UNIT \# 03

VECTOR CALCULUS

Introduction:

In this chapter, we shall discuss the vector functions, limits and continuity, differentiation and integration of a vector function.

Vector Function:

A vector function $\overrightarrow{\mathrm{f}}$ from set D to set $R \quad[\overrightarrow{\mathrm{f}}: D \rightarrow \mathrm{R}] \quad$ is a rule or corresponding that assigns to each
Element tin set D exactly one element y in set R. It is written as $y=\vec{f}(t)$
For your information (i) Set D is called domain of $\overrightarrow{\mathrm{f}} . \quad$ (ii) Set R is called range of $\overrightarrow{\mathrm{f}}$.

Limit of Vector Function:

A constant L is called Limit of vector function $\overrightarrow{\mathrm{f}}(t)$ by taken tapproaches to a $(t \neq a)$.
It is written as $\quad \lim _{\mathrm{t} \rightarrow \mathrm{a}} \overrightarrow{\mathrm{f}}(\mathrm{t})=\boldsymbol{L} \quad$ [It is studied as $\quad \overrightarrow{\mathrm{f}}(\mathrm{t}) \rightarrow \mathrm{L}$ as $\boldsymbol{t} \rightarrow$ a]

Rules of Limit:

$\lim _{t \rightarrow a}$
$[\mathrm{k} \cdot \overrightarrow{\mathrm{f}}(\mathrm{t})]$
$\square=\mathrm{k}$.
. $\lim _{\mathrm{t} \rightarrow \mathrm{a}} \overrightarrow{\mathrm{f}}(\mathrm{t})$
(k is any scalar number)
(2)

$$
\begin{equation*}
\lim _{\mathrm{t} \rightarrow \mathrm{a}}[\overrightarrow{\mathrm{f}}(\mathrm{t}) \pm \underline{\mathrm{g}}(\mathrm{t})]=\left[\lim _{\mathrm{t} \rightarrow \mathrm{a}} \overrightarrow{\mathrm{f}}(\mathrm{t})\right] \pm\left[\lim _{\mathrm{t} \rightarrow \mathrm{a}} \overrightarrow{\mathrm{~g}}(\mathrm{t})\right] \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{t \rightarrow a}[\vec{f}(t) \times \vec{g}(t)]=\left[\lim _{t \rightarrow a} \overrightarrow{\mathrm{f}}(\mathrm{t})\right] \times\left[\lim _{\mathrm{t} \rightarrow \mathrm{a}} \overrightarrow{\mathrm{~g}}(\mathrm{t})\right] \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\left[\frac{\overrightarrow{\mathrm{f}}(\mathrm{t})}{\overrightarrow{\mathrm{g}}(\mathrm{t})}\right] \quad=\frac{\left[\lim _{t \rightarrow a} \overrightarrow{\mathrm{f}}(\mathrm{t})\right]}{\left[\lim _{t \rightarrow a} \overrightarrow{\mathrm{~g}}(\mathrm{t})\right]} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{t \rightarrow a} \quad[\overrightarrow{\mathrm{f}}(\mathrm{t})]^{\mathrm{n}} \quad=\left[\lim _{\mathrm{t} \rightarrow \mathrm{a}} \overrightarrow{\mathrm{f}}(\mathrm{t})\right]^{\mathrm{n}} \tag{5}
\end{equation*}
$$

Continuity of a Vector Function:
Let $\overrightarrow{\mathrm{f}}(t)$ is a vector function. It is called continuous at $t=\boldsymbol{a}$. If $\lim _{\mathrm{t} \rightarrow \mathrm{a}} \overrightarrow{\mathrm{f}}(\mathrm{t})=\overrightarrow{\mathrm{f}}(\mathrm{a})$.
Otherwise we saysthat $\overrightarrow{\mathrm{f}}(t)$ is discontinuous.

Differentiation of a Vector Function:
Let $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{f}}(t)$ be a vector function. Then

$$
\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=\lim _{\delta \mathrm{t} \rightarrow 0} \frac{\overrightarrow{\mathrm{f}}(\mathrm{t}+\delta \mathrm{t})-\overrightarrow{\mathrm{f}}(\mathrm{t})}{\delta \mathrm{t}} \quad \text { or } \quad \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=\lim _{\delta \mathrm{t} \rightarrow 0} \frac{\delta \overrightarrow{\mathrm{r}}}{\delta \mathrm{t}}
$$

Is called Differentiation of a vector function. It also called 1st derivative .
Its 2nd , 3rd and so on nth-order derivative are written as

$\overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t})$	or	
$\overrightarrow{\mathrm{f}}^{\prime \prime \prime}(\mathrm{t})$	$\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}$	
$:$	or	$\frac{\mathrm{d}^{3} \overrightarrow{\mathrm{r}}}{\mathrm{d}^{3}}$
$:$		$:$
$\overrightarrow{\mathrm{f}}^{\mathrm{n}}(\mathrm{t})$	or	$:$

Example\#02: If $\overrightarrow{\mathrm{r}}(t)=\sin \mathrm{t} \hat{\imath}+\cos \mathrm{t} \hat{\jmath}+\mathrm{t} \hat{\mathrm{k}} . \quad$ Find \quad (i) $\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}$ (ii) $\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}$ (iii) $\left|\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}\right| \quad$ (iv) $\left|\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}\right|$
Solution: Given $\overrightarrow{\mathrm{r}}(t)=\sin \mathrm{t} \hat{\imath}+\cos \mathrm{t} \hat{\jmath}+\mathrm{t} \hat{\mathrm{k}}$
(i)

$$
\frac{d \vec{r}}{d t}=\frac{d}{d t}[\sin t \hat{\imath}+\cos t \hat{\jmath}+t \hat{k}\}=\cos t \hat{\imath}-\sin t \hat{\jmath}+1 \hat{k}
$$

$$
\frac{d^{2} \vec{r}}{d t^{2}}=\frac{d}{d t}[\cos t \hat{\imath}-\sin t \hat{\jmath}+1 \hat{k}]=-\sin t \hat{\imath}-\cos t \hat{\jmath}+0 \hat{k}
$$

(iii)

$$
\left|\frac{d \vec{r}}{d t}\right|=\sqrt{(\cos t)^{2}+(-\sin t)^{2}+1^{2}}=\sqrt{\cos ^{2} t+\sin ^{2} t+1}=\sqrt{1+1}=\sqrt{2}
$$

$$
\begin{equation*}
\left|\frac{d^{2} \vec{r}}{d t^{2}}\right|=\sqrt{(-\sin t)^{2}+(-\cos t)^{2}+0^{2}}=\sqrt{\sin ^{2} t+\cos ^{2} t+0}=\sqrt{1}=1 \tag{iv}
\end{equation*}
$$

Exercise \# 3.1

Q\#01: Evaluate $\quad \lim _{\mathrm{t} \rightarrow \mathrm{t}_{0}}\left(\sin ^{2} \mathrm{t} \hat{\imath}+25 \mathrm{t}^{3} \hat{\jmath}+\tan \mathrm{t} \hat{\mathrm{k}}\right)$
Solution: Let $\quad L=\quad \lim _{\mathrm{t} \rightarrow \mathrm{t}_{0}}\left[\sin ^{2} \mathrm{t} \hat{\mathrm{\imath}}+25 \mathrm{t}^{3} \hat{\jmath}+\tan \mathrm{t} \hat{\mathrm{k}}\right]$
$L=\left[\lim _{\mathrm{t} \rightarrow \mathrm{t}_{0}} \sin ^{2} \mathrm{t}\right] \hat{\imath}+25\left[\lim _{\mathrm{t} \rightarrow \mathrm{t}_{0}} \mathrm{t}^{3}\right] \hat{\jmath}+\left[\lim _{\mathrm{t} \rightarrow \mathrm{t}_{0}} \tan \mathrm{t}\right] \hat{\mathrm{k}}$
$L=\sin ^{2} \mathrm{t}_{0} \hat{\mathrm{\imath}}+25 \mathrm{t}_{0}{ }^{3} \hat{\jmath}+\tan \mathrm{t}_{0} \hat{\mathrm{k}}$
Q\#02: Evaluate $\quad \lim _{t \rightarrow \pi}[\sec t \hat{\imath}+\cos t \hat{\jmath}+\cot t \hat{k}]$
Solution: Let $\quad L=\quad \lim _{\mathrm{t} \rightarrow \pi}[\sec \mathrm{t} \hat{\imath}+\cos \mathrm{t} \hat{\jmath}+\cot t \hat{\mathrm{k}}]$
$\boldsymbol{L}=\left[\lim _{t \rightarrow \pi} \sec t\right] \hat{\imath}+25\left[\lim _{t \rightarrow \pi} \cos t\right] \hat{\jmath}+\left[\lim _{t \rightarrow \pi} \cot t\right] \hat{k}$
$L=\sin \pi \hat{\imath}+\cos \pi \hat{\jmath}+\cot \pi \hat{k}$
$\boldsymbol{L}=0 \hat{\imath}-1 \hat{\jmath}+\infty \hat{k}=\infty$
Q\#03: Example \#01: If the vector function $\overrightarrow{\mathrm{f}}(\mathrm{t})= \begin{cases}\frac{(\mathrm{a}+\mathrm{b}) \operatorname{sint}}{\mathrm{t}} \hat{\imath}+3 \cos \mathrm{t} \hat{\jmath}+16 \mathrm{~b} \frac{\operatorname{tant}}{\mathrm{t}} \hat{\mathrm{k}} & \text { if } \mathrm{t} \neq 0 \\ 6 \hat{\imath}+3 \hat{\jmath}+4 \hat{\mathrm{k}} & \text { if } \mathrm{t}=0\end{cases}$ Is continuous at $t=0$, then find the value of a and b.

