{F}} & =\vec{\nabla} \times \overrightarrow{\mathrm{F}}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2}+y z & y^{2}+z x & z^{2}+x y
\end{array}\right|=\left[\left.\hat{\imath}\left|\begin{array}{cc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y^{2}+z x & z^{2}+x y
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\
x^{2}+y z & z^{2}+x y
\end{array}\right|+\hat{\mathrm{k}} \right\rvert\, \begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
x^{2}+y z & y^{2}+z x
\end{array}\right] \\
& =\hat{\imath}\left[\frac{\partial}{\partial y}\left(z^{2}+x y\right)-\frac{\partial}{\partial z}\left(y^{2}+z x\right)\right]-\hat{\jmath}\left[\frac{\partial}{\partial x}\left(z^{2}+x y\right)-\frac{\partial}{\partial z}\left(x^{2}+y z\right)\right]+\hat{k}\left[\frac{\partial}{\partial x}\left(y^{2}+z x\right)-\frac{\partial}{\partial y}\left(x^{2}+y z\right)\right] \\
& =\hat{i}[x-x]-\hat{\jmath}[y-y]+\hat{\mathrm{k}}[z-z]
\end{aligned}
$$

$\operatorname{curl} \overrightarrow{\mathrm{F}}=0 \hat{\imath}+0 \hat{\jmath}+0 \widehat{k}$
(ii) $\overrightarrow{\mathbf{F}}=(\mathbf{x}-\mathbf{y}) \hat{\mathbf{i}}+(\mathbf{y}-\mathbf{z}) \hat{\mathbf{\jmath}}+(\mathbf{z}-\mathbf{x}) \hat{\mathbf{k}}$

Solution: We know that

$$
\operatorname{Div} \overrightarrow{\mathrm{F}}=\vec{\nabla} \cdot \overrightarrow{\mathrm{F}}=\left(\frac{\partial}{\partial x} \hat{\mathrm{f}}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{\mathrm{k}}\right) \cdot[(\mathrm{x}-\mathrm{y}) \hat{\imath}+(\mathrm{y}-\mathrm{z}) \hat{\jmath}+(\mathrm{z}-\mathrm{x}) \hat{\mathrm{k}}]=\frac{\partial}{\partial \mathrm{x}}(\mathrm{x}-\mathrm{y})+\frac{\partial}{\partial y}(\mathrm{y}-\mathrm{z})+\frac{\partial}{\partial z}(\mathrm{z}-\mathrm{x})
$$

$\operatorname{Div} \overrightarrow{\mathrm{F}}=1+1+1=3$
\& curl $\overrightarrow{\mathrm{F}}=\vec{\nabla} \times \overrightarrow{\mathrm{F}}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{\mathrm{k}} \\ \frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial \mathrm{y}} & \frac{\partial}{\partial \mathrm{z}} \\ \mathrm{x}-\mathrm{y} & \mathrm{y}-\mathrm{z} & \mathrm{z}-\mathrm{x}\end{array}\right|=\left[\left.\begin{array}{cc}\frac{\partial}{\partial y} & \frac{\partial}{\partial \mathrm{z}} \\ \mathrm{y}-\mathrm{z} & \mathrm{z}-\mathrm{x}\end{array}|-\hat{\jmath}| \begin{array}{cc}\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial \mathrm{z}} \\ \mathrm{x}-\mathrm{y} & \mathrm{z}-\mathrm{x}\end{array}|+\hat{\mathrm{k}}| \begin{array}{cc}\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial y} \\ \mathrm{x}-\mathrm{y} & \mathrm{y}-\mathrm{z}\end{array} \right\rvert\,\right]$

$$
=\hat{\imath}\left[\frac{\partial}{\partial y}(z-x)-\frac{\partial}{\partial z}(y-z)\right]-\hat{\jmath}\left[\frac{\partial}{\partial x}(z-x)-\frac{\partial}{\partial z}(x-y)\right]+\hat{k}\left[\frac{\partial}{\partial x}(y-z)-\frac{\partial}{\partial y}(x-y)\right]
$$

$$
=\hat{\imath}[0-(-1)]-\hat{\jmath}[(-1)-0]+\hat{\mathrm{k}}[0-(-1)]
$$

$\operatorname{curl} \overrightarrow{\mathrm{F}}=1 \hat{\imath}+1 \hat{\jmath}+1 \hat{\mathrm{k}}$

Q\#02: Find Div $\overrightarrow{\mathrm{F}}$ \& $\operatorname{curl} \overrightarrow{\mathrm{F}}$ where
(i) $\overrightarrow{\mathrm{F}}=\boldsymbol{\operatorname { g r a d }}\left(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}\right)$
(ii) $\overrightarrow{\mathrm{F}}=(\mathrm{x}-\mathrm{y}) \hat{\imath}+(\mathrm{y}-\mathrm{z}) \hat{\jmath}+(\mathrm{z}-\mathrm{x}) \hat{\mathrm{k}}$
(i) $\overrightarrow{\mathbf{F}}=\operatorname{grad}\left(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}\right)$

Solution: Given $\overrightarrow{\mathrm{F}}=\vec{\nabla}\left(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}\right)=\left(\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}\right)\left(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}\right)$

$$
\begin{aligned}
& \overrightarrow{\mathrm{F}}=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}\right) \hat{\mathrm{\imath}}+\frac{\partial}{\partial y}\left(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}\right) \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}\right) \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{~F}}=\left(3 \mathrm{x}^{2}-3 y z\right) \hat{\imath}+\left(3 \mathrm{y}^{2}-3 \mathrm{xz}\right) \hat{\jmath}+\left(3 \mathrm{z}^{2}-3 \mathrm{xy}\right) \hat{\mathrm{k}}
\end{aligned}
$$

We know that

$$
\left.\operatorname{Div} \overrightarrow{\mathrm{F}}=\vec{\nabla} \cdot \overrightarrow{\mathrm{F}}=\left(\frac{\partial}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{\mathrm{k}}\right) \cdot\left[\left(3 \mathrm{x}^{2}-3 y z\right) \hat{\imath}+\left(3 y^{2}-3 x z\right) \hat{\jmath}+\left(3 z^{2}\right)-3 x y\right) \hat{\mathrm{k}}\right]
$$

$$
=\frac{\partial}{\partial \mathrm{x}}\left(3 \mathrm{x}^{2}-3 \mathrm{yz}\right)+\frac{\partial}{\partial \mathrm{y}}\left(3 \mathrm{y}^{2}-3 \mathrm{xz}\right)+\frac{\partial}{\partial \mathrm{z}}\left(3 \mathrm{z}^{2}-3 \mathrm{xy}\right)
$$

Div $\overrightarrow{\mathrm{F}}=6 \mathrm{x}+6 \mathrm{y}+6 \mathrm{z}$
$\& \operatorname{curl} \overrightarrow{\mathrm{~F}}=\vec{\nabla} \times \overrightarrow{\mathrm{F}}=\left|\begin{array}{ccc}\hat{i} & \hat{\jmath} & \hat{\mathrm{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 3 \mathrm{x}^{2}-3 y z & 3 y^{2}-3 x z & 3 z^{2}-3 x y\end{array}\right|$

$$
\begin{aligned}
& =\left[\left.\hat{\imath}\left|\begin{array}{cc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
3 y^{2}-3 x z & 3 z^{2}-3 x y
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \left.\frac{\partial}{\frac{\partial}{\partial z}} \right\rvert\, \\
3 x^{2}-3 y z & 3 z^{2}-3 x y
\end{array}\right|+\hat{k} \right\rvert\, \begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
3 x^{2}-3 y z & 3 y^{2}-3 x z
\end{array}\right] \\
& =\hat{i}\left[\frac{\partial}{\partial y}\left(3 z^{2}-3 x y\right)-\frac{\partial}{\partial z}\left(3 y^{2}-3 x z\right)\right]-\hat{\hat{y}}\left[\frac{\partial}{\partial x}\left(3 z^{2}-3 x y\right)-\frac{\partial}{\partial z}\left(3 x^{2}-3 y z\right)\right]+\hat{k}\left[\frac{\partial}{\partial x}\left(3 y^{2}-3 x z\right)-\frac{\partial}{\partial y}\left(3 x^{2}-3 y z\right)\right] \\
& =\hat{i}[-3 x-(-3 x)]-\hat{\jmath}[-3 y-(-3 y)]+\hat{k}[-3 z-(-3 z)] \\
& =\hat{i}[-3 x+3 x]-\hat{\hat{c}}[-3 y+3 y]+\hat{k}[-3 z+3 z]
\end{aligned}
$$

$$
\Rightarrow \quad \operatorname{curl} \overrightarrow{\mathrm{F}}=0 \hat{\imath}+0 \hat{\jmath}+0 \hat{\mathrm{k}}
$$

(ii) $\overrightarrow{\mathrm{F}}=\mathrm{xyz} \hat{\mathbf{\imath}}+\mathrm{x}^{2} \mathbf{y}^{2} \mathrm{z} \hat{\mathbf{\jmath}}+\mathrm{yz}^{3} \hat{\mathbf{k}}$

Solution: We know that

Div $\overrightarrow{\mathrm{F}}=\vec{\nabla} \cdot \overrightarrow{\mathrm{F}}=\left(\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}\right) \cdot\left[x y z \hat{\mathrm{i}}+\mathrm{x}^{2} \mathrm{y}^{2} \mathrm{z} \hat{\jmath}+\mathrm{yz} \mathrm{z}^{3} \hat{\mathrm{k}}\right]=\frac{\partial}{\partial \mathrm{x}}(\mathrm{xyz})+\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{x}^{2} \mathrm{y}^{2} \mathrm{z}\right)+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{yz}{ }^{3}\right)$
Div $\overrightarrow{\mathrm{F}}=\mathrm{yz}+2 \mathrm{x}^{2} \mathrm{yz}+3 \mathrm{yz}^{2}$

$$
\begin{aligned}
\operatorname{curl} \overrightarrow{\mathrm{F}} & =\vec{\nabla} \times \overrightarrow{\mathrm{F}}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\
\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x y z & x^{2} y^{2} z & y z^{3}
\end{array}\right|=\left[\left.\begin{array}{cc}
\hat{\imath} & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial z} \\
x^{2} y^{2} z & y z^{3}
\end{array}|-\hat{\jmath}| \begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\
x y z & y z^{3}
\end{array}|+\hat{\mathrm{k}}| \begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
x y z & x^{2} y^{2} z
\end{array} \right\rvert\,\right] \\
& \left.=\hat{\imath}\left[\frac{\partial}{\partial y}\left(y z^{3}\right)-\frac{\partial}{\partial z}\left(x^{2} y^{2} z\right)\right]-\hat{\jmath}\left[\frac{\partial}{\partial x}\left(y^{3}\right)-\frac{\partial}{\partial z}(x y z)\right]+\hat{k}\left[\frac{\partial}{\partial x}\left(x^{2} y^{2} z\right)-\frac{\partial}{\partial y}(x y z)\right]\right) \\
& =\hat{\imath}\left[z^{3}-x^{2} y^{2}\right]-\hat{\jmath}[0-x y]+\hat{k}\left[2 x y^{2} z-x z\right]
\end{aligned}
$$

$$
\operatorname{curl} \overrightarrow{\mathrm{F}}=\left(\mathrm{z}^{3}-\mathrm{x}^{2} \mathrm{y}^{2}\right) \hat{\imath}+x y \hat{\jmath}+\left(2 x y^{2} z-x z\right) \hat{k}
$$