Solution: Since the vector function is continuous at $t=0$. then by definition

$$
\begin{gathered}
\lim _{t \rightarrow 0} \overrightarrow{\mathrm{f}}(\mathrm{t})=\overrightarrow{\mathrm{f}}(0) \\
\lim _{\mathrm{t} \rightarrow 0}\left(\frac{(\mathrm{a}+\mathrm{b}) \operatorname{sint}}{\mathrm{t}} \hat{\imath}+3 \cos \mathrm{t} \hat{\jmath}+16 \mathrm{~b} \frac{\tan t}{\mathrm{t}} \hat{\mathrm{k}}\right)=6 \hat{\imath}+3 \hat{\jmath}+4 \hat{\mathrm{k}}
\end{gathered}
$$

$$
(\mathrm{a}+\mathrm{b})\left[\lim _{\mathrm{t} \rightarrow 0} \frac{\sin \mathrm{t}}{\mathrm{t}}\right] \hat{\hat{c}}+3\left[\lim _{\mathrm{t} \rightarrow 0} \cos \mathrm{t}\right] \hat{\jmath}+16 \mathrm{~b}\left[\lim _{\mathrm{t} \rightarrow 0} \frac{\tan \mathrm{t}}{\mathrm{t}}\right] \hat{\mathrm{k}}=6 \hat{\imath}+3 \hat{\jmath}+4 \hat{\mathrm{k}}
$$

$$
(a+b)[1] \hat{\imath}+3[1] \hat{\jmath}+16 b[1] \hat{k}=6 \hat{\imath}+3 \hat{\jmath}+4 \hat{k}
$$

$$
(a+b) \hat{\imath}+3 \hat{\jmath}+16 \boldsymbol{b} \hat{k}=6 \hat{\imath}+3 \hat{\jmath}+4 \hat{k}
$$

Comparing coefficients of $\hat{\imath}, \hat{\jmath} \& \hat{k}$
$\hat{\mathrm{k}}: \quad 16 b=4 \quad \Rightarrow \quad b=\frac{4}{16} \quad \Rightarrow \quad b=\frac{1}{4}$
̂̀: $\quad a+b=6 \quad \Rightarrow \quad a+\frac{1}{4}=6 \quad \Rightarrow \quad a=6-\frac{1}{4}=\frac{24-1}{4} \quad \Rightarrow \quad a=\frac{23}{4}$

Q\#04: If the vector function $\overrightarrow{\mathrm{f}}(\mathrm{t})= \begin{cases}(\mathrm{a}+3 \mathrm{~b}+2 \mathrm{c}) \mathrm{t}^{2} \hat{\imath}+(2 \mathrm{a}-\mathrm{b}) \mathrm{t}^{3} \hat{\jmath}+\mathrm{c} \hat{\mathrm{k}} & \text { if } \mathrm{t} \neq 2 \\ \hat{\imath}+2 \hat{\jmath}+3 \hat{k} & \text { if } \mathrm{t}=2\end{cases}$
Is continuous at $t=2$, then find the value of $a, b \& c$.
Solution: Since the vector function is continuous at $t=2$. then by definition

$$
\begin{gathered}
\lim _{t \rightarrow 2} \overrightarrow{\mathrm{f}}(\mathrm{t})=\overrightarrow{\mathrm{f}}(2) \\
\lim _{\mathrm{t} \rightarrow 2}\left[(\mathrm{a}+3 \mathrm{~b}+2 \mathrm{c}) \mathrm{t}^{2} \hat{\imath}+(2 a-b) \mathrm{t}^{3} \hat{\jmath}+\mathrm{c} \hat{\mathrm{k}}\right]=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}
\end{gathered}
$$

$(a+3 b+2 c)\left[\lim _{t \rightarrow 2} t^{2}\right] \hat{\imath}+(2 a-b)\left[\lim _{t \rightarrow 0} t^{3}\right] \hat{\jmath}+c\left[\lim _{t \rightarrow 0} 1\right] \hat{k}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$

$$
\begin{array}{r}
(a+3 b+2 c)(2)^{2} \hat{\imath}+(2 a-b)(2)^{3} \hat{\jmath}+c[1] \hat{k}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k} \\
4(a+3 b+2 c) \hat{\imath}+8(2 a-b) \hat{\jmath}+c \hat{k}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}
\end{array}
$$

Comparing coefficients of $\hat{\imath}, \hat{\jmath} \& \hat{\mathrm{k}}$
\hat{k} :
î: $\quad 4(a+3 b+2 c)=1 \quad \Rightarrow \quad 4 a+12 b+8 c=1$
$\Rightarrow \quad 4 a+12 b+8(3)=1 \quad \Rightarrow \quad 4 a+12 b+24=1$
$\Rightarrow \quad 4 a+12 b=1-24$
$4 a+12 b=-23 \cdots----(i)$
$\hat{\mathrm{j}:} \quad 8(2 \mathrm{a}-\mathrm{b})=2 \Rightarrow 4(2 \mathrm{a}-\mathrm{b})=1 \quad \Rightarrow 8 \mathrm{a}-4 \mathrm{~b}=1$
Multiplying by 3:

$$
\begin{equation*}
24 a-12 b=3 \tag{ii}
\end{equation*}
$$

\qquad
Adding (i) \& (ii)

$$
4 a+12 b=-23
$$

$$
24 a-12 b=3
$$

$28 \mathrm{a} \quad=-20 \Rightarrow a=-20 / 28 \quad \Rightarrow \quad \mathrm{a}=(-5) / 7$
using in (ii)

$$
8 a-4 b=1
$$

$$
\begin{array}{rrr}
\Rightarrow & 8\left(\frac{-5}{7}\right)-4 \mathrm{~b}=1 \\
\Rightarrow & \frac{-40}{7}-1=4 \mathrm{~b} \\
\Rightarrow & 4 \mathrm{~b}=\frac{-40-7}{7} \\
\Rightarrow & \mathrm{~b}=(-47) / 28
\end{array}
$$

Q\#05:If the vector function $\overrightarrow{\mathrm{f}}(\mathrm{t})=\left\{\begin{array}{lr}(\mathrm{a}+3 \mathrm{~b}+2 \mathrm{c}) \mathrm{t}^{2} \hat{\imath}+(2 a-b) \mathrm{t}^{3} \hat{\jmath}+(a+b+c) \mathrm{t} \hat{\mathrm{k}} & \text { if } \mathrm{t} \neq 1 \\ 5 \hat{\mathrm{\imath}}+6 \hat{\jmath}+3 \hat{\mathrm{k}} & \text { if } \mathrm{t}=1\end{array}\right.$
Is continuous at $t=1$, then find the value of $a, b \& c$.
Solution: Since the vector function is continuous at $t=1$. then by definition

$$
\begin{gathered}
\lim _{t \rightarrow 1} \overrightarrow{\mathrm{f}}(\mathrm{t})=\overrightarrow{\mathrm{f}}(1) \\
\lim _{\mathrm{t} \rightarrow 1}\left[(a+3 b+2 c) \mathrm{t}^{2} \hat{\imath}+(2 a-b) \mathrm{t}^{3} \hat{\jmath}+(a+b+c) t \hat{k}\right]=5 \hat{\imath}+6 \hat{\jmath}+3 \hat{\mathrm{k}} \\
(a+3 b+2 c)\left[\lim _{t \rightarrow 1} \mathrm{t}^{2}\right] \hat{\imath}+(2 a-b)\left[\lim _{t \rightarrow 1} \mathrm{t}^{3}\right] \hat{\jmath}+(a+b+c)\left[\lim _{t \rightarrow 1} \mathrm{t}\right] \hat{\mathrm{k}}=5 \hat{\imath}+6 \hat{\jmath}+3 \hat{\mathrm{k}} \\
(a+3 b+2 c)(1)^{2} \hat{\imath}+(2 a-b)(1)^{3} \hat{\jmath}+(a+b+c)[1] \hat{k}=5 \hat{\imath}+6 \hat{\jmath}+3 \hat{k} \\
(a+3 b+2 c) \hat{\imath}+(2 a-b) \hat{\jmath}+(a+b+c) \hat{k}=5 \hat{1}+6 \hat{\jmath}+3 \hat{k}
\end{gathered}
$$

Comparing coefficients of $\hat{\imath}, \hat{\jmath} \& \hat{\mathrm{k}}$

$$
\begin{array}{r}
a+3 b+2 c=5 \tag{i}\\
2 a-b=6 \\
a+b+c=3
\end{array}
$$

Multiplying by 2:

$$
2 a+2 b+2 c=6 \cdots(i i i)
$$

Subtracting (i) \& (iii

$$
a+3 b+2 c=5
$$

$$
\text { b }=\mathrm{a}-1-----(i v)
$$

Using (iv) in(ii)

Using $a=5$ in (iv)

$$
a+b+c=3 \Rightarrow 5+4+c=3
$$

$$
\mathrm{c}=3-9 \quad \Rightarrow \quad c=-6
$$

$$
\begin{aligned}
& 2 a-(a-1)=6 \\
& 2 \mathrm{a}-\mathrm{a}+1=6 \\
& \mathrm{a}=6-1 \quad \Rightarrow \quad \mathrm{a}=5 \\
& \mathrm{~b}=5-1 \quad \Rightarrow \quad \mathrm{~b}=4
\end{aligned}
$$

Q\#06: If $\overrightarrow{\mathrm{f}}(\mathrm{t})=\sin \mathrm{t} \hat{\imath}+\cos \mathrm{t} \hat{\jmath}+9 \hat{\mathrm{k}}$. Find $|\overrightarrow{\mathrm{f}}(\mathrm{t})|$
Solution: Given $\overrightarrow{\mathrm{f}}(t)=\sin t \hat{\imath}+\cos \mathrm{t} \hat{\jmath}+9 \hat{\mathrm{k}}$.
Now

$$
\begin{aligned}
|\overrightarrow{\mathrm{f}}(\mathrm{t})| & =\sqrt{(\cos \mathrm{t})^{2}+(-\sin \mathrm{t})^{2}+9^{2}}=\sqrt{\cos ^{2} \mathrm{t}+\sin ^{2} \mathrm{t}+81}=\sqrt{1+81} \\
|\overrightarrow{\mathrm{f}}(\mathrm{t})| & =\sqrt{82}
\end{aligned}
$$

Q\#07: If $\overrightarrow{\mathrm{f}}(\mathrm{t})=\hat{\imath}+2 \tan \mathrm{t} \hat{\jmath}+2 \tan ^{2} \mathrm{t} \hat{\mathrm{k}}$. Find $|\overrightarrow{\mathrm{f}}(\mathrm{t})|$
Solution: Given $\overrightarrow{\mathrm{f}}(t)=\hat{\imath}+2 \tan t \hat{\jmath}+2 \tan ^{2} \mathrm{t} \hat{\mathrm{k}}$
Now

$$
\begin{aligned}
|\overrightarrow{\mathrm{f}}(\mathrm{t})| & =\sqrt{(1)^{2}+(2 \tan \mathrm{t})^{2}+\left(2 \tan ^{2} \mathrm{t}\right)^{2}}=\sqrt{(1)^{2}+4 \tan ^{2} \mathrm{t}+\left(2 \tan ^{2} \mathrm{t}\right)^{2}} \\
& =\sqrt{(1)^{2}+2(1)\left(2 \tan ^{2} \mathrm{t}\right)+\left(2 \tan ^{2} \mathrm{t}\right)^{2}}=\sqrt{\left(1+2 \tan ^{2} \mathrm{t}\right)^{2}}
\end{aligned}
$$

$$
|\overrightarrow{\mathrm{f}}(\mathrm{t})|=1+2 \tan ^{2} \mathrm{t}
$$

Q\#08: If $\overrightarrow{\mathrm{f}}(t)=\mathrm{t}^{2} \hat{\mathrm{\imath}}+(\mathrm{t}-1) \hat{\jmath}+\left(\mathrm{t}^{2}+\mathrm{t}+1\right) \hat{\mathrm{k}} \quad \& \overrightarrow{\mathrm{~g}}(t)=\left(\mathrm{t}^{2}+1\right) \hat{\mathrm{\imath}}+\mathrm{t} \hat{\jmath}-\hat{\mathrm{k}}$ Find $(i) \overrightarrow{\mathrm{f}}(t) \cdot \overrightarrow{\mathrm{g}}(t)($ ii) $\overrightarrow{\mathrm{f}}(t) \times \overrightarrow{\mathrm{g}}(t)$
Solution: Given that $\overrightarrow{\mathrm{f}}(t)=\mathrm{t}^{2} \hat{\mathrm{\imath}}+(\mathrm{t}-1) \hat{\jmath}+\left(\mathrm{t}^{2}+\mathrm{t}+1\right) \hat{\mathrm{k}} \quad \& \overrightarrow{\mathrm{~g}}(t)=\left(\mathrm{t}^{2}+1\right) \hat{\mathrm{\imath}}+\mathrm{t} \hat{\mathrm{\jmath}}-\hat{\mathrm{k}}$
(i) $\overrightarrow{\mathrm{f}}(t) \cdot \overrightarrow{\mathrm{g}}(t)=\left[\mathrm{t}^{2} \hat{\imath}+(\mathrm{t}-1) \hat{\jmath}+\left(\mathrm{t}^{2}+\mathrm{t}+1\right) \hat{\mathrm{k}}\right] \cdot\left[\left(\mathrm{t}^{2}+1\right) \hat{\mathrm{\imath}}+\mathrm{t} \hat{\mathrm{\jmath}}-\hat{\mathrm{k}}\right]$

$$
\begin{aligned}
& =\mathrm{t}^{2}\left(\mathrm{t}^{2}+1\right)+(\mathrm{t}-1) t+\left(\mathrm{t}^{2}+\mathrm{t}+1\right)(-1)=\mathrm{t}^{4}+\mathrm{t}^{2}+\mathrm{t}^{2}-\mathrm{t}-\mathrm{t}^{2}-\mathrm{t}-1 \\
& =\mathrm{t}^{4}+\mathrm{t}^{2}-2 \mathrm{t}-1
\end{aligned}
$$

(ii) $\quad \overrightarrow{\mathrm{f}}(t) \times \overrightarrow{\mathrm{g}}(t)=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\ \mathrm{t}^{2} & \mathrm{t}-1 & \mathrm{t}^{2}+\mathrm{t}+1 \\ \mathrm{t}^{2}+1 & \mathrm{t} & -1\end{array}\right|$

$$
=\hat{\imath}\left|\begin{array}{cc}
t-1 & t^{2}+t+1 \\
t & -1
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
t^{2}+1 & t^{2}+t+1 \\
t^{2}
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
t^{2} & t-1 \\
t^{2}+1 & t
\end{array}\right|
$$

$$
=\hat{\imath}\left[(-1)(t-1)-t\left(t^{2}+t+1\right)\right]-\hat{\jmath}\left[(-1) t^{2}-\left(t^{2}+1\right)\left(t^{2}+t+1\right)\right]+\hat{k}\left[t \cdot t^{2}-\left(t^{2}+1\right)(t-1)\right]
$$

$$
=\hat{\imath}\left[-\mathrm{t}+1-\mathrm{t}^{3}-\mathrm{t}^{2}-\mathrm{t}\right]-\hat{\mathrm{\jmath}}\left[-\mathrm{t}^{2}-\mathrm{t}^{4}-\mathrm{t}^{3}-\mathrm{t}^{2}-\mathrm{t}^{2}-\mathrm{t}-1\right]+\hat{\mathrm{k}}\left[\mathrm{t}^{3}-\mathrm{t}^{3}+\mathrm{t}^{2}-\mathrm{t}+1\right]
$$

$$
=\hat{\imath}\left[-2 t-t^{3}-t^{2}+1\right]+\hat{\jmath}\left[3 t^{2}+t^{4}+t^{3}+t+1\right]+\hat{k}\left[t^{2}-t+1\right]
$$

$$
=\left[1-2 \mathrm{t}-\mathrm{t}^{2}-\mathrm{t}^{3}\right] \hat{\mathrm{i}}-\left[1+\mathrm{t3} \mathrm{t}^{2}+\mathrm{t}^{3}+\mathrm{t}^{4}\right] \hat{\jmath}+\left[1-\mathrm{t}+\mathrm{t}^{2}\right] \hat{\mathrm{k}}
$$

Q\#09: if $\overrightarrow{\mathrm{f}}(t)=\cos \mathrm{t} \hat{\imath}+\sin \mathrm{t} \hat{\jmath}+\mathrm{t}^{2} \sec \mathrm{t} \hat{\mathrm{k}}$. calculate $\left|\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})\right|^{2}$
Solution: Given $\quad \overrightarrow{\mathrm{f}}(t)=\cos \mathrm{t} \hat{\imath}+\sin \mathrm{t} \hat{\jmath}+\mathrm{t}^{2} \sec \mathrm{t} \hat{\mathrm{k}}$
Differentiate w.r.t t

$$
\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=-\sin \mathrm{t} \hat{\imath}+\cos \mathrm{t} \hat{\jmath}+\left[\mathrm{t}^{2} \sec \mathrm{t} \cdot \tan \mathrm{t}+2 \mathrm{t} \sec \mathrm{t}\right] \hat{\mathrm{k}}
$$

Now

$$
\begin{aligned}
\left|\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})\right| & =\sqrt{(-\sin \mathrm{t})^{2}+(\cos \mathrm{t})^{2}+\left(\mathrm{t}^{2} \sec \mathrm{t} \cdot \tan \mathrm{t}+2 \mathrm{t} \sec \mathrm{t}\right)^{2}} \\
& =\sqrt{\sin ^{2} \mathrm{t}+\cos ^{2} \mathrm{t}+\left(\mathrm{t}^{2} \sec \mathrm{t} \cdot \tan \mathrm{t}+2 \mathrm{t} \sec \mathrm{t}\right)^{2}} \\
\left|\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})\right| & =\sqrt{1+\left(\mathrm{t}^{2} \sec \mathrm{t} \cdot \tan \mathrm{t}+2 \mathrm{t} \sec \mathrm{t}\right)^{2}}
\end{aligned}
$$

Taking square on both sides

$$
\left|\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})\right|^{2}=1+\left(\mathrm{t}^{2} \sec \mathrm{t} \cdot \tan \mathrm{t}+2 \mathrm{t} \sec \mathrm{t}\right)^{2}
$$

Q\#10: If $\overrightarrow{\mathrm{f}}(t)=\left(\mathrm{t}^{2}+2 \mathrm{t}-1\right) \hat{\imath}+\left(3 \mathrm{t}^{2}-2\right) \hat{\jmath}+(5-6 \mathrm{t}) \hat{\mathrm{k}} \quad$ Find \quad (i) $\quad \overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})(\mathrm{ii}) \quad \overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t})$
Solution: Given $\quad \overrightarrow{\mathrm{f}}(t)=\left(\mathrm{t}^{2}+2 \mathrm{t}-1\right) \hat{\imath}+\left(3 \mathrm{t}^{2}-2\right) \hat{\jmath}+(5-6 \mathrm{t}) \hat{\mathrm{k}}$
(i)