Q\#03: Find \boldsymbol{m}, so that the vector $\left(m x y-z^{3}\right) \hat{\imath}+(m-2) x^{2} \hat{\jmath}+(1-m) x z^{2} \hat{k}$ has its curl equal to zero .
Solution: Let $\overrightarrow{\mathrm{F}}=\left(\mathrm{mxy}-\mathrm{z}^{3}\right) \hat{\imath}+(\mathrm{m}-2) \mathrm{x}^{2} \hat{\jmath}+(1-\mathrm{m}) \mathrm{xz}^{2} \hat{\mathrm{k}}$

Given condition : curl $\overrightarrow{\mathrm{F}}=0 \Rightarrow \vec{\nabla} \times \overrightarrow{\mathrm{F}}=0$

$$
\xlongequal{\Rightarrow}\left|\begin{array}{ccc}
\hat{1} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
m x y-z^{3} & (m-2) x^{2} & (1-m) x^{2}
\end{array}\right|=0
$$

$$
\left[\hat{\imath}\left|\begin{array}{cc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
(m-2) x^{2} & y z^{3}
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\
m x y-z^{3} & y z^{3}
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
m x y-z^{3} & (m-2) x^{2}
\end{array}\right|\right]=0
$$

$$
\hat{i}\left[\frac{\partial}{\partial y}\left((1-m) x z^{2}\right)-\frac{\partial}{\partial z}\left(\left(m \vec{\partial}^{2}\right) x^{2}\right)\right]-\hat{\jmath}\left[\frac{\partial}{\partial x}\left((1-m) x z^{2}\right)-\frac{\partial}{\partial z}\left(m x y-z^{3}\right)\right]+\hat{k}\left[\frac{\partial}{\partial x}\left((m-2) x^{2}\right)-\frac{\partial}{\partial y}\left(m x y-z^{3}\right)\right]=0
$$

$$
\begin{array}{r}
\hat{\imath}[0-0]-\hat{\jmath}\left[(1-m) z^{2}-\left(-3 z^{2}\right)\right]+\hat{k}[2(m-2) x-m x]=0 \\
0 \hat{\imath}+\left[(1-m) z^{2}+3 z^{2}\right] \hat{\jmath}+[2(m-2) x-m x] \hat{k}=0
\end{array}
$$

Putting coefficients of $\hat{\mathrm{k}}$ is equal to zero.

$$
2(m-2) x-m x=0 \Rightarrow 2 m x-4 x-m x=0 \Rightarrow m x-4 x=0 \Rightarrow m x=4 x
$$

By using cancelation Property

$$
\mathrm{m}=4
$$

Q\#04: (i) Show that Div $\mathrm{r}^{\mathrm{n}-3} \overrightarrow{\mathrm{r}}=\boldsymbol{n} \mathrm{r}^{\mathrm{n}-3}$ (ii) show that $\nabla^{2} \mathrm{r}^{\mathrm{n}-1}=\mathrm{n}(\mathrm{n}-1) \mathrm{r}^{\mathrm{n}-3}$
(i)

Show that Div $\mathrm{r}^{\mathrm{n}-3} \overrightarrow{\mathrm{r}}=\boldsymbol{n} \mathrm{r}^{\mathrm{n}-3}$
Solution: Let $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\mathrm{\imath}}+\mathrm{y} \hat{\mathrm{j}}+\mathrm{z} \hat{\mathrm{k}}$ Then $\boldsymbol{r}=|\overrightarrow{\mathrm{r}}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$ or $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$ \qquad
Now Div $\mathrm{r}^{\mathrm{n}-3} \overrightarrow{\mathrm{r}}=\vec{\nabla} \cdot\left(\mathrm{r}^{\mathrm{n}-3} \overrightarrow{\mathrm{r}}\right)=\left(\frac{\partial}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial}{\partial \mathrm{y}} \hat{\jmath}+\frac{\partial}{\partial z} \hat{\mathrm{k}}\right) \cdot\left(\mathrm{r}^{\mathrm{n}-3}[\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}]\right)$

$$
\begin{aligned}
& =\left(\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}\right) \cdot\left(r^{n-3} x \hat{\imath}+r^{n-3} y \hat{\jmath}+r^{n-3} z \hat{k}\right) \\
& =\frac{\partial}{\partial x}\left(r^{n-3} x\right)+\frac{\partial}{\partial y}\left(r^{n-3} y\right)+\frac{\partial}{\partial z}\left(r^{n-3} z\right) \\
& =\left[r^{n-3}(1)+x \cdot(n-3) r^{n-4} \frac{\partial r}{\partial x}\right]+\left[r^{n-3}(1)+y \cdot(n-3) r^{n-4} \frac{\partial r}{\partial y}\right]+\left[r^{n-3}(1)+z \cdot(n-3) r^{n-4} \frac{\partial r}{\partial z}\right] \\
& =\left[r^{n-3}+x(n-3) r^{n-4} \frac{\partial r}{\partial x}+r^{n-3}+y(n-3) r^{n-4} \frac{\partial r}{\partial y}+r^{n-3}+z(n-3) r^{n-4} \frac{\partial r}{\partial z}\right] \\
& =\left[3 r^{n-3}+(n-3) r^{n-4}\left(x \cdot \frac{\partial r}{\partial x}+y \cdot \frac{\partial r}{\partial y}+z \cdot \frac{\partial r}{\partial z}\right)\right]:\left\{2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r} \text { Similarly } \frac{\partial r}{\partial y}=\frac{y}{r} \frac{\partial r}{\partial z}=\frac{z}{r}\right\} \\
& =\left[3 r^{n-3}+(n-3) r^{n-4}\left(x \cdot \frac{x}{r}+y \cdot \frac{y}{r}+z \cdot \frac{z}{r}\right)\right] \\
& =\left[3 r^{n-3}+(n-3) r^{n-4}\left(\frac{x^{2}+y^{2}+z^{2}}{r}\right)\right] \\
& =\left[3 r^{n-3}+(n-3) r^{n-4}\left(\frac{r^{2}}{r}\right)\right] \\
& =\left[3 r^{n-3}+(n-3) r^{n-4} \cdot r\right] \rho^{\circ} \\
& =\left[3 r^{n-3}+7 r^{n-3}\right] \\
& =\left[(3+n-3) r^{n-3}\right]
\end{aligned}
$$

Div $\mathrm{r}^{\mathrm{n}-3} \overrightarrow{\mathrm{r}}=\mathrm{n} \mathrm{r}^{\mathrm{n}-3}$

Hence proved.

(ii) $\nabla^{2} r^{n-1}=\mathbf{n}(\mathbf{n}-1) r^{n-3}$

Solution: We know that $\nabla^{2}=\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2}}{\partial \mathrm{z}^{2}} \quad$ then

$$
\begin{aligned}
\nabla^{2} r^{n-1} & =\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right] r^{n-1}=\frac{\partial^{2}}{\partial x^{2}} r^{n-1}+\frac{\partial^{2}}{\partial y^{2}} r^{n-1}+\frac{\partial^{2}}{\partial z^{2}} r^{n-1} \\
& =\frac{\partial}{\partial \mathrm{x}}\left[\frac{\partial}{\partial \mathrm{x}} r^{n-1}\right]+\frac{\partial}{\partial y}\left[\frac{\partial}{\partial y} r^{n-1}\right]+\frac{\partial}{\partial z}\left[\frac{\partial}{\partial z} r^{n-1}\right] \\
& =\frac{\partial}{\partial \mathrm{x}}\left[(n-1) r^{n-2} \frac{\partial r}{\partial \mathrm{x}}\right]+\frac{\partial}{\partial y}\left[(n-1) r^{n-2} \frac{\partial r}{\partial y}\right]+\frac{\partial}{\partial z}\left[(n-1) r^{n-2} \frac{\partial r}{\partial z}\right]
\end{aligned}
$$

$$
\left.\begin{array}{rl}
= & (n-1)\left\{\frac{\partial}{\partial x}\left(r^{n-2} \frac{\partial r}{\partial x}\right)+\frac{\partial}{\partial y}\left(r^{n-2} \frac{\partial r}{\partial y}\right)+\frac{\partial}{\partial z}\left(r^{n-2} \frac{\partial r}{\partial z}\right)\right\} \\
= & (n-1)\left[\left\{(n-2) r^{n-3} \frac{\partial r}{\partial x} \cdot \frac{\partial r}{\partial x}+r^{n-2} \frac{\partial^{2} r}{\partial x^{2}}\right\}+\left\{(n-2) r^{n-3} \frac{\partial r}{\partial y} \cdot \frac{\partial r}{\partial y}+r^{n-1} \frac{\partial^{2} r}{\partial y^{2}}\right\}+\right. \\
& \left.\left\{(n-2) r^{n-3} \frac{\partial r}{\partial z} \cdot \frac{\partial r}{\partial z}+r^{n-2} \frac{\partial^{2} r}{\partial z^{2}}\right\}\right] \\
= & (n-1)\left[(n-2) r^{n-3}\left(\frac{\partial r}{\partial x}\right)^{2}+r^{n-2} \frac{\partial^{2} r}{\partial x^{2}}+(n-2) r^{n-3}\left(\frac{\partial r}{\partial y}\right)^{2}+r^{n-2} \frac{\partial^{2} r}{\partial y^{2}}+(n-\right. \\
\text { 2) } \left.r^{n-3}\left(\frac{\partial r}{\partial z}\right)^{2}+r^{n-2} \frac{\partial^{2} r}{\partial z^{2}}\right] \\
=(n-1)\left[(n-2) r^{n-3}\left\{\left(\frac{\partial r}{\partial x}\right)^{2}+\left(\frac{\partial r}{\partial y}\right)^{2}+\left(\frac{\partial r}{\partial z}\right)^{2}\right\}+r^{n-2}\left\{\frac{\partial^{2} r}{\partial x^{2}}+\frac{\partial^{2} r}{\partial y^{2}}+\frac{\partial^{2} r}{\partial z^{2}}\right\}\right]
\end{array}\right\}
$$