Differentiate w.r.t t

$$
\vec{f}^{\prime}(\mathrm{t})=(2 \mathrm{t}+2) \hat{\imath}+(6 \mathrm{t}) \hat{\jmath}+(-6) \hat{k}=(2 \mathrm{t}+2) \hat{\imath}+6 \mathrm{t} \hat{\jmath}-6 \hat{\mathrm{k}}
$$

(ii)

Again Differentiate w.r.t t

$$
\overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t})=2 \hat{\imath}+6 \hat{\jmath}+0 \hat{\mathrm{k}}
$$

Q\#11: if $\overrightarrow{\mathrm{f}}(t)=\cos t \hat{\imath}+\sin t \hat{\jmath}+8 \widehat{\mathrm{k}} . \quad$ Show that $\quad \overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t}) \cdot \overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t})=0$
Solution: Given $\overrightarrow{\mathrm{f}}(t)=\cos t \hat{\imath}+\sin t \hat{\jmath}+8 \hat{\mathrm{k}}$

Differentiate w.r.t t
Again Differentiate w. r. $t \quad t$

$$
\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=-\sin \mathrm{t} \hat{\imath}+\cos \mathrm{t} \hat{\jmath}+0 \hat{\mathrm{k}}
$$

$$
\overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t})=-\cos \mathrm{t} \hat{\imath}-\sin t \hat{\jmath}+0 \hat{\mathrm{k}}
$$

Now

$$
\begin{aligned}
\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t}) \cdot \overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t})= & (-\sin t \hat{\imath}+\cos t \hat{\jmath}+0 \hat{\mathrm{k}}) \cdot(-\cos t \hat{\imath}-\sin t \hat{\jmath}+0 \hat{\mathrm{k}}) \\
& =(-\sin t)(-\cos \mathrm{t})+(\cos \mathrm{t})(-\sin \mathrm{t})+(\boldsymbol{\theta})(\boldsymbol{\theta}) \\
& =\sin t \cdot \cos t-\sin t \cdot \cos t+0
\end{aligned}
$$

Hence proved

$$
\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t}) \cdot \overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t})=0 .
$$

Q\#12:If $\overrightarrow{\mathrm{f}}(t)=(\mathrm{t}-\sin \mathrm{t}) \hat{\mathrm{i}}+(1-\cos \mathrm{t}) \hat{\jmath}+(\mathrm{t} \sin \mathrm{t}+\cos \mathrm{t}) \hat{\mathrm{k}}$. Find $\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t}) \boldsymbol{\&} \overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t}) \boldsymbol{a} \boldsymbol{t} \boldsymbol{t}=\mathbf{0} \quad \boldsymbol{\&} \quad \boldsymbol{t}=\frac{\pi}{2}$.
Solution: Given $\overrightarrow{\mathrm{f}}(\mathrm{t})=(\mathrm{t}-\sin \mathrm{t}) \hat{\mathrm{\imath}}+(1-\cos \mathrm{t}) \hat{\mathrm{\jmath}}+(\mathrm{t} \sin \mathrm{t}+\cos \mathrm{t}) \hat{\mathrm{k}}$.

Differentiate w. r.t t

$$
\begin{gathered}
\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=(1-\cos \mathrm{t}) \hat{\imath}-(-\sin \mathrm{t}) \hat{\jmath}+(\mathrm{t} \cos \mathrm{t}+\sin \mathrm{t}-\sin \mathrm{t}) \hat{\mathrm{k}} \\
\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=(1-\cos \mathrm{t}) \hat{\imath}+\sin \mathrm{t} \hat{\jmath}+\mathrm{t} \cos \mathrm{t} \hat{\mathrm{k}} \\
\text { At } \boldsymbol{t}=0: \quad \\
\text { At } \boldsymbol{t}=\frac{\pi}{2}: \quad \overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=(1-1) \hat{\imath}+0 \hat{\jmath}+0 \hat{\mathrm{k}}=0 \hat{\imath}+0 \hat{\jmath}+0 \hat{\mathrm{k}} \\
\quad \overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=(1-0) \hat{\imath}+1 \hat{\jmath}+0 \hat{\mathrm{k}}=\boldsymbol{1} \hat{\imath}+1 \hat{\jmath}+0 \hat{\mathrm{k}}
\end{gathered}
$$

Again Differentiate w. r.t t

$$
\begin{aligned}
& \overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t})=(0+\sin \mathrm{t}) \hat{\imath}+\cos \mathrm{t} \hat{\jmath}+(\cos \mathrm{t}-\mathrm{t} \sin \mathrm{t}) \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t})=\sin \mathrm{t} \hat{\imath}+\cos \mathrm{t} \hat{\jmath}+(\cos \mathrm{t}-\mathrm{t} \sin \mathrm{t}) \hat{\mathrm{k}}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { At } t=0: & \overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t})=0 \hat{\imath}+1 \hat{\jmath}+1 \hat{\mathrm{k}} \\
\text { At } t=\frac{\pi}{2}: & \overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t})=1 \hat{\imath}+0 \hat{\jmath}+\left(0-\frac{\pi}{2}\right) \hat{\mathrm{k}}=1 \hat{\imath}+0 \hat{\jmath}-\frac{\pi}{2} \hat{\mathrm{k}}
\end{array}
$$

Q\#13: If $\overrightarrow{\mathrm{f}}(\mathrm{t})=\left(\frac{\mathrm{t}^{2}+1}{\mathrm{t}}\right) \hat{\mathrm{\imath}}+\left(\frac{1}{1+\mathrm{t}}\right) \hat{\jmath}+\mathrm{t} \hat{\mathrm{k}}$. Find $\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t}) \quad$ and $\quad \overrightarrow{\mathrm{f}}(\mathrm{t}) \cdot \overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})$.
Solution: Given $\left.\overrightarrow{\mathrm{f}}(\mathrm{t})=\left(\frac{\mathrm{t}^{2}+1}{\mathrm{t}}\right) \hat{\imath}+\left(\frac{1}{\mathrm{I}}\right) \hat{\mathrm{t}}+\mathrm{t}\right)+\mathrm{t} \hat{\mathrm{k}} \quad$ Then

$$
\begin{aligned}
\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t}) & =\left(\frac{\mathrm{t}(2 \mathrm{t})-\left(\mathrm{t}^{2}+1\right) \hat{1}}{\mathrm{t}^{2}}\right) \hat{\mathrm{\imath}}+\left(\frac{-1}{(1+\mathrm{t})^{2}}\right) \hat{\jmath}+1 \hat{\mathrm{k}} \\
& =\left(\frac{2 \mathrm{t}^{2}-\mathrm{t}^{2}-1}{\mathrm{t}^{2}}\right) \hat{\mathrm{\imath}}-\frac{1}{(1+\mathrm{t})^{2}} \hat{\jmath}+1 \hat{\mathrm{k}}
\end{aligned}
$$

$$
\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=\left(\frac{\mathrm{t}^{2}-1}{\mathrm{t}^{2}}\right) \hat{\mathrm{i}}-\frac{1}{(1+\mathrm{t})^{2}} \hat{\jmath}+1 \hat{\mathrm{k}}
$$

Now

$$
\begin{aligned}
\overrightarrow{\mathrm{f}}(\mathrm{t}) \cdot \overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})= & {\left[\left(\frac{\mathrm{t}^{2}+1}{\mathrm{t}}\right) \hat{\mathrm{\imath}}+\left(\frac{1}{1+\mathrm{t}}\right) \hat{\jmath}+\mathrm{t} \hat{\mathrm{k}}\right] \cdot\left[\left(\frac{\mathrm{t}^{2}-1}{\mathrm{t}^{2}}\right) \hat{\mathrm{i}}-\frac{1}{(1+\mathrm{t})^{2}} \hat{\jmath}+1 \hat{\mathrm{k}}\right] } \\
& =\left(\frac{\mathrm{t}^{2}+1}{\mathrm{t}}\right)\left(\frac{\mathrm{t}^{2}-1}{\mathrm{t}^{2}}\right)+\left(\frac{1}{1+\mathrm{t}}\right)\left(\frac{-1}{(1+\mathrm{t})^{2}}\right)+(\mathrm{t})(1) \\
\overrightarrow{\mathrm{f}}(\mathrm{t}) \cdot \overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t}) & =\frac{\mathrm{t}^{4}-1}{\mathrm{t}^{3}}-\frac{1}{(1+\mathrm{t})^{3}}+\mathrm{t}
\end{aligned}
$$

Q\#14:I $\overrightarrow{f f}(\mathrm{t}) \& \overrightarrow{\mathrm{~g}}(\mathrm{t})$ are continuouse at $\mathrm{t}=\mathrm{t}_{0}$. Prove that $\overrightarrow{\mathrm{f}}(\mathrm{t})+\overrightarrow{\mathrm{g}}(\mathrm{t})$ is also continuouse at $\mathrm{t}=\mathrm{t}_{0}$.
Solution: Given $\overrightarrow{\mathrm{f}}(\mathrm{t})$ \& $\overrightarrow{\mathrm{g}}(\mathrm{t})$ are continuouse at $\mathrm{t}=\mathrm{t}_{0}$
Then there exist a number $\varepsilon>0$.

$$
\left|\overrightarrow{\mathrm{f}}(\mathrm{t})-\overrightarrow{\mathrm{f}}\left(\mathrm{t}_{0}\right)\right|<\varepsilon-----(i)
$$

And

$$
\left|\overrightarrow{\mathrm{g}}(\mathrm{t})-\overrightarrow{\mathrm{g}}\left(\mathrm{t}_{0}\right)\right|<\varepsilon-----(i i)
$$

Adding (i) \& (ii)

$$
\begin{aligned}
& \left|\overrightarrow{\mathrm{f}}(\mathrm{t})-\overrightarrow{\mathrm{f}}\left(\mathrm{t}_{0}\right)\right|+\left|\overrightarrow{\mathrm{g}}(\mathrm{t})-\overrightarrow{\mathrm{g}}\left(\mathrm{t}_{0}\right)\right|<\varepsilon+\varepsilon \\
& |\overrightarrow{\mathrm{f}}(\mathrm{t})+\overrightarrow{\mathrm{g}}(\mathrm{t})|-\left|\overrightarrow{\mathrm{f}}\left(\mathrm{t}_{0}\right)+\overrightarrow{\mathrm{g}}\left(\mathrm{t}_{0}\right)\right|<2 \varepsilon
\end{aligned}
$$

Here $2 \varepsilon>0 \quad$ Then show that $\overrightarrow{\mathrm{f}}(\mathrm{t})+\overrightarrow{\mathrm{g}}(\mathrm{t})$ is also continuouse at $\mathrm{t}=\mathrm{t}_{0}$.
Q\#15: Is $\overrightarrow{\mathrm{f}}(\mathrm{t})=\mathrm{t} \hat{\mathrm{\imath}}+\mathrm{t}^{2} \hat{\jmath}+\frac{1}{\mathrm{t}} \hat{\mathrm{k}}$ is continuous function at $\mathrm{t}=0$?
Solution: Given $\overrightarrow{\mathrm{f}}(\mathrm{t})=\mathrm{t} \hat{\mathrm{\imath}}+\mathrm{t}^{2} \hat{\jmath}+\frac{1}{\mathrm{t}} \hat{\mathrm{k}}$
Now $\quad \lim _{t \rightarrow 0^{+}} \overrightarrow{\mathrm{f}}(\mathrm{t})=\quad \lim _{\mathrm{t} \rightarrow 0^{+}}\left[\mathrm{t} \hat{\imath}+\mathrm{t}^{2} \hat{\jmath}+\frac{1}{\mathrm{t}} \hat{\mathrm{k}}\right]=+0 \hat{\imath}+(+0)^{2} \hat{\jmath}+\frac{1}{+0} \hat{k}=+0 \hat{\imath}+0 \hat{\jmath}+\infty \hat{k}=\infty----(\boldsymbol{i})$

$$
\begin{equation*}
\lim _{\mathrm{t} \rightarrow 0^{-}} \overrightarrow{\mathrm{f}}(\mathrm{t})=\quad \lim _{\mathrm{t} \rightarrow 0^{-}}\left[\mathrm{t} \hat{\imath}+\mathrm{t}^{2} \hat{\jmath}+\frac{1}{\mathrm{t}} \hat{\mathrm{k}}\right]=-0 \hat{\imath}+(-0)^{2} \hat{\jmath}+\frac{1}{-0} \hat{\mathrm{k}}=-0 \hat{\imath}+0 \hat{\jmath}-\infty \hat{\mathrm{k}}=-\infty . \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\overrightarrow{\mathrm{f}}(0)=0 \hat{\imath}+0 \hat{\jmath}+\frac{1}{0} \hat{\mathrm{k}}=0 \hat{\imath}+0 \hat{\jmath}+\infty \hat{k}=\infty \tag{iii}
\end{equation*}
$$

From (i), (ii) \& (iii) this shows that the given vector function is discontinuous at $t=0$.
Q\#16: If $\omega, \mathrm{a}, \mathrm{b}$ are constant and if $\overrightarrow{\mathrm{f}}(t)=\mathrm{a} \cos \omega \mathrm{t}+\mathrm{b} \sin \omega \mathrm{t}$. Show that $\overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t})+\omega^{2} \overrightarrow{\mathrm{f}}(t)=0$
Solution: Given

$$
\begin{equation*}
\overrightarrow{\mathrm{f}}(t)=\mathrm{a} \cos \omega \mathrm{t}+\mathrm{b} \sin \omega \mathrm{t}- \tag{i}
\end{equation*}
$$

Differentiate w.r.t t
$\vec{f}^{\prime}(\mathrm{t})=-\mathrm{a} \omega \sin \omega \mathrm{t}+\mathrm{b} \omega \cos \omega \mathrm{t}$
Again differentiate w. r.t

$$
\begin{aligned}
& \overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t})=-\mathrm{a} \omega^{2} \cos \omega \mathrm{t}-\mathrm{b} \omega^{2} \sin \omega \mathrm{t} \\
& \overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t})=-\omega^{2}[\mathrm{a} \cos \omega \mathrm{t}+\mathrm{b} \sin \omega \mathrm{t}] \\
& \overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t})=-\omega^{2} \overrightarrow{\mathrm{f}}(t) \quad \therefore \text { From }(i) \\
& \overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t})+\omega^{2} \overrightarrow{\mathrm{f}}(\mathrm{t})=0 \quad \text { Hence proved. }
\end{aligned}
$$

Rules of Differentiation:

If $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}} \& \overrightarrow{\mathrm{c}}$ are differentiable function of scalar variable t.
(i)

$$
\begin{equation*}
\frac{d}{d t}[\vec{a}+\vec{b}]=\frac{d \vec{a}}{d t}+\frac{d \vec{b}}{d t} \tag{ii}
\end{equation*}
$$

$\frac{\mathrm{d}}{\mathrm{dt}}[\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}]=\frac{\mathrm{d} \overrightarrow{\mathrm{a}}}{\mathrm{dt}} \cdot \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{a}} \cdot \frac{\mathrm{d} \overrightarrow{\mathrm{b}}}{\mathrm{dt}}$
(iii)
$\frac{d}{d t}[\vec{a} \times \vec{b}]=\frac{d \vec{a}}{d t} \times \vec{b}+\vec{a} \times \frac{d \vec{b}}{d t}$
(iv)
(vii) Derivative of a constant vector:

$$
\begin{equation*}
\text { Let } \overrightarrow{\mathrm{r}} \text { be constant vector. Then } \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=0 \tag{viii}
\end{equation*}
$$

Derivative of a vector function in terms of its component.

$$
\text { Let } \overrightarrow{\mathrm{r}}(\mathrm{t})=\mathrm{x}(\mathrm{t}) \hat{\imath}+\mathrm{y}(\mathrm{t}) \hat{\jmath}+\mathrm{z}(\mathrm{t}) \hat{\mathrm{k}} \quad \text { Then } \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=\frac{\mathrm{dx}}{\mathrm{dt}} \hat{\imath}+\frac{\mathrm{dy}}{\mathrm{dt}} \hat{\jmath}+\frac{\mathrm{dz}}{\mathrm{dt}} \hat{\mathrm{k}}
$$

Theorem \#I:

Show that Necessary and sufficient condition for a vector $\overrightarrow{\mathrm{a}}$ of scalar variable to be a constant is $\frac{\mathrm{d} \overrightarrow{\mathrm{a}}}{\mathrm{dt}}=0$.
Proof: By given condition. That \vec{a} be constant vector. i.e.

Differentiate w.r.t t $\quad \frac{\mathrm{d} \overrightarrow{\mathrm{a}}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}($ constant $) \Rightarrow \quad \frac{\mathrm{d} \overrightarrow{\mathrm{a}}}{\mathrm{dt}}=0$
Conversely, suppose that

$$
\frac{d \vec{a}}{d t}=0 \quad \Rightarrow d \vec{a}=0 d t
$$

on integrating both sides $\quad \int \mathrm{d} \overrightarrow{\mathrm{a}}=\int 0 \mathrm{dt}$

$$
\overrightarrow{\mathrm{a}}=0 . \mathrm{t}+\text { constant } \quad \Rightarrow \overrightarrow{\mathrm{a}}=\text { constant }
$$

Hence prove that

The Necessary and sufficient condition for a vector \vec{a} of scalar variable to be a constant is $\frac{\mathrm{d} \overrightarrow{\mathrm{a}}}{\mathrm{dt}}=0$.

Theorem \#II: Show that Necessary and sufficient condition for a vector $\overrightarrow{\mathrm{a}}$ of scalar variable to have a constant magnitude is $\overrightarrow{\mathrm{a}} \cdot \frac{\mathrm{d} \overrightarrow{\mathrm{a}}}{\mathrm{dt}}=0$.

Proof: By given condition. That vector \vec{a} have a constant magnitude.

Taking square on both sides

$$
|\overrightarrow{\mathrm{a}}|=\text { constant }
$$

We know that $\quad \vec{a} \cdot \vec{a}=|\vec{a}|^{2}$

Differentiate w.r.t t

$$
\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{a}}=\text { constant }
$$

$$
|\vec{a}|^{2}=(\text { constant })^{2}=\text { constant }
$$

cole

Conversely, suppose that

$$
\vec{a} \cdot \frac{d \vec{a}}{d t}=0
$$

5

$$
\therefore \vec{a} \cdot \frac{d \vec{a}}{d t}=\frac{d \vec{a}}{d t} \cdot \vec{a}
$$

$$
\vec{a} \cdot \frac{d \vec{a}}{d t}=0
$$

$$
\mathrm{ada}=0 \mathrm{dt}
$$

on integrating both sides

$$
\int a d \vec{a}=\int 0 d t
$$

$$
\begin{aligned}
& \frac{|\vec{a}|^{2}}{2}=0 . t+\text { constant } \\
& |\vec{a}|^{2}=2(\text { constant }) \\
& |\vec{a}|=\sqrt{2(\text { constant })} \\
& |\vec{a}|=\text { constant }
\end{aligned}
$$

Hence prove that

The Necessary and sufficient condition for a vector \vec{a} of scalar variable to have a constant magnitude is $\overrightarrow{\mathrm{a}} \cdot \frac{\mathrm{d} \overrightarrow{\mathrm{a}}}{\mathrm{dt}}=0$

Theorem \#III: Show that Necessary and sufficient condition for a vector \vec{a} of scalar variable to have a constant direction is $\quad \vec{a} \times \frac{d \vec{a}}{d t}=0$.