Let $\quad \vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ then $r^{2}=x^{2}+y^{2}+z^{2}-----(i)$
\therefore From(i) Differentiate w.r.t $\boldsymbol{x} \quad 2 r \frac{\partial \mathrm{r}}{\partial \mathrm{x}}=2 \boldsymbol{x} \Rightarrow \frac{\partial \mathrm{r}}{\partial \mathrm{x}}=\frac{\mathrm{x}}{\mathrm{r}} \quad$ Similarly $\quad \frac{\partial \mathrm{r}}{\partial \mathrm{y}}=\frac{\mathrm{y}}{\mathrm{r}} \quad \& \quad \& \quad \frac{\partial \mathrm{r}}{\partial \mathrm{z}}=\frac{\mathrm{z}}{\mathrm{r}}$

Again differentiate w. r. \boldsymbol{x}

$$
\begin{aligned}
& \frac{\partial^{2} r}{\partial x^{2}}=\frac{r(1)-x \frac{\partial r}{\partial x}}{r^{2}}= \frac{r-x\left(\frac{x}{r}\right)}{r^{2}}=\frac{\frac{r^{2}-x^{2}}{r}}{r^{2}}=\frac{x^{2}+y^{2}+z^{2}-x^{2}}{r^{3}} \Rightarrow \frac{\partial^{2} r}{\partial x^{2}}=\frac{y^{2}+z^{2}}{r^{3}} \\
& \text { Similarly } \quad \frac{\partial^{2} r}{\partial y^{2}}=\frac{x^{2}+z^{2}}{r^{3}} \text { \& } \frac{\partial^{2} r}{\partial z^{2}}=\frac{x^{2}+y^{2}}{r^{3}}
\end{aligned}
$$

Putting values in Equation (a)

$$
\begin{aligned}
& \nabla^{2} r^{n-1}=(n-1)\left[(n-2) r^{n-3}\left\{\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}+\frac{z^{2}}{r^{2}}\right\}+r^{n-2}\left\{\frac{y^{2}+z^{2}}{r^{3}}+\frac{x^{2}+z^{2}}{r^{3}}+\frac{x^{2}+y^{2}}{r^{3}}\right\}\right] \\
& \nabla^{2} r^{n-1}=(n-1)\left[(n-2) r^{n-3}\left\{\frac{x^{2}+y^{2}+z^{2}}{r^{2}}\right\}+r^{n-2}\left\{\frac{y^{2}+z^{2}+x^{2}+z^{2}+x^{2}+y^{2}}{r^{3}}\right\}\right] \\
& \nabla^{2} r^{n-1}=(n-1)\left[(n-2) r^{n-3}\left\{\frac{r^{2}}{r^{2}}\right\}+r^{n-2}\left\{\frac{2\left(x^{2}+y^{2}+z^{2}\right)}{r^{3}}\right\}\right]
\end{aligned}
$$

$$
\nabla^{2} r^{n-1}=(n-1)\left[(n-2) r^{n-3}(1)+r^{n-2}\left\{\frac{2 r^{2}}{r^{3}}\right\}\right]
$$

$$
\nabla^{2} \mathrm{r}^{\mathrm{n}-1}=(\mathrm{n}-1)\left[(\mathrm{n}-2) \mathrm{r}^{\mathrm{n}-3}+\mathrm{r}^{\mathrm{n}-2}\left\{\frac{2}{\mathrm{r}}\right\}\right]
$$

$$
\nabla^{2} r^{n-1}=(n-1)\left[(n-2) r^{n-3}+2 r^{n-3}\right]=(n-1)\left[(n-2+2) r^{n-3}\right]
$$

$$
\nabla^{2} \mathrm{r}^{\mathrm{n}-1}=\mathrm{n}(\mathrm{n}-1) \mathrm{r}^{\mathrm{n}-3}
$$

Hence proved.

Q\#05: If $\overrightarrow{\mathrm{a}}=2 \mathrm{x}^{2} \hat{\imath}-3 y z \hat{\jmath}+\mathrm{xz}^{2} \hat{\mathrm{k}} \& \quad \varphi=2 \mathrm{z}-\mathrm{x}^{3} \mathrm{y}$. Find (i) $\overrightarrow{\mathrm{a}} . \vec{\nabla} \varphi$ (ii) $\overrightarrow{\mathrm{a}} \times \vec{\nabla} \varphi$ at point $(1,-1,1)$.
Solution: Given $\vec{a}=2 x^{2} \hat{\imath}-3 y z \hat{\jmath}+x z^{2} \hat{k} \quad \& \varphi=2 z-x^{3} y \quad$ then

$$
\begin{aligned}
& \vec{\nabla} \varphi=\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial z} \hat{\mathrm{k}}=\frac{\partial}{\partial \mathrm{x}}\left(2 \mathrm{z}-\mathrm{x}^{3} \mathrm{y}\right) \hat{\mathrm{\imath}}+\frac{\partial}{\partial \mathrm{y}}\left(2 \mathrm{z}-\mathrm{x}^{3} \mathrm{y}\right) \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}}\left(2 \mathrm{z}-\mathrm{x}^{3} \mathrm{y}\right) \hat{\mathrm{k}} \\
& \vec{\nabla} \varphi=-3 \mathrm{x}^{2} \mathrm{y} \hat{\imath}-\mathrm{x}^{3} \hat{\jmath}+2 \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{a}} \cdot \vec{\nabla} \varphi=\left(2 \mathrm{x}^{2} \hat{\imath}-3 \mathrm{yz} \hat{\jmath}+x z^{2} \hat{\mathrm{k}}\right) \cdot\left(-3 \mathrm{x}^{2} y \hat{\imath}-x^{3} \hat{\jmath}+2 \hat{\mathrm{k}}\right) \\
& \quad=\left(2 \mathrm{x}^{2}\right)\left(-3 \mathrm{x}^{2} y\right)+(-3 y z)\left(-x^{3}\right)+\left(x z^{2}\right)(2)
\end{aligned}
$$

(i)

$$
\vec{a} \cdot \vec{\nabla} \varphi=-6 x^{4} y+3 x^{3} y z+2 x z^{2}
$$

At (1, -1,1):
$\overrightarrow{\mathrm{a}} \cdot \vec{\nabla} \varphi=-6(1)^{4}(-1)+3(1)^{3}(-1)(1)$
$(1)+2(1)(1)^{2}=6-3+2=5$
(ii) $\vec{a} \times \vec{\nabla} \varphi=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 x^{2} & -3 y z & x z^{2} \\ -3 x^{2} y & -x^{3} & 2\end{array}\right|=\left[\hat{\imath}\left|\begin{array}{cc}-3 y z & x z^{2} \\ -x^{3} & 2\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}2 x^{2} & x z^{2} \\ -3 x^{2} y & 2\end{array}\right|+\hat{k}\left|\begin{array}{cc}2 x^{2} & -3 y z \\ -3 x^{2} y & -x^{3}\end{array}\right|\right]$

$$
=\hat{\imath}\left[-3 y z(2)-x z^{2}\left(-x^{3}\right)\right]-\hat{\jmath}\left[2 x^{2}(2)-x z^{2}\left(-3 x^{2} y\right)\right]+\hat{k}\left[2 x^{2}\left(-x^{3}\right)-(-3 y z)\left(-3 x^{2} y\right)\right]
$$

$$
\vec{a} \times \vec{\nabla} \varphi=\hat{\imath}\left[-6 y z+x^{4} z^{2}\right]-\hat{\jmath}\left[4 x^{2}+3 x^{3} y z^{2}\right]+\hat{k}\left[-2 x^{5}-9 x^{2} y^{2} z\right]
$$

$\boldsymbol{A t}(1,-1,1): \quad \overrightarrow{\mathrm{a}} \times \vec{\nabla} \varphi=\hat{\mathrm{i}}\left[-6(-1)(1)+(1)^{4}(1)^{2}\right]-\hat{\rho}\left[4(1)^{2}+3(1)^{3}(-1)(1)^{2}\right]+\hat{\mathrm{k}}\left[-2(1)^{5}-9\left((1)^{2}(-1)^{2}(1)\right]\right.$

$$
\vec{a} \times \vec{\nabla} \varphi=\hat{\imath}[6+1]-\hat{\jmath}[4-3]+\hat{k}[-2-9] \quad \vec{a} \times \vec{\nabla} \varphi=7 \hat{\imath}-\hat{\jmath}-11 \hat{k}
$$

Q\#06: If $\overrightarrow{\mathrm{a}}=(\mathrm{x}+\mathrm{y}+\mathrm{z}) \hat{\mathrm{i}}+\hat{\jmath}-(\mathrm{x}+\mathrm{y}) \hat{\mathrm{k}}$. Show that $\overrightarrow{\mathrm{a}} \cdot \boldsymbol{\operatorname { c u r l }} \overrightarrow{\mathrm{a}}=0$.
Solution: Given $\overrightarrow{\mathrm{a}}=(\mathrm{x}+\mathrm{y}+\mathrm{z}) \hat{1}+\hat{\jmath}-(\mathrm{x}+\mathrm{y}) \hat{\mathrm{k}}$
Now Curl $\vec{a}=\vec{\nabla} \times \vec{a}=$

$$
\begin{aligned}
& =\hat{\imath}\left[\frac{\partial}{\partial y}(-(x+y))-\frac{\partial}{\partial z}(1)\right]-\hat{\jmath}\left[\frac{\partial}{\partial x}(-(x+y))-\frac{\partial}{\partial z}(x+y+z)\right]+\hat{k}\left[\frac{\partial}{\partial x}(1)-\frac{\partial}{\partial y}(x+y+z)\right] \\
& =\hat{i}[-1-0]-\hat{\jmath}[-1-1]+\hat{k}[0-1]
\end{aligned}
$$

$\operatorname{curl} \overrightarrow{\mathrm{a}}=-\hat{\imath}+2 \hat{\jmath}-\hat{\mathrm{k}}$
Now $\vec{a} \cdot \operatorname{curl} \vec{a}=[(x+y+z) \hat{\imath}+\hat{\jmath}-(x+y) \hat{k}] \cdot[-\hat{\imath}+2 \hat{\jmath}-\hat{k}]=(x+y+z)(-1)+(1)(2)-(x+y)(-1)$

$$
=-x-y-z+2+x+y
$$

$\overrightarrow{\mathrm{a}} \cdot \operatorname{curl} \overrightarrow{\mathrm{a}}=0$