Proof: Let $\hat{\mathrm{r}}$ be unit vector in the direction of vector $\overrightarrow{\mathrm{a}}$.
By given condition, that direction is constant $\quad \therefore \hat{\mathrm{r}}=$ constant
Then

$$
\begin{equation*}
\frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{dt}}=0 \tag{i}
\end{equation*}
$$

As we know that

$$
\begin{equation*}
\hat{r}=\frac{\vec{a}}{a} \quad \Rightarrow \vec{a}=a \hat{r} \tag{ii}
\end{equation*}
$$

Differentiate w.r.t t

$$
\begin{equation*}
\frac{\mathrm{d} \overrightarrow{\mathrm{a}}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{a} \hat{\mathrm{r}})=\frac{\mathrm{da}}{\mathrm{dt}} \hat{\mathrm{r}}+\boldsymbol{a} \frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{dt}} \tag{iii}
\end{equation*}
$$

Taking cross product of equation (ii) \& (iii)

$$
\begin{aligned}
& \vec{a} \times \frac{d \vec{a}}{d t}=a \hat{r} \times\left(\frac{d a}{d t} \hat{r}+a \frac{d \hat{r}}{d t}\right)=a \frac{d a}{d t}(\hat{r} \times \hat{r})+a^{2}\left(\hat{r} \times \frac{d \hat{r}}{d t}\right) \\
& \vec{a} \times \frac{d \vec{a}}{d t}=a \frac{d a}{d t}(0)+a^{2}\left(\hat{r} \times \frac{d \hat{r}}{d t}\right) \\
& \vec{a} \times \frac{d \vec{a}}{d t}=0+a^{2}\left(\hat{r} \times \frac{d \hat{r}}{d t}\right) \\
& \vec{a} \times \frac{d \vec{a}}{d t}=a^{2}\left(\hat{r} \times \frac{d \hat{r}}{d t}\right)-\cdots \hat{r} \times \hat{r}=0 \\
& \vec{a} \times \frac{d \vec{a}}{d t}=a^{2}(\hat{r} \times 0) \\
& \vec{a} \times \frac{d \vec{a}}{d t}=0
\end{aligned}
$$

Conversely, suppose that

$$
\vec{a} \times \frac{d \vec{a}}{d t}=0
$$

Then equation (iv) will become $\quad a^{2}\left(\hat{r} \times \frac{d \hat{r}}{d t}\right)=0 \quad \Rightarrow \quad \hat{r} \times \frac{d \hat{r}}{d t}=0$

$$
\text { Here } \hat{r} \neq 0 \quad \text { but } \quad \frac{d \hat{r}}{d t}=0 \quad \text { Therefore } \quad \hat{r}=\text { constant }
$$

Hence prove that
The Necessary and sufficient condition for a vector $\overrightarrow{\mathrm{a}}$ of scalar variable to have a constant direction is $\quad \vec{a} \times \frac{d \vec{a}}{d t}=0$.

Example\#01: $\overrightarrow{\mathrm{r}}=(\mathrm{t}+1) \hat{\mathrm{i}}+\left(\mathrm{t}^{2}+\mathrm{t}+1\right) \hat{\jmath}+\left(\mathrm{t}^{3}+\mathrm{t}^{2}+\mathrm{t}+1\right) \hat{\mathrm{k}}$. Find $\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} \& \frac{\mathrm{~d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}$.
Solution: Given vector function is $\overrightarrow{\mathrm{r}}=(\mathrm{t}+1) \hat{\mathrm{i}}+\left(\mathrm{t}^{2}+\mathrm{t}+1\right) \hat{\jmath}+\left(\mathrm{t}^{3}+\mathrm{t}^{2}+\mathrm{t}+1\right) \hat{\mathrm{k}}$
Then $\frac{d \vec{r}}{d t}=(1) \hat{\imath}+(2 t+1) \hat{\jmath}+\left(3 t^{2}+2 t+1\right) \hat{k} \quad \& \quad \frac{d^{2} \vec{r}}{d t^{2}}=0 \hat{\imath}+2 \hat{\jmath}+(6 t+2) \hat{k}$
Example\#02: $\overrightarrow{\mathrm{f}}(\mathrm{t})=\sin \mathrm{t} \hat{\mathrm{\imath}}+\cos \mathrm{t} \hat{\jmath}+\mathrm{t} \hat{\mathrm{k}}$. Find $(\boldsymbol{i}) \overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t}) \quad$ (ii) $\overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t})\left(\right.$ iii) $\quad\left|\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})\right|$ (iv) $\quad\left|\overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t})\right|$.
Solution: Given vector function is

$$
\overrightarrow{\mathrm{f}}(t)=\sin t \hat{\imath}+\cos t \hat{\jmath}+t \hat{\mathrm{k}}
$$

(i)

$$
\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=\cos \mathrm{t} \hat{\imath}-\sin t \hat{\jmath}+1 \widehat{\mathrm{k}}
$$

(ii)

$$
\overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t})=-\sin \mathrm{t} \hat{\imath}-\cos \mathrm{t} \hat{\jmath}+0 \hat{\mathrm{k}}
$$

(iii)

$$
\begin{align*}
& \left|\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})\right|=\sqrt{(\cos \mathrm{t})^{2}+(-\sin \mathrm{t})^{2}+1^{2}}=\sqrt{\cos ^{2} t+\sin ^{2} \mathrm{t}+1}=\sqrt{1+1}=\sqrt{2} \\
& \left|\overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t})\right|=\sqrt{(-\sin t)^{2}+(-\cos \mathrm{t})^{2}+0^{2}}=\sqrt{\sin ^{2} \mathrm{t}+\cos ^{2} \mathrm{t}+0}=\sqrt{1}=1 \tag{iv}
\end{align*}
$$

Example\#03: If $\overrightarrow{\mathrm{r}}=\cos n t \hat{\imath}+\sin n t \hat{\jmath}$. Where \boldsymbol{n} is a constant. show that $\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=\boldsymbol{n} \hat{\mathrm{k}}$.
Solution: Given vector function is $\overrightarrow{\mathrm{r}}=\cos n t \hat{\imath}+\sin n t \hat{\imath}$ Then $\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=-\mathrm{n} \sin n t \hat{\imath}+n \cos n t \hat{\jmath}$

Now

$$
\begin{aligned}
\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d} \vec{r}}{\mathrm{dt}} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\cos n t & \sin n t & 0 \\
-n \sin n t & \mathrm{n} \cos n t & 0
\end{array}\right|=\boldsymbol{0} \hat{\imath}-0 \hat{\jmath}+\hat{\mathrm{k}}\left|\begin{array}{cc}
\cos n t & \sin n t \\
-n \sin n t & n \cos n t
\end{array}\right| \\
& =\hat{k}[(n \cos n t)(\cos n t)-(-n \sin n t)(\sin n t)] \\
& \left.=n \hat{k} / \cos ^{2} n t+\sin ^{2} n t\right]
\end{aligned}
$$

$$
\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d} \vec{r}}{\mathrm{dt}}=n \hat{\mathrm{k}} \quad \text { Hence proved }
$$

Example\#04: If \vec{a} be differentiable vector function of scalar variable then show that $\frac{d}{d t}\left(\vec{a} \times \frac{d \vec{a}}{d t}\right)=\vec{a} \times \frac{d^{2} \vec{a}}{d t^{2}}$
Solution: \quad L. $\boldsymbol{H} . \boldsymbol{S}=\frac{\mathrm{d}}{\mathrm{dt}}\left(\vec{a} \times \frac{\mathrm{d} \vec{a}}{\mathrm{dt}}\right)=\frac{\mathrm{d} \vec{a}}{d t} \times \frac{\mathrm{d} \overrightarrow{\mathrm{a}}}{\mathrm{dt}}+\vec{a} \times \frac{\mathrm{d}^{2} \vec{a}}{\mathrm{dt}^{2}}$

$$
\begin{array}{ll}
=0+\vec{a} \times \frac{\mathrm{d}^{2} \vec{a}}{\mathrm{dt}^{2}} & \therefore \frac{\mathrm{~d} \vec{a}}{\mathrm{dt}} \times \frac{\mathrm{d} \vec{a}}{\mathrm{dt}}=0 \\
=\overrightarrow{\mathrm{a}} \times \frac{\mathrm{d}^{2} \vec{a}}{\mathrm{dt}^{2}}=\text { R.H.S } &
\end{array}
$$

Hence proved L.H.S = R.H.S

Example\#05: If $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}$ are constant vectors, ω is a constant and $\overrightarrow{\mathrm{r}}$ be a vector function is given by

$$
\vec{r}=\cos \omega t \vec{a}+\sin \omega t \vec{b} \text {. Then Show that }(\text { i }) \frac{d^{2} \vec{r}}{d t^{2}}+\omega^{2} \vec{r}=0 \quad \text { (ii) } \vec{r} \times \frac{d \vec{r}}{d t}=\omega(\vec{a} \times \vec{b})
$$

Solution: Given vector function $\vec{r}=\cos \omega t \vec{a}+\sin \omega t \vec{b}$
Then

$$
\begin{equation*}
\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=-\omega \sin \omega \mathrm{t} \overrightarrow{\mathrm{a}}+\omega \cos \omega \mathrm{t} \overrightarrow{\mathrm{~b}} \tag{i}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\mathrm{d}^{2} \vec{r}}{\mathrm{dt}{ }^{2}}=-\omega^{2} \cos \omega t \vec{a}-\omega^{2} \sin \omega t \vec{b} \tag{i}\\
& \frac{\mathrm{~d}^{2} \vec{r}}{\mathrm{dt}}=-\omega^{2}[\cos \omega t \vec{a}+\sin \omega t \vec{b}] \\
& \frac{\mathrm{d}^{2} \vec{r}}{\mathrm{t}^{2}}=-\omega^{2} \overrightarrow{\mathrm{r}} \quad \Rightarrow \frac{\mathrm{~d}^{2} \vec{r}}{d \mathrm{t}^{2}}+\omega^{2} \vec{r}=0
\end{align*}
$$