Q\#07: If $\overrightarrow{\mathrm{u}}=\frac{\mathrm{x} \hat{\mathrm{i}}+\mathrm{y} \hat{\mathrm{j}}+\mathrm{z} \hat{\mathrm{k}}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}}$. Show that (i) $\vec{\nabla} \cdot \overrightarrow{\mathrm{u}}=\frac{2}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}}$ (ii) $\vec{\nabla} \times \overrightarrow{\mathrm{u}}=0$
(i)

$$
\overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\mathbf{u}}=\frac{2}{\sqrt{\mathbf{x}^{2}+\mathbf{y}^{2}+\mathbf{z}^{2}}}
$$

Solution: Given $\overrightarrow{\mathrm{u}}=\frac{\mathrm{x} \hat{\mathrm{i}}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}}=\frac{\mathrm{x} \hat{\mathrm{i}}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}}+\frac{\mathrm{y} \hat{\mathrm{y}}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}}+\frac{\mathrm{z} \hat{\mathrm{k}}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}}$

$$
\vec{\nabla} \cdot \overrightarrow{\mathrm{u}}=\frac{2}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}} \quad \text { Hence proved }
$$

$$
\begin{equation*}
\vec{\nabla} \times \overrightarrow{\mathbf{u}}=\mathbf{0} \tag{ii}
\end{equation*}
$$

Solution: Given $\overrightarrow{\mathrm{u}}=\frac{\mathrm{x} \hat{\mathrm{\imath}}+\mathrm{y} \hat{\mathrm{y}}+\mathrm{z} \hat{\mathrm{k}}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}}=\frac{\mathrm{x} \hat{\mathrm{\imath}}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}}+\frac{\mathrm{y} \hat{\mathrm{y}}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}}+\frac{\mathrm{z} \hat{\mathrm{k}}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}}$
$\vec{\nabla} \times \overrightarrow{\mathrm{u}}=\left|\begin{array}{cc}\hat{\imath} & \hat{\mathrm{k}} \\ \frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial y} \\ \frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}} & \frac{\partial}{\partial \mathrm{z}} \\ \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}} & \frac{\mathrm{z}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}}\end{array}\right|=\frac{1}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}}\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\ \frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial y} & \frac{\partial}{\partial \mathrm{z}} \\ \mathrm{x} & \mathrm{y} & \mathrm{z}\end{array}\right| \therefore\left\{\frac{1}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}}\right.$ common from $\left.\mathrm{R}_{3}\right\}$
$=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}\left[\hat{i}\left|\begin{array}{cc}\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \mathrm{y} & \mathrm{z}\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial \mathrm{z}} \\ \mathrm{x} & \mathrm{z}\end{array}\right|+\hat{\mathrm{k}}\left|\begin{array}{cc}\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial \mathrm{y}} \\ \mathrm{x} & \mathrm{y}\end{array}\right|\right]$
$=\frac{1}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}}\left\{\hat{\imath}\left[\frac{\partial}{\partial \mathrm{y}}(\mathrm{z})-\frac{\partial}{\partial \mathrm{z}}(\mathrm{y})\right]-\hat{\jmath}\left[\frac{\partial}{\partial \mathrm{x}}(\mathrm{z})-\frac{\partial}{\partial \mathrm{z}}(\mathrm{x})\right]+\hat{\mathrm{k}}\left[\frac{\partial}{\partial \mathrm{x}}(\mathrm{y})-\frac{\partial}{\partial \mathrm{y}}(\mathrm{x})\right]\right\}$
$=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}\{\hat{\imath}[0-0]-\hat{\jmath}[0-0]+\hat{k}[0-0]\}=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}\{0 \hat{\imath}+0 \hat{\jmath}+0 \hat{k}\}=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$
$\vec{\nabla} \times \overrightarrow{\mathrm{u}}=0$

Hence proved.

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{u}=\left(\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}\right) \cdot\left(\frac{x \hat{\imath}}{\sqrt{x^{2}+y^{2}+z^{2}}}+\frac{y \hat{\jmath}}{\sqrt{x^{2}+y^{2}+z^{2}}}+\frac{z \hat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)=\frac{\partial}{\partial x} \frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}+\frac{\partial}{\partial y} \frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}+\frac{\partial}{\partial z} \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
& =\frac{\sqrt{x^{2}+y^{2}+z^{2}}(1)-x \cdot \frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}(2 x)}{\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)^{2}}+\frac{\sqrt{x^{2}+y^{2}+z^{2}}(1)-y \cdot \frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}(2 y)}{\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)^{2}}+\frac{\sqrt{x^{2}+y^{2}+z^{2}}(1)-x \cdot \frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}(2 z)}{\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)^{2}} \\
& =\frac{\sqrt{x^{2}+y^{2}+z^{2}}-\frac{x^{2}}{\sqrt{x^{2}+y^{2}+z^{2}}}}{x^{2}+y^{2}+z^{2}}+\frac{\sqrt{x^{2}+y^{2}+z^{2}}-\frac{y^{2}}{\sqrt{x^{2}+y^{2}+z^{2}}}}{x^{2}+y^{2}+z^{2}}+\frac{\sqrt{x^{2}+y^{2}+z^{2}}-\frac{z^{2}}{\sqrt{x^{2}+y^{2}+z^{2}}}}{x^{2}+y^{2}+z^{2}} \\
& =\frac{\frac{\left[x^{2}+y^{2}+z^{2}-x^{2}\right]}{\sqrt{x^{2}+y^{2}+z^{2}}}}{x^{2}+y^{2}+z^{2}}+\frac{\frac{\left[x^{2}+y^{2}+z^{2}-y^{2}\right]}{\sqrt{x^{2}+y^{2}+z^{2}}}}{x^{2}+y^{2}+z^{2}}+\frac{\frac{\left[x^{2}+y^{2}+z^{2}-z^{2}\right]}{\sqrt{x^{2}+y^{2}+z^{2}}}}{x^{2}+y^{2}+z^{2}} \\
& =\frac{y^{2}+z^{2}}{\left(x^{2}+y^{2}+z^{2}\right) \sqrt{x^{2}+y^{2}+z^{2}}}+\frac{x^{2}+z^{2}}{\left(x^{2}+y^{2}+z^{2}\right) \sqrt{x^{2}+y^{2}+z^{2}}}+\frac{x^{2}+y^{2}}{\left(x^{2}+y^{2}+z^{2}\right) \sqrt[3]{x^{2}+y^{2}+z^{2}}} \\
& =\frac{y^{2}+z^{2}+x^{2}+z^{2}+x^{2}+y^{2}}{\left(x^{2}+y^{2}+z^{2}\right) \sqrt{x^{2}+y^{2}+z^{2}}}=\frac{2 x^{2}+2 y^{2}+2 z^{2}}{\left(x^{2}+y^{2}+z^{2}\right) \sqrt{x^{2}+y^{2}+z^{2}}}=\frac{2\left(x^{2}+y^{2}+z^{2}\right)}{\left(x^{2}+y^{2}+z^{2}\right) \sqrt{x^{2}+y^{2}+z^{2}}}
\end{aligned}
$$

Q\#08:If $\varphi=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$ and $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\mathrm{i}}+\mathrm{y} \hat{\mathrm{\jmath}}+\mathrm{z} \hat{\mathrm{k}}$ Then show that $\operatorname{Div}(\varphi \overrightarrow{\mathrm{r}})=5 \varphi$.
Solution: Given $\varphi=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$ and $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\mathrm{i}}+\mathrm{y} \hat{\mathrm{\jmath}}+\mathrm{z} \hat{\mathrm{k}}$

$$
\begin{aligned}
\operatorname{Div}(\varphi \vec{r}) & =\vec{\nabla} \cdot(\varphi \vec{r})=\vec{\nabla} \cdot\left[\left(x^{2}+y^{2}+z^{2}\right)(x \hat{\imath}+y \hat{\jmath}+z \hat{k})\right] \\
& =\left(\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}\right) \cdot\left[x\left(x^{2}+y^{2}+z^{2}\right) \hat{\imath}+y\left(x^{2}+y^{2}+z^{2}\right) \hat{\jmath}+z\left(x^{2}+y^{2}+z^{2}\right) \hat{k}\right] \\
& =\left(\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}\right) \cdot\left[\left(x^{3}+x y^{2}+x z^{2}\right) \hat{\imath}+\left(y x^{2}+y^{3}+y z^{2}\right) \hat{\jmath}+\left(z x^{2}+z y^{2}+z^{3}\right) \hat{k}\right] \\
& =\frac{\partial}{\partial x}\left(x^{3}+x y^{2}+x z^{2}\right)+\frac{\partial}{\partial y}\left(y x^{2}+y^{3}+y z^{2}\right)+\frac{\partial}{\partial z}\left(z x^{2}+z y^{2}+z^{3}\right) \\
& =3 x^{2}+y^{2}+z^{2}+x^{2}+3 y^{2}+z^{2}+x^{2}+y^{2}+3 z^{2} \\
& =5 x^{2}+5 y^{2}+5 z^{2}
\end{aligned}
$$

$\operatorname{Div}(\varphi \vec{r})=5\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)$
$\operatorname{Div}(\varphi \vec{r})=5 \varphi \quad$ Hence proved.
Q\#09:If \vec{a} is a constant vector and $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}$. Show that
(i) $\vec{\nabla}(\vec{a} \cdot \vec{r})=\vec{a}$
(ii) $\vec{\nabla} \cdot(\vec{a} \times \vec{r})=0$ (iii)Curl $[(\vec{a} \cdot \vec{r}) \vec{r}]=\vec{a} \times \vec{r}$
(iv) $\operatorname{Div}[(\vec{a} \cdot \vec{r}) \vec{r}]=4(\vec{a} \cdot \vec{r})$

Solution: Given $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}$ \& Let $\overrightarrow{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
Then $\quad \vec{a} \cdot \vec{r}=\left(a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}\right) \cdot(x \hat{\imath}+y \hat{\jmath}+z \hat{k})=a_{1} x+a_{2} y+a_{3} z$
$\boldsymbol{\&} \quad \vec{a} \times \vec{r}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ x & y & z\end{array}\right|=\hat{i}\left|\begin{array}{cc}a_{2}^{2} & a_{3} \\ y & z\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}a_{1} & a_{3} \\ x & z\end{array}\right|+\hat{k}\left|\begin{array}{cc}a_{1} & a_{2} \\ x & y\end{array}\right|$

$$
\begin{aligned}
& \vec{a} \times \vec{r}=\hat{i}\left[a_{2} z-a_{3} y\right]-\hat{\jmath}\left[a_{1} z-a_{3} x\right]+\hat{k}\left[a_{1} y-a_{2} x\right] \\
& \vec{a} \times \vec{r}=\hat{i}\left[a_{2} z-a_{3} y\right]+\hat{\jmath}\left[a_{3} x-a_{1} z\right]+\hat{k}\left[a_{1} y-a_{2} x\right]
\end{aligned}
$$

(i)

$$
\vec{\nabla}(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{r}})=\overrightarrow{\mathbf{a}}
$$

Let $\vec{\nabla}(\vec{a} \cdot \vec{r})=\left(\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}\right)\left(a_{1} x+a_{2} y+a_{3} z\right)$

$$
\begin{aligned}
& =\frac{\partial}{\partial x}\left(a_{1} x+a_{2} y+a_{3} z\right) \hat{\imath}+\frac{\partial}{\partial y}\left(a_{1} x+a_{2} y+a_{3} z\right) \hat{\jmath}+\frac{\partial}{\partial z}\left(a_{1} x+a_{2} y+a_{3} z\right) \hat{k} \\
& =a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}
\end{aligned}
$$

$$
\vec{\nabla}(\vec{a} \cdot \vec{r})=\vec{a} \quad \text { Hence proved. }
$$

(ii) $\overrightarrow{\boldsymbol{\nabla}} \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{r}})=\mathbf{0}$

Let

$$
\begin{aligned}
\vec{\nabla} \cdot(\vec{a} \times \vec{r})= & \left(\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}\right) \cdot\left(\hat{\imath}\left[a_{2} z-a_{3} y\right]+\hat{\jmath}\left[a_{3} x-a_{1} z\right]+\hat{k}\left[a_{1} y-a_{2} x\right]\right) \\
& =\frac{\partial}{\partial x}\left[a_{2} z-a_{3} y\right]+\frac{\partial}{\partial y}\left[a_{3} x-a_{1} z\right]+\frac{\partial}{\partial z}\left[a_{1} y-a_{2} x\right] \\
& =0+0+0
\end{aligned}
$$

$$
\vec{\nabla} \cdot(\vec{a} \times \vec{r})=0
$$

Hence proved
(iii) $\operatorname{Curl}[(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{r}}) \overrightarrow{\mathbf{r}}]=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{r}}$

Let $(\vec{a} \cdot \vec{r}) \vec{r}=\left(a_{1} x+a_{2} y+a_{3} z\right)(x \hat{\imath}+y \hat{\jmath}+z \hat{k})$

$$
=x\left(a_{1} x+a_{2} y+a_{3} z\right) \hat{\imath}+y\left(a_{1} x+a_{2} y+a_{3} z\right) \hat{\jmath}+z\left(a_{1} x+a_{2} y+a_{3} z\right) \hat{k}
$$

$$
(\vec{a} \cdot \vec{r}) \vec{r}=\left(a_{1} x^{2}+a_{2} x y+a_{3} x z\right) \hat{\imath}+\left(a_{1} x y+a_{2} y^{2}+a_{3} y z\right) \hat{\jmath}+\left(a_{1} x z+a_{2} y z+a_{3} z^{2}\right) \hat{k}
$$

Now
$\operatorname{Curl}[(\vec{a} . \vec{r}) \vec{r}]=\vec{a} \times \vec{r} \quad$ Hence proved.

$$
\begin{aligned}
& \operatorname{Curl}[(\vec{a} \cdot \vec{r}) \vec{r}]=\vec{\nabla} \times[(\vec{a} \cdot \vec{r}) \vec{r}]=\left|\begin{array}{ccc}
\hat{\imath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
\left(a_{1} x^{2}+a_{2} x y+a_{3} x z\right) & \left(a_{1} x y+a_{2} y^{2}+a_{3} y z\right) & \left(a_{1} x z+a_{2} y z+a_{3} z^{2}\right)
\end{array}\right| \\
& =\hat{i}\left|\begin{array}{cc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\left(a_{1} x y+a_{2} y^{2}+a_{3} y z\right) & \left(a_{1} x z+a_{2} y z+a_{3} z^{2}\right)
\end{array}\right|-\hat{\jmath}\left|\begin{array}{c}
\frac{\partial}{\partial x} \\
\left(a_{1} x^{2}+a_{2} x y+a_{3} x z\right)
\end{array}\left(a_{1} x z+a_{2} y z+a_{3} z^{2}\right)\right| \\
& +\hat{k}\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
\left(a_{1} x^{2}+a_{2} x y+a_{3} x z\right) & \left(a_{1} x y+a_{2} y^{2}+a_{3} y z\right)
\end{array}\right| \\
& =\hat{i}\left[\frac{\partial}{\partial y}\left(a_{1} x z+a_{2} y z+a_{3} z^{2}\right)-\frac{\partial}{\partial z}\left(a_{1} x y+a_{2} y^{2}+a_{3} y z\right)\right] \\
& -\hat{\jmath}\left[\frac{\partial}{\partial x}\left(a_{1} x z+a_{2} y z+a_{3} z^{2}\right)-\frac{\partial}{\partial z}\left(a_{1} x^{2}+a_{2} x y+a_{3} x z\right)\right] \\
& +\hat{k}\left[\frac{\partial}{\partial x}\left(a_{1} x y+a_{2} y^{2}+a_{3} y z\right)-\frac{\partial}{\partial y}\left(a_{1} x^{2}+a_{2} x y+a_{3} x z\right)\right] \\
& =\hat{i}\left[a_{2} z-a_{3} y\right]+\hat{\jmath}\left[a_{3} x-a_{1} z\right]+\hat{k}\left[a_{1} y-a_{2} x\right]
\end{aligned}
$$

(iv) $\operatorname{Div}[(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{r}}) \overrightarrow{\mathbf{r}}]=4(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{r}})$

Let $\quad(\vec{a} \cdot \vec{r}) \vec{r}=\left(a_{1} x+a_{2} y+a_{3} z\right)(x \hat{\imath}+y \hat{\jmath}+z \hat{k})$

$$
=x\left(a_{1} x+a_{2} y+a_{3} z\right) \hat{\imath}+y\left(a_{1} x+a_{2} y+a_{3} z\right) \hat{\jmath}+z\left(a_{1} x+a_{2} y+a_{3} z\right) \hat{k}
$$

$(\vec{a} \cdot \vec{r}) \vec{r}=\left(a_{1} x^{2}+a_{2} x y+a_{3} x z\right) \hat{\imath}+\left(a_{1} x y+a_{2} y^{2}+a_{3} y z\right) \hat{\jmath}+\left(a_{1} x z+a_{2} y z+a_{3} z^{2}\right) \hat{k}$
Now
$\operatorname{Div}[(\vec{a} \cdot \vec{r}) \vec{r}]=\vec{\nabla} \cdot[(\vec{a} \cdot \vec{r}) \vec{r}]$

$$
\begin{aligned}
& =\left(\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}\right) \cdot\left[\left(a_{1} x^{2}+a_{2} x y+a_{3} x z\right) \hat{\imath}+\left(a_{1} x y+a_{2} y^{2}+a_{3} y z\right) \hat{\jmath}+\left(a_{1} x z+a_{2} y z+a_{3} z^{2}\right) \hat{k}\right] \\
& =\frac{\partial}{\partial x}\left(a_{1} x^{2}+a_{2} x y+a_{3} x z\right)+\frac{\partial}{\partial y}\left(a_{1} x y+a_{2} y^{2}+a_{3} y z\right)+\frac{\partial}{\partial z}\left(a_{1} x z+a_{2} y z+a_{3} z^{2}\right) \\
& =2 a_{1} x+a_{2} y+a_{3} z+a_{1} x+2 a_{2} y+a_{3} z+a_{1} x+a_{2} y+2 a_{3} z \\
& =4 a_{1} x+4 a_{2} y+4 a_{3} z \\
& =4\left(a_{1} x+a_{2} y+a_{3} z\right)
\end{aligned}
$$

$\operatorname{Div}[(\vec{a} \cdot \vec{r}) \vec{r}]=4(\vec{a} \cdot \vec{r}) \quad$ Hence proved.
Q\#10:If $\overrightarrow{\mathrm{a}}=\mathrm{e}^{\mathrm{xy}} \hat{\imath}+\sin (\mathrm{xy}) \hat{\jmath}+\cos \left(\mathrm{yz}^{2}\right) \hat{\mathrm{k}}$ then evaluate Curl $\overrightarrow{\mathrm{a}}$.
Solution: Given $\overrightarrow{\mathrm{a}}=\mathrm{e}^{\mathrm{xy}} \hat{\imath}+\sin (\mathrm{xy}) \hat{\jmath}+\cos \left(\mathrm{yz}^{2}\right) \hat{\mathrm{k}}$
Then Curl $\overrightarrow{\mathrm{a}}=\vec{\nabla} \times \overrightarrow{\mathrm{r}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial y} & -\frac{\partial}{\partial z} \\ \mathrm{e}^{\mathrm{xy}} & \sin (\mathrm{xy}) & \cos \left(\mathrm{yz}^{2}\right)\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \sin (\mathrm{xy}) & \cos \left(\mathrm{yz}^{2}\right)\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial z} \\ \mathrm{e}^{\mathrm{xy}} & \cos \left(\mathrm{yz} z^{2}\right)\end{array}\right|+\hat{\mathrm{k}}\left|\begin{array}{cc}\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial \mathrm{y}} \\ \mathrm{e}^{\mathrm{ey}} & \sin (\mathrm{xy})\end{array}\right|$

$$
=\hat{\imath}\left[\frac{\partial}{\partial y} \cos \left(\hat{y z}^{2}\right)-\frac{\partial}{\partial z} \sin (x y)\right]-\hat{\jmath}\left[\frac{\partial}{\partial x} \cos \left(y z^{2}\right)-\frac{\partial}{\partial z} e^{x y}\right]+\hat{k}\left[\frac{\partial}{\partial x} \sin (x y)-\frac{\partial}{\partial y} e^{x y}\right]
$$

$$
=\hat{i}\left[-z^{2} \sin \left(y z^{2}\right)-0\right]+\hat{\jmath}[0-0]+\hat{k}\left[y \cos (x y)-x e^{x y}\right]
$$