Now taking cross product of equation (i) \&(ii)

$\vec{r} \times \frac{d \vec{r}}{d t}=(\cos \omega t \vec{a}+\sin \omega t \vec{b}) \times(-\omega \sin \omega t \vec{a}+\omega \cos \omega t \vec{b})$

$$
\begin{aligned}
& =-\omega \cos \omega t \sin \omega t(\vec{a} \times \vec{a})+\omega \cos ^{2} \omega t(\vec{a} \times \vec{b})+\omega \sin ^{2} \omega t(-\vec{b} \times \vec{a})+\omega \cos \omega t \sin \omega t(\vec{b} \times \vec{b}) \\
& =-\omega \cos \omega t \sin \omega t(0)+\omega \cos ^{2} \omega t(\vec{a} \times \vec{b})+\omega \sin ^{2} \omega t(\vec{a} \times \vec{b})+\omega \cos \omega t \sin \omega t(0) \\
& =0+\omega(\vec{a} \times \vec{b})\left[\cos ^{2} \omega t+\sin ^{2} \omega t\right]+0
\end{aligned}
$$

$$
\vec{r} \times \frac{d \vec{r}}{d t}=\omega(\vec{a} \times \vec{b}) \quad \text { Hence proved. }
$$

Example\# 06: if $\frac{d \vec{u}}{d t}=\vec{\omega} \times \vec{u}$ \& $\frac{d \vec{r}}{d t}=\vec{\omega} \times \vec{r}$. Then show that $\frac{d}{d t}(\vec{u} \times \vec{r})=\vec{\omega} \times(\vec{u} \times \vec{r})$.
Solution: Taking L.H.S $\underbrace{d}_{d t}(\vec{u} \times \vec{r})=\frac{d \vec{u}}{d t} \times \overrightarrow{\mathrm{r}}+\overrightarrow{\mathrm{u}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}$
Using given values

$$
\frac{\mathrm{d} \overrightarrow{\mathrm{u}}}{\mathrm{dt}}=\vec{\omega} \times \overrightarrow{\mathrm{u}} \quad \& \quad \frac{\mathrm{~d} \vec{r}}{\mathrm{dt}}=\vec{\omega} \times \overrightarrow{\mathrm{r}}
$$

Now taking R.H.S

$$
\begin{equation*}
\vec{\omega} \times(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{r}})=(\vec{\omega} \cdot \overrightarrow{\mathrm{r}}) \overrightarrow{\mathrm{u}}-(\overrightarrow{\mathrm{u}} \cdot \vec{\omega}) \overrightarrow{\mathrm{r}}- \tag{ii}
\end{equation*}
$$

From (i) \& (ii) Hence proved that

$$
\frac{\mathrm{d}}{\mathrm{dt}}(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{r}})=\vec{\omega} \times(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{r}})
$$

$$
\begin{aligned}
& \frac{d}{d t}(\vec{u} \times \vec{r})=(\vec{\omega} \times \vec{u}) \times \vec{r}+\vec{u} \times(\vec{\omega} \times \vec{r}) \\
& =(\vec{\omega} \cdot \vec{r}) \vec{u}-(\vec{u} \cdot \vec{r}) \vec{\omega}+(\vec{u} \cdot \vec{r}) \vec{\omega}-(\vec{u} \cdot \vec{\omega}) \vec{r} \\
& \frac{d}{d t}(\vec{u} \times \vec{r})=(\vec{\omega} \cdot \vec{r}) \vec{u}-(\vec{u} \cdot \vec{\omega}) \vec{r}
\end{aligned}
$$

Example: 07: Differentiate the following w. r.t t. where $\overrightarrow{\mathrm{r}}$ vector function of scalar variable t.
$\overrightarrow{\mathrm{a}}$ be constant vector and m is any scalar. (i) $\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{a}}$
(ii) $\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{a}}$
(iii) $\overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}$
(iv) $\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}$
(v) $\mathrm{r}^{2}+\frac{1}{\mathrm{r}^{2}}$
(vi) $m\left(\frac{d \vec{r}}{d t}\right)^{2}$
(vii) $\frac{\overrightarrow{\mathrm{r}}+\overrightarrow{\mathrm{a}}}{\mathrm{r}^{2}+\mathrm{a}^{2}}$
(viii) $\frac{\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{a}}}{\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{a}}}$
(i) Let $\overrightarrow{\mathrm{f}}(t)=\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{a}}$

Differentiate w.r.t t

$$
\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=\frac{\mathrm{d}}{\mathrm{dt}}(\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{a}})=\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} \cdot \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{~d} \overrightarrow{\mathrm{a}}}{\mathrm{dt}} \quad \Rightarrow \overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} \cdot \overrightarrow{\mathrm{a}}: \therefore \frac{\mathrm{d} \overrightarrow{\mathrm{a}}}{\mathrm{dt}}=0
$$

(ii) Let $\overrightarrow{\mathrm{f}}(t)=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{a}}$

Differentiate w.r.t t

$$
\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=\frac{\mathrm{d}}{\mathrm{dt}}(\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{a}})=\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} \times \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{a}}}{\mathrm{dt}} \Rightarrow \overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} \times \overrightarrow{\mathrm{a}}
$$

$\therefore \frac{\mathrm{d} \overrightarrow{\mathrm{a}}}{\mathrm{dt}}=0$
(iii)

Let $\quad \vec{f}(t)=\overrightarrow{\mathrm{r}} . \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}$
Differentiate w.r.t $t \quad \overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=\frac{\mathrm{d}}{\mathrm{dt}}\left(\overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}\right)=\frac{\mathrm{d} \vec{r}}{\mathrm{dt}} \cdot \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}+\overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{d \mathrm{t}^{2}} \Rightarrow \overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=\left(\frac{\mathrm{d} \vec{r}}{d \mathrm{t}}\right)^{2}+\overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{d t^{2}} \quad \therefore \frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} \cdot \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=\left(\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}\right)^{2}$

$$
\begin{equation*}
\text { Let } \overrightarrow{\mathrm{f}}(t)=\overrightarrow{\mathrm{r}} \times \frac{\mathrm{dr}}{\mathrm{dt}} \tag{iv}
\end{equation*}
$$

Differentiate w.r.t t

$$
\begin{array}{ll}
\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=\frac{\mathrm{d}}{\mathrm{dt}}\left(\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}\right)=\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}+\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}{ }^{2}} \\
\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=0+\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}} \\
\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}} & \therefore \frac{\mathrm{~d} \vec{r}}{\mathrm{dt}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=0
\end{array}
$$

$$
\begin{equation*}
\text { Let } \overrightarrow{\mathrm{f}}(t)=\mathrm{r}^{2}+\frac{1}{\mathrm{r}^{2}} \tag{v}
\end{equation*}
$$

Differentiate w.r.t t

$$
f^{\prime}(t)=\frac{d}{d t}\left(r^{2}+\frac{1}{r^{2}}\right)=\frac{d}{d t}\left(r^{2}\right)+\frac{d}{d t}\left(r^{-2}\right)=2 r \frac{d r}{d t}+\left(-2 r^{-3} \frac{d r}{d t}\right)
$$

$$
\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=2 \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}}-\frac{2}{\mathrm{r}^{3}} \frac{\mathrm{dr}}{\mathrm{dt}}=2 \frac{\mathrm{dr}}{\mathrm{dt}}\left(\mathrm{r}-\frac{2}{\mathrm{r}^{3}}\right)
$$

$$
\begin{equation*}
\text { Let } \overrightarrow{\mathrm{f}}(t)=\mathrm{m}\left(\frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}\right)^{2} \tag{vi}
\end{equation*}
$$

Differentiate w.r.t $t \quad \overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=\mathrm{m} \frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}\right)^{2}=2 \boldsymbol{m}\left(\frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}\right)\left[\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}\right)\right] \Rightarrow \overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=2 \boldsymbol{m} \frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}{ }^{2}$
(vii)

$$
\text { Let } \quad \overrightarrow{\mathrm{f}}(t)=\frac{\overrightarrow{\mathrm{r}}+\overrightarrow{\mathrm{a}}}{\mathrm{r}^{2}+\mathrm{a}^{2}}
$$

Differentiate w.r.t t

$$
\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\overrightarrow{\mathrm{r}}+\overrightarrow{\mathrm{a}}}{\mathrm{r}^{2}+\mathrm{a}^{2}}\right)=\frac{\left(\mathrm{r}^{2}+\mathrm{a}^{2}\right) \frac{\mathrm{d}}{\mathrm{dt}}(\overrightarrow{\mathrm{r}}+\overrightarrow{\mathrm{a}})-(\overrightarrow{\mathrm{r}}+\overrightarrow{\mathrm{a}}) \frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{r}^{2}+\mathrm{a}^{2}\right)}{\left(\mathrm{r}^{2}+\mathrm{a}^{2}\right)^{2}}=\frac{\left(\mathrm{r}^{2}+\mathrm{a}^{2}\right)\left[\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} t \frac{\mathrm{~d} \overrightarrow{\mathrm{a}}]}{\mathrm{dt}}-(\overrightarrow{\mathrm{r}}+\overrightarrow{\mathrm{a}})\left[2 \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}}\right]\right.}{\left(\mathrm{r}^{2}+\mathrm{a}^{2}\right)^{2}} \quad \therefore \frac{\mathrm{~d} \overrightarrow{\mathrm{a}}}{\mathrm{dt}}=0
$$