$=-z^{2} \sin \left(y z^{2}\right) \hat{\imath}+0 \hat{\jmath}+\left[y \cos (x y)-x e^{x y}\right] \hat{k}$
$\operatorname{Curl} \overrightarrow{\mathrm{a}}=-\mathrm{z}^{2} \sin \left(\mathrm{yz}^{2}\right) \hat{\imath}+\left[y \cos (\mathrm{xy})-\mathrm{xe} \mathrm{e}^{\mathrm{xy}}\right] \hat{\mathrm{k}}$
Q\#11: Evaluate $\quad \vec{\nabla} \cdot\left[\mathrm{r} \vec{\nabla}\left(\frac{1}{\mathrm{r}^{3}}\right)\right]$

Solution: Let $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}$ then $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-----(i)$

$$
\begin{aligned}
& \text { Now } \vec{\nabla} \cdot\left[\mathrm{r} \vec{\nabla}\left(\frac{1}{\mathrm{r}^{3}}\right)\right]=\vec{\nabla} \cdot\left[\mathrm{r} \vec{\nabla}\left(\mathrm{r}^{-3}\right)\right] \\
& \therefore\left\{\begin{array}{c}
\text { From(i) Differentiate w.r.t } x \\
2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r} \text { Similarly } \frac{\partial r}{\partial y}=\frac{y}{r} \frac{\partial r}{\partial z}=\frac{z}{r}
\end{array}\right\} \\
& =\vec{\nabla} \cdot\left[\mathrm{r}\left(\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{i}}+\frac{\partial}{\partial \mathrm{y}} \hat{\mathrm{\jmath}}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathrm{k}}\right)\left(\mathrm{r}^{-3}\right)\right] \\
& =\vec{\nabla} \cdot\left[\mathrm{r}\left\{\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{r}^{-3}\right) \hat{\imath}+\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{r}^{-3}\right) \hat{\jmath}+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{r}^{-3}\right) \hat{\mathrm{k}}\right\}\right] \\
& =\vec{\nabla} \cdot\left[r\left\{(-3) r^{-4} \frac{\partial r}{\partial x} \hat{\imath}+(-3) r^{-4} \frac{\partial r}{\partial y} \hat{\jmath}+(-3) r^{-4} \frac{\partial r}{\partial z} \hat{k}\right\}\right] \\
& =\vec{\nabla} \cdot\left[r\left\{(-3) r^{-4} \frac{x}{r} \hat{\imath}+(-3) r^{-4} \frac{y}{r} \hat{\jmath}+(-3) r^{-4} \frac{z}{r} \hat{k}\right\}\right] \\
& =\vec{\nabla} \cdot\left[(-3) r^{-4} \cdot x \hat{\imath}+(-3) r^{-4} \cdot y \hat{\jmath}+(-3) r^{-4} \cdot z \hat{k}\right] \\
& =\left(\frac{\partial}{\partial \mathrm{x}} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{\mathrm{k}}\right) \cdot\left[(-3) \mathrm{r}^{-4} \cdot \mathrm{x} \hat{\imath}+(-3) \mathrm{r}^{-4} \cdot \mathrm{y} \hat{\mathrm{j}}+(-3) \mathrm{r}^{-4} \cdot \mathrm{z} \hat{\mathrm{k}}\right] \\
& =\frac{\partial}{\partial \mathrm{x}}(-3) \mathrm{r}^{-4} \cdot \mathrm{x}+\frac{\partial}{\partial \mathrm{y}}(-3) \mathrm{r}^{-4} \cdot \mathrm{y}+\frac{\partial}{\partial \mathrm{z}}(-3) \mathrm{r}^{-4} \cdot \mathrm{z} \\
& =(-3)\left[\frac{\partial}{\partial x}\left(r^{-4} \cdot x\right)+\frac{\partial}{\partial y}\left(r^{-4} \cdot y\right)+\frac{\partial}{\partial z}\left(r^{-4} \cdot z\right)\right] \\
& =(-3)\left[\left\{r^{-4} \frac{\partial x}{\partial x}+(-4) r^{-5} \frac{\partial r}{\partial x} \cdot x\right\}+\left\{r^{-4} \frac{\partial y}{\partial y}+(-4) r^{-5} \frac{\partial r}{\partial y} \cdot y\right\}+\left\{r^{-4} \frac{\partial z}{\partial z}+(-4) r^{-5} \frac{\partial r}{\partial z} \cdot z\right\}\right] \\
& =(-3)\left[\left\{r^{-4}+(-4) r^{-5} \cdot \frac{x}{r} \cdot x\right\}+\left\{r^{-4}+(-4) r^{-5} \cdot \frac{y}{r} \cdot y\right\}+\left\{r^{-4}+(-4) r^{-5} \cdot \frac{\mathrm{z}}{\mathrm{r}} \cdot \mathrm{z}\right\}\right] \\
& =(-3)\left[\left\{r^{-4}+(-4) r^{-6} \cdot x^{2}\right\}+\left\{r^{-4}+(-4) r^{-6} \cdot y^{2}\right\}+\left\{r^{-4}+(-4) r^{-6} \cdot z^{2}\right\}\right] \\
& =(-3)\left[r^{-4}-4 r^{-6} \cdot x^{2}+r^{-4}-4 r^{-6} \cdot y^{2}+r^{-4}-4 r^{-6} \cdot z^{2}\right] \\
& =(-3)\left[3 r^{-4}-4 r^{-6}\left(x^{2}+y^{2}+z^{2}\right)\right] \\
& =(-3)\left[3 r^{-4}-4 r^{-6} \cdot r^{2}\right] \\
& =(-3)\left[3 r^{-4}-4 r^{-4}\right] \\
& =(-3)\left[-r^{-4}\right] \\
& =3 r^{-4}
\end{aligned}
$$

Hence $\quad \vec{\nabla} \cdot\left[\mathrm{r} \vec{\nabla}\left(\frac{1}{\mathrm{r}^{3}}\right)\right]=\frac{3}{\mathrm{r}^{4}}$

Q\#12:If $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\mathrm{\imath}}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}} \quad$ and $\overrightarrow{\mathrm{a}}$ is a constant vector then show that
(i) $\operatorname{Curl} \overrightarrow{\mathrm{r}}=0$
(ii) $\operatorname{Curl}\left(\mathrm{r}^{\mathrm{n}} \overrightarrow{\mathrm{r}}\right)=0$
(iii) $\operatorname{Curl}(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{r}})=2 \overrightarrow{\mathrm{a}}$
(iv) $\vec{\nabla} \times\left(\frac{\overrightarrow{\mathrm{r}}}{\mathrm{r}^{2}}\right)$

Let $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k} \quad \& \quad \vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$
(i)

Curl $\overrightarrow{\mathrm{r}}=0$
Solution: Let

$$
\begin{aligned}
\text { Curl } \overrightarrow{\mathrm{r}} & =\vec{\nabla} \times \overrightarrow{\mathrm{r}}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\
\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\mathrm{x} & \mathrm{y} & \mathrm{z}
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial \mathrm{z}} \\
\mathrm{y} & \mathrm{z}
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial \mathrm{z}} \\
\mathrm{z}
\end{array}\right|+\hat{\mathrm{k}}\left|\begin{array}{cc}
\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial \mathrm{y}} \\
\mathrm{x} & \mathrm{y}
\end{array}\right| \\
& =\hat{\imath}\left[\frac{\partial}{\partial \mathrm{y}} \mathrm{z}-\frac{\partial}{\partial \mathrm{z}} \mathrm{y}\right]-\hat{\jmath}\left[\frac{\partial}{\partial \mathrm{x}} \mathrm{z}-\frac{\partial}{\partial \mathrm{z}} \mathrm{x}\right]+\hat{\mathrm{k}}\left[\frac{\partial}{\partial \mathrm{x}} \mathrm{y}-\frac{\partial}{\partial \mathrm{y}} \mathrm{x}\right] \\
& =\hat{\mathrm{i}}[0-0]+\hat{\jmath}[0-0]+\hat{\mathrm{k}}[0-0] \\
& =0 \hat{\imath}+0 \hat{\jmath}+0 \hat{\mathrm{k}}
\end{aligned}
$$

$\operatorname{Curl} \overrightarrow{\mathrm{r}}=0$
(ii)

$$
\operatorname{Curl}\left(\mathbf{r}^{\mathrm{n}} \overrightarrow{\mathbf{r}}\right)=0
$$

Solution: $\therefore r^{n} \vec{r}^{n}=r^{n}(x \hat{\imath}+y \hat{\jmath}+z \hat{k})=r^{n} x \hat{\imath}+r^{n} y \hat{\jmath}+r^{n} z \hat{k}$

$$
\begin{aligned}
& \text { Now } \quad \text { Curl }\left(\mathrm{r}^{\mathrm{n}} \overrightarrow{\mathrm{r}}\right)=\vec{\nabla} \times\left(\mathrm{r}^{\mathrm{n}} \overrightarrow{\mathrm{r}}\right)=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial \mathrm{y}} & \frac{\partial}{\partial \mathrm{z}} \\
\mathrm{r}^{\mathrm{n}} \mathrm{x} & \mathrm{r}^{\mathrm{n}} \mathrm{y} & \mathrm{r}^{\mathrm{n}_{\mathrm{z}}}
\end{array}\right|=\mathrm{r}^{\mathrm{n}}\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\
\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\mathrm{x} & \mathrm{y} & \mathrm{z}
\end{array}\right| \quad \therefore\left(\mathrm{r}^{\mathrm{n}} \text { common from } \mathrm{R}_{3}\right) \\
& =r_{0}^{n}\left[\hat{\imath}\left|\begin{array}{cc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y & z
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\
\mathrm{x} & \mathrm{z}
\end{array}\right|+\hat{\mathrm{k}}\left|\begin{array}{cc}
\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial y} \\
\mathrm{x} & \mathrm{y}
\end{array}\right|\right] \\
& =r^{n}\left\{\hat{1}\left[\frac{\partial}{\partial y} z-\frac{\partial}{\partial z} y\right]-\hat{\jmath}\left[\frac{\partial}{\partial x} z-\frac{\partial}{\partial z} x\right]+\hat{k}\left[\frac{\partial}{\partial x} y-\frac{\partial}{\partial y} x\right]\right\} \\
& =r^{n}\{\hat{1}[0-0]+\hat{\jmath}[0-0]+\hat{\mathrm{k}}[0-0]\} \\
& =r^{n}\{0 \hat{\imath}+0 \hat{\jmath}+0 \hat{\mathrm{k}}\} \\
& =r^{n}\{0\}
\end{aligned}
$$

$\operatorname{Curl}\left(r^{n} \vec{r}\right)=0$
(iii) $\quad \operatorname{Curl}(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{r}})=2 \overrightarrow{\mathbf{a}}$

Solution: $\quad \therefore \quad \vec{a} \times \vec{r}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ x & y & z\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}a_{2} & a_{3} \\ y & z\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}a_{1} & a_{3} \\ x & z\end{array}\right|+\hat{k}\left|\begin{array}{cc}a_{1} & a_{2} \\ x & y\end{array}\right|$
$\vec{a} \times \vec{r}=\hat{\imath}\left[a_{2} z-a_{3} y\right]-\hat{\jmath}\left[a_{1} z-a_{3} x\right]+\hat{k}\left[a_{1} y-a_{2} x\right]=\hat{\imath}\left[a_{2} z-a_{3} y\right]+\hat{\jmath}\left[a_{3} x-a_{1} z\right]+\hat{k}\left[a_{1} y-a_{2} x\right]$
Now Curl $(\vec{a} \times \vec{r})=\vec{\nabla} \times(\vec{a} \times \vec{r})=\vec{\nabla} \times \vec{r}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial y} & \frac{\partial}{\partial \mathrm{z}} \\ \mathrm{a}_{2} \mathrm{z}-\mathrm{a}_{3} \mathrm{y} & \mathrm{a}_{3} \mathrm{x}-\mathrm{a}_{1} \mathrm{z} & \mathrm{a}_{1} \mathrm{y}-\mathrm{a}_{2} \mathrm{x}\end{array}\right|$

$$
\begin{aligned}
& =\hat{\imath}\left|\begin{array}{cc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
a_{3} x-a_{1} z & a_{1} y-a_{2} x
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\
a_{2} z-a_{3} y & a_{1} y-a_{2} x
\end{array}\right|+\hat{k}\left|\begin{array}{c}
\frac{\partial}{\partial x} \\
a_{2} z-a_{3} y \\
a_{3} x-a_{1} z
\end{array}\right| \\
& =\hat{\imath}\left[\frac{\partial}{\partial y}\left(a_{1} y-a_{2} x\right)-\frac{\partial}{\partial z}\left(a_{3} x-a_{1} z\right)\right]-\hat{\jmath}\left[\frac{\partial}{\partial x}\left(a_{1} y-a_{2} x\right)-\frac{\partial}{\partial z}\left(a_{2} z-a_{3} y\right)\right]+\hat{k} \\
& =\hat{\imath}\left[a_{1}-\left(-a_{1}\right)\right]+\hat{\jmath}\left[a_{2}-\left(-a_{2}\right)\right]+\hat{k}\left[a_{3}-\left(-a_{3}\right)\right] \\
& =\hat{\imath}\left[a_{1}+a_{1}\right]+\hat{\jmath}\left[a_{2}+a_{2}\right]+\hat{k}\left[a_{3}+a_{3}\right] \\
& =2 a_{1} \hat{\imath}+2 a_{2} \hat{\jmath}+2 a_{3} \hat{k}=2\left(a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}\right)
\end{aligned}
$$

$\operatorname{Curl}(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{r}})=2 \overrightarrow{\mathrm{a}}$
(iv) $\quad \vec{\nabla} \times\left(\frac{\overrightarrow{\mathrm{r}}}{\mathrm{r}^{2}}\right)$

Solution: $\operatorname{let} \overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\mathrm{i}}+\mathrm{y} \hat{\mathrm{j}}+\mathrm{z} \hat{\mathrm{k}}$

$$
\therefore r^{-2} \vec{r}=r^{-2}(x \hat{\imath}+y \hat{\jmath}-z \hat{k})=r^{-2} x \hat{\imath}+r^{-2} y \hat{\jmath}+r^{-2} z \hat{k}
$$

Now $\quad \vec{\nabla} \times\left(\frac{\vec{r}}{r^{2}}\right)=\vec{\nabla} \times\left(r^{-2} \vec{r}\right)=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ r^{-2} x & r^{-2} y & r^{-2} z\end{array}\right|=r^{-2}\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x & y & z\end{array}\right| \quad \therefore\left(r^{-2}\right.$ common from R $\left.{ }_{3}\right)$

$$
\begin{aligned}
& =r^{-2}\left[\hat{\imath}\left|\begin{array}{cc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y & z
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\
x & z
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
x & y
\end{array}\right|\right] \\
& =r^{-2}\left\{\hat{\imath}\left[\frac{\partial}{\partial y} z-\frac{\partial}{\partial z} y\right]-\hat{\jmath}\left[\frac{\partial}{\partial x} z-\frac{\partial}{\partial z} x\right]+\hat{k}\left[\frac{\partial}{\partial x} y-\frac{\partial}{\partial y} x\right]\right\} \\
& =r^{-2}\{\hat{\imath}[0-0]+\hat{\jmath}[0-0]+\hat{k}[0-0]\}=r^{-2}\{0 \hat{\imath}+0 \hat{\jmath}+0 \hat{k}\} \\
& =r^{-2}\{0\}
\end{aligned}
$$

$\vec{\nabla} \times\left(\frac{\vec{r}}{r^{2}}\right)=0 \quad$ Hence proved.

Q\#13: Show that $\overrightarrow{\mathrm{F}}=\frac{\overrightarrow{\mathrm{r}}}{\mathrm{r}^{2}}$ is an Irrotational vector also find φ, when $\overrightarrow{\mathrm{F}}=-\vec{\nabla} \varphi$ such that $\varphi(\mathrm{a})=0 .(a>0)$
Solution: : Let $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\mathrm{i}}+\mathrm{y} \hat{\mathrm{j}}+\mathrm{z} \hat{\mathrm{k}} \quad \boldsymbol{\&} \quad \mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$

$$
\therefore r^{-2} \vec{r}=r^{-2}(x \hat{\imath}+y \hat{\jmath}+z \hat{k})=r^{-2} x \hat{\imath}+r^{-2} y \hat{\jmath}+r^{-2} z \hat{k}
$$

For Irrotational vector, we have to prove Now $\operatorname{Curl} \overrightarrow{\mathrm{F}}=0$

$$
\operatorname{Curl} \overrightarrow{\mathrm{F}}=0
$$

Hence prove that $\overrightarrow{\mathrm{F}}=\frac{\overrightarrow{\mathrm{r}}}{\mathrm{r}^{2}}$ is an Irrotational vector.
Now we have find φ for this given condition is $\quad \overrightarrow{\mathrm{F}}=-\vec{\nabla} \varphi \quad$ Then $\quad \vec{\nabla} \varphi=-\frac{\vec{r}}{\mathrm{r}^{2}}$

$$
\frac{\partial \varphi}{\partial \mathrm{x}} \hat{\mathrm{i}}+\frac{\partial \varphi}{\partial y} \hat{\jmath}+\frac{\partial \varphi}{\partial z} \hat{k}=-\frac{x \hat{\imath}+\hat{y}+z \hat{k} \hat{k}}{\partial x^{2}+y^{2}+z^{2}}=-\frac{x}{x^{2}+y^{2}+z^{2}} \hat{\imath}-\frac{y}{x^{2}+y^{2}+z^{2}} \hat{\jmath}-\frac{z}{x^{2}+y^{2}+z^{2}} \hat{k}
$$

Comparing coefficients of $\hat{\mathrm{y}}, \hat{\jmath} \& \hat{\mathrm{k}}$

$\frac{\partial \varphi}{\partial \mathrm{x}}=-\frac{\mathrm{x}}{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}} \Rightarrow \varphi=-\frac{1}{2} \int \frac{2 \mathrm{x}}{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}} \partial \mathrm{x} \Rightarrow \varphi=-\frac{1}{2} \ln \left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)+\mathrm{c}_{1}(\mathrm{y}, \mathrm{z})-\cdots---(i)$
$\frac{\partial \varphi}{\partial y}=-\frac{y}{x^{2}+y^{2}+z^{2}} \Rightarrow \varphi=-\frac{1}{2} \int \frac{2 y}{x^{2}+y^{2}+z^{2}} \partial x \Rightarrow \varphi=-\frac{1}{2} \ln \left(x^{2}+y^{2}+z^{2}\right)+c_{2}(x, z)$
$\frac{\partial \varphi}{\partial \mathrm{z}}=-\frac{\mathrm{z}}{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}} \Rightarrow \varphi=-\frac{1}{2} \int \frac{2 \mathrm{z}}{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}} \partial \mathrm{x} \Rightarrow \varphi=-\frac{1}{2} \ln \left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)+\mathrm{c}_{3}(\mathrm{x}, \mathrm{z})$
From (i), (ii) \& (iii): $\quad \varphi=-\frac{1}{2} \ln \left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)+\mathrm{c}$
$\varphi=-\frac{1}{2} \ln \left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)+\mathrm{c} \Rightarrow \varphi=-\frac{1}{2} \ln \mathrm{r}^{2}+\mathrm{c}=-\frac{1}{2} \cdot 2 \ln \mathrm{r}+\mathrm{c} \Rightarrow \varphi(\mathrm{r})=-\ln \mathrm{r}+\mathrm{c}$
At $\varphi(\mathrm{a})=0 \Rightarrow-\ln \mathrm{a}+\mathrm{c}=0 \Rightarrow \mathrm{c}=\ln \mathrm{a}$
Hence equation (a) will become $\varphi(\mathrm{r})=\varphi(\mathrm{r})=-\ln \mathrm{r}+\ln \mathrm{a} \Rightarrow \varphi(\mathrm{r})=\ln \left(\frac{\mathrm{a}}{\mathrm{r}}\right)$

$$
\begin{aligned}
& \operatorname{Curl} \overrightarrow{\mathrm{F}}=\vec{\nabla} \times \overrightarrow{\mathrm{F}}=\vec{\nabla} \times\left(\frac{\overrightarrow{\mathrm{r}}}{\mathrm{r}^{2}}\right)=\vec{\nabla} \times\left(\mathrm{r}^{-2} \overrightarrow{\mathrm{r}}\right)=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\
\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial y} & \frac{\partial}{\partial \mathrm{z}} \\
\mathrm{r}^{-2} \mathrm{x} & \mathrm{r}^{-2} \mathrm{y} & \mathrm{r}^{-2} \mathrm{z}
\end{array}\right|=\mathrm{r}^{-2}\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\
\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial y} & \frac{\partial}{\partial \mathrm{z}} \\
\mathrm{x} & \mathrm{y} & \mathrm{z}
\end{array}\right| \therefore\left(\mathrm{r}^{-2} \text { common from } \mathrm{R}_{3}\right) \\
& =r^{-2}\left[\hat{i}\left|\begin{array}{cc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y & z
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\
x & z
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
x & y
\end{array}\right|\right] \\
& =r^{-2}\left\{\hat{1}\left[\frac{\partial}{\partial y} \mathrm{z}-\frac{\partial}{\partial \mathrm{z}} \mathrm{y}\right]-\hat{\mathrm{\jmath}}\left[\frac{\partial}{\partial \mathrm{x}} \mathrm{z}-\frac{\partial}{\partial \mathrm{z}} \mathrm{x}\right]+\hat{\mathrm{k}}\left[\frac{\partial}{\partial \mathrm{x}} \mathrm{y}-\frac{\partial}{\partial \mathrm{y}} \mathrm{x}\right]\right\} \\
& =\mathrm{r}^{-2}\{\hat{\imath}[0-0]+\hat{\jmath}[0-0]+\hat{\mathrm{k}}[0-0]\}=\mathrm{r}^{-2}\{0 \hat{\hat{1}}+0 \hat{\jmath}+0 \hat{\mathrm{k}}\}=\mathrm{r}^{-2}\{0\}
\end{aligned}
$$

Q\#14: Find a, b, \boldsymbol{c} so that $\overrightarrow{\mathrm{F}}=(\mathrm{x}+2 \mathrm{y}+\mathrm{az}) \hat{\imath}+(\mathrm{bx}-3 \mathrm{y}-\mathrm{z}) \hat{\jmath}+(4 \mathrm{x}+\mathrm{cy}+2 \mathrm{z}) \hat{\mathrm{k}}$ is Irrotational vector.

Solution: Given $\overrightarrow{\mathrm{F}}=(\mathrm{x}+2 \mathrm{y}+\mathrm{az}) \hat{\mathrm{i}}+(\mathrm{bx}-3 \mathrm{y}-\mathrm{z}) \hat{\jmath}+(4 \mathrm{x}+\mathrm{cy}+2 \mathrm{z}) \hat{\mathrm{k}}$
By using Given condition that $\overrightarrow{\mathrm{F}}$ is an irrotational vector therefore

$$
\begin{aligned}
& \operatorname{Curl} \overrightarrow{\mathrm{F}}=0 \Rightarrow \vec{\nabla} \times \overrightarrow{\mathrm{F}}=0 \\
& \Rightarrow\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
(x+2 y+a z) & (b x-3 y-z) & (4 x+c y+2 z)
\end{array}\right|=0 \\
& \hat{i}\left|\begin{array}{cc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
(b x-3 y-z) & (4 x+c y+2 z)
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\
(x+2 y+a z) & (4 x+c y+2 z)
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
\bullet-\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
(x+2 y+a z) & (b x-3 y-z)
\end{array}\right|=0 \\
& \hat{\imath}\left[\frac{\partial}{\partial y}(4 x+c y+2 z)-\frac{\partial}{\partial z}(b x-3 y-z)\right]-\hat{\jmath}\left[\frac{\partial}{\partial x}(4 x+c y+2 z)-\frac{\partial}{\partial z}(x+2 y+a z)\right]+\hat{k}\left[\frac{\partial}{\partial x}(b x-\right. \\
& \left.3 y-z)-\frac{\partial}{\partial y}(x+2 y+a z)\right]=0 \\
& \hat{\imath}[c-(-1)]+\hat{\jmath}[4-a]+\hat{k}[b-2]=0 \hat{\imath}+0 \hat{\jmath}+0 \hat{k} \\
& \hat{\imath}[c+1]+\hat{\jmath}[4-a]+\hat{k}[b-2]=0 \hat{\imath}+0 \hat{\jmath}+0 \hat{k}
\end{aligned}
$$

Comparing coefficients of $\hat{\mathrm{\imath}}, \hat{\jmath} \& \hat{\mathrm{k}}$.

$$
\begin{array}{cl}
\mathrm{c}+1=0 & \Rightarrow \boldsymbol{c}=-\boldsymbol{1} \\
4-\mathrm{a}=0 & \Rightarrow \boldsymbol{a}=\mathbf{4} \\
\mathrm{b}-2=0 & \Rightarrow \boldsymbol{b}=2
\end{array}
$$

Q\#15: Prove that . $\quad \nabla^{2} \mathrm{f}(\mathrm{r})=\frac{\partial^{2} \mathrm{f}}{\partial \mathrm{r}^{2}}+\frac{2}{\mathrm{r}} \frac{\partial \mathrm{f}}{\partial \mathrm{r}}$
Solution: We know that $\nabla^{2}=\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2}}{\partial \mathrm{z}^{2}} \quad$ then

$$
\begin{align*}
\nabla^{2} f(r) & =\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right] f(r)=\frac{\partial^{2}}{\partial x^{2}} f(r)+\frac{\partial^{2}}{\partial y^{2}} f(r)+\frac{\partial^{2}}{\partial z^{2}} f(r) \\
& =\frac{\partial}{\partial x}\left[\frac{\partial}{\partial x} f(r)\right]+\frac{\partial}{\partial y}\left[\frac{\partial}{\partial y} f(r)\right]+\frac{\partial}{\partial z}\left[\frac{\partial}{\partial z} f(r)\right] \\
& =\frac{\partial}{\partial x}\left[f^{\prime}(r) \frac{\partial r}{\partial x}\right]+\frac{\partial}{\partial y}\left[f^{\prime}(r) \frac{\partial r}{\partial y}\right]+\frac{\partial}{\partial z}\left[f^{\prime}(r) \frac{\partial r}{\partial z}\right] \\
& =\left[\left\{f^{\prime \prime}(r) \frac{\partial r}{\partial x} \cdot \frac{\partial r}{\partial x}+f^{\prime}(r) \frac{\partial^{2} r}{\partial x^{2}}\right\}+\left\{f^{\prime \prime}(r) \frac{\partial r}{\partial y} \cdot \frac{\partial r}{\partial y}+f^{\prime}(r) \frac{\partial^{2} r}{\partial y^{2}}\right\}+\left\{f^{\prime \prime}(r) \frac{\partial r}{\partial z} \cdot \frac{\partial r}{\partial z}+f^{\prime}(r) \frac{\partial^{2} r}{\partial z^{2}}\right\}\right] \\
& =\left[f^{\prime \prime}(r)\left(\frac{\partial r}{\partial x}\right)^{2}+f^{\prime}(r) \frac{\partial^{2} r}{\partial x^{2}}+f^{\prime \prime}(r)\left(\frac{\partial r}{\partial y}\right)^{2}+f^{\prime}(r) \frac{\partial^{2} r}{\partial y^{2}}+f^{\prime \prime}(r)\left(\frac{\partial r}{\partial z}\right)^{2}+f^{\prime}(r) \frac{\partial^{2} r}{\partial z^{2}}\right] \\
& =\left[f^{\prime \prime}(r)\left\{\left(\frac{\partial r}{\partial x}\right)^{2}+\left(\frac{\partial r}{\partial y}\right)^{2}+\left(\frac{\partial r}{\partial z}\right)^{2}\right\}+f^{\prime}(r)\left\{\frac{\partial^{2} r}{\partial x^{2}}+\frac{\partial^{2} r}{\partial y^{2}}+\frac{\partial^{2} r}{\partial z^{2}}\right\}\right]----------(a) \tag{a}
\end{align*}
$$

Let $\quad \vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ then $r^{2}=x^{2}+y^{2}+z^{2}$
\therefore From(i) Differentiate w. r.t $\boldsymbol{x} \quad 2 r \frac{\partial \mathrm{r}}{\partial \mathrm{x}}=2 \boldsymbol{x} \Rightarrow \frac{\partial \mathrm{r}}{\partial \mathrm{x}}=\frac{\mathrm{x}}{\mathrm{r}} \quad$ Similarly $\quad \frac{\partial \mathrm{r}}{\partial \mathrm{y}}=\frac{\mathrm{y}}{\mathrm{r}} \quad \& \quad \frac{\partial \mathrm{r}}{\partial \mathrm{z}}=\frac{\mathrm{z}}{\mathrm{r}}$

Again differentiate w. r.t \boldsymbol{x}

$$
\begin{aligned}
& \frac{\partial^{2} r}{\partial x^{2}}=\frac{r(1)-x \frac{\partial r}{\partial x}}{r^{2}}= \frac{r-x\left(\frac{x}{r}\right)}{r^{2}}=\frac{\frac{r^{2}-x^{2}}{r}}{r^{2}}=\frac{x^{2}+y^{2}+z^{2}-x^{2}}{r^{3}} \Rightarrow \frac{\partial^{2} r}{\partial x^{2}}=\frac{y^{2}+z^{2}}{r^{3}} \\
& \text { Similarly } \quad \frac{\partial^{2} r}{\partial y^{2}}=\frac{x^{2}+z^{2}}{r^{3}} \& \frac{\partial^{2} r}{\partial z^{2}}=\frac{x^{2}+y^{2}}{r^{3}}
\end{aligned}
$$

Putting values in Equation (a)

$$
\begin{aligned}
& \nabla^{2} f(r)=f^{\prime \prime}(r)\left\{\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}+\frac{z^{2}}{r^{2}}\right\}+f^{\prime}(r)\left\{\frac{y^{2}+z^{2}}{r^{3}}+\frac{x^{2}+z^{2}}{r^{3}}+\frac{x^{2}+y^{2}}{r^{3}}\right\} \\
& \nabla^{2} f(r)=f^{\prime \prime}(r)\left\{\frac{x^{2}+y^{2}+z^{2}}{r^{2}}\right\}+f^{\prime}(r)\left\{\frac{y^{2}+z^{2}+x^{2}+z^{2}+x^{2}+y^{2}}{r^{3}}\right\} \\
& \nabla^{2} f(r)=f^{\prime \prime}(r)\left\{\frac{r^{2}}{r^{2}}\right\}+f^{\prime}(r)\left\{\frac{2\left(x^{2}+y^{2}+z^{2}\right)}{r^{3}}\right\} \\
& \nabla^{2} f(r)=f^{\prime \prime}(r)(1)+f^{\prime}(r)\left\{\frac{2 r^{2}}{r^{3}}\right\} \\
& \nabla^{2} f(r)=f^{\prime \prime}(r)+\left\{\frac{2}{r}\right\} f^{\prime}(r) \\
& \nabla^{2} f(r)=\frac{\partial^{2} f}{\partial r^{2}}+\frac{2}{r} \frac{\partial f}{\partial r} \quad \text { Hence proved. }
\end{aligned}
$$