(viii)

$$
\text { Let } \quad \overrightarrow{\mathrm{f}}(t)=\frac{\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{a}}}{\overrightarrow{\mathrm{r}} \cdot \vec{a}}
$$

Differentiate w.r.t t

$$
\begin{aligned}
& \overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=\frac{(\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{a}})\left[\frac{\mathrm{dr}}{\mathrm{dt}} \times \overrightarrow{\mathrm{a}}+0\right]-(\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{a}})\left[\frac{\mathrm{dr}}{\mathrm{dt}} \cdot \overrightarrow{\mathrm{a}}+0\right]}{(\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{a}})^{2}} \\
& \therefore \frac{\mathrm{~d} \overrightarrow{\mathrm{a}}}{\mathrm{dt}}=0 \\
& \vec{f}^{\prime}(\mathrm{t})=\frac{(\overrightarrow{\mathrm{r}} \cdot \vec{a})\left[\frac{\mathrm{d}}{\mathrm{dt}} \times \vec{a}\right]-(\vec{r} \times \vec{a})\left[\frac{\mathrm{d} \vec{r}}{d \mathrm{~d}} \cdot \vec{a}\right]}{(\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{a}})^{2}}
\end{aligned}
$$

Example\#08: A particle that move along a curve . $\mathrm{x}=4 \cos \mathrm{t}, \mathrm{y}=4 \operatorname{sint}, \mathrm{z}=6 \mathrm{t}$. Find velocity and acceleration at $t=0 \& t=\frac{\pi}{2}$.

Solution: Let $\overrightarrow{\mathrm{r}}(\mathrm{t})$ be a position vector. Then

$$
\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}
$$

Putting

$$
\begin{aligned}
& \mathrm{x}=4 \cos \mathrm{t}, \mathrm{y}=4 \sin \mathrm{t}, \mathrm{z}=6 \mathrm{t}, \text { we get } \\
& \overrightarrow{\mathrm{r}}=4 \cos \mathrm{t} \hat{\imath}+4 \sin \mathrm{t} \hat{\jmath}+6 \mathrm{t} \hat{\mathrm{k}}
\end{aligned}
$$

Velocity: Differentiate $\overrightarrow{\mathrm{r}}$ w.r.t t.

$$
\vec{v}=\frac{d \vec{r}}{d t}=-4 \sin t \hat{\imath}+4 \cos t \hat{\jmath}+6 \hat{k}
$$

At $\boldsymbol{t}=0: \quad \overrightarrow{\mathrm{v}}=-4 \sin \theta \hat{\imath}+4 \cos 0 \hat{\jmath}+6 \hat{\mathrm{k}}=0 \hat{\imath}+4 \hat{\jmath}+6 \hat{\mathrm{k}} \quad \Rightarrow \overrightarrow{\mathrm{v}}=4 \hat{\jmath}+6 \hat{\mathrm{k}}$
At $t=\frac{\pi}{2}: \quad \overrightarrow{\mathrm{k}}=-4 \sin \frac{\pi}{2} \hat{\imath}+4 \cos \frac{\pi}{2} \hat{\jmath}+6 \hat{\mathrm{k}}=-4 \hat{\imath}+0 \hat{\jmath}+6 \hat{\mathrm{k}} \quad \Rightarrow \overrightarrow{\mathrm{v}}=-4 \hat{\imath}+6 \hat{\mathrm{k}}$
Acceleration: Differentiate $\overrightarrow{\mathrm{v}}$ w. r.t t.

$$
\vec{a}=\frac{d \vec{r}}{d t}=-4 \cos t \hat{\imath}-4 \sin t \hat{\jmath}+0 \hat{k}
$$

$\begin{array}{ll}\text { At } t=0: & \vec{a}=-4 \cos 0 \hat{\imath}-4 \sin 0 \hat{\jmath}+0 \hat{k}=-4 \hat{\imath}+0 \hat{\jmath}+0 \hat{k} \\ \text { At } t=\frac{\pi}{2}: & \vec{a}=-4 \cos \frac{\pi}{2} \hat{\imath}-4 \sin \frac{\pi}{2} \hat{\jmath}+0 \hat{k}=-4 \hat{\imath}-4 \hat{\jmath}+0 \hat{k} \quad \Rightarrow \vec{a}=-4 \hat{\jmath}\end{array}$

Exercise\#3.2

Q\#01 :If $\overrightarrow{\mathrm{f}}(t)=(2 \mathrm{t}+1) \hat{\imath}+\left(3-2 \mathrm{t}^{2}\right) \hat{\jmath}+\left(\mathrm{t}^{2}-1\right) \hat{\mathrm{k}} \quad \& \quad \overrightarrow{\mathrm{~g}}(t)=\left(3+2 \mathrm{t}^{2}\right) \hat{\imath}+(3 \mathrm{t}+1) \hat{\jmath}+\left(2 \mathrm{t}-\mathrm{t}^{3}\right) \hat{\mathrm{k}}$.
Find $\frac{\mathrm{d}}{\mathrm{dt}}[\overrightarrow{\mathrm{f}}+\overrightarrow{\mathrm{g}}]$.

Solution: Given

$$
\overrightarrow{\mathrm{f}}(t)=(2 \mathrm{t}+1) \hat{\imath}+\left(3-2 \mathrm{t}^{2}\right) \hat{\jmath}+\left(\mathrm{t}^{2}-1\right) \hat{\mathrm{k}} \quad \& \quad \overrightarrow{\mathrm{~g}}(t)=\left(3+2 \mathrm{t}^{2}\right) \hat{\imath}+(3 \mathrm{t}+1) \hat{\jmath}+\left(2 \mathrm{t}-\mathrm{t}^{3}\right) \hat{\mathrm{k}}
$$

Then $\quad \vec{f}+\vec{g}=\left[(2 t+1) \hat{\imath}+\left(3-2 t^{2}\right) \hat{\jmath}+\left(t^{2}-1\right) \hat{k}\right]+\left[\left(3+2 t^{2}\right) \hat{\imath}+(3 t+1) \hat{\jmath}+\left(2 t-t^{3}\right) \hat{k}\right]$

$$
\begin{aligned}
& =\left(2 t+1+3+2 t^{2}\right) \hat{\imath}+\left(3-2 t^{2}+3 t+1\right) \hat{\jmath}+\left(t^{2}-1+2 t-t^{3}\right) \hat{k} \\
\overrightarrow{\mathrm{f}}+\overrightarrow{\mathrm{g}} & =\left(4+2 \mathrm{t}+2 \mathrm{t}^{2}\right) \hat{\imath}+\left(4+3 \mathrm{t}-2 \mathrm{t}^{2}\right) \hat{\jmath}+\left(-1+2 \mathrm{t}+\mathrm{t}^{2}-\mathrm{t}^{3}\right) \hat{\mathrm{k}}
\end{aligned}
$$

Now taking derivative w.r.t t

$$
\frac{\mathrm{d}}{\mathrm{dt}}[\overrightarrow{\mathrm{f}}+\overrightarrow{\mathrm{g}}]=(2+4 \mathrm{t}) \hat{\imath}+(3-4 \mathrm{t}) \hat{\jmath}+\left(2+2 \mathrm{t}-3 \mathrm{t}^{2}\right) \hat{\mathrm{K}}
$$

Q\#02: Find $\quad \frac{\mathrm{d}}{\mathrm{dt}}[\overrightarrow{\mathrm{f}} . \overrightarrow{\mathrm{g}}] \quad \& \quad \frac{\mathrm{~d}}{\mathrm{dt}}[\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{g}}]$
(i) if $\overrightarrow{\mathrm{f}}(t)=\left(3 \mathrm{t}^{2}+1\right) \hat{\imath}+\left(2 \mathrm{t}^{3}-1\right) \hat{\jmath}+\left(2 \mathrm{t}^{2}+3 \mathrm{t}^{3}\right) \hat{\mathrm{k}} \quad \boldsymbol{\&} \overrightarrow{\mathrm{g}}(t)=\mathrm{t} \hat{\mathrm{\imath}}+\left(\mathrm{t}^{2}-2 \mathrm{t}\right) \hat{\jmath}+\left(3 \mathrm{t}-\mathrm{t}^{3}\right) \hat{\mathrm{k}}$

Solution: Given

$$
\overrightarrow{\mathrm{f}}(t)=\left(3 \mathrm{t}^{2}+1\right) \hat{\imath}+\left(2 \mathrm{t}^{3}-1\right) \hat{\jmath}+\left(2 \mathrm{t}^{2}+3 \mathrm{t}^{3}\right) \hat{\mathrm{k}} \quad \& \quad \overrightarrow{\mathrm{~g}}(t)=\mathrm{t} \hat{\imath}+\left(\mathrm{t}^{2}-2 \mathrm{t}\right) \hat{\jmath}+\left(3 \mathrm{t}-\mathrm{t}^{3}\right) \hat{\mathrm{k}}
$$

Then

$$
\begin{aligned}
\overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{~g}}= & {\left[\left(3 \mathrm{t}^{2}+1\right) \hat{\mathrm{\imath}}+\left(2 \mathrm{t}^{3}-1\right) \hat{\jmath}+\left(2 \mathrm{t}^{2}+3 \mathrm{t}^{3}\right) \hat{\mathrm{k}}\right] \cdot\left[\mathrm{t} \hat{\imath}+\left(\mathrm{t}^{2}-2 \mathrm{t}\right) \hat{\jmath}+\left(3 \mathrm{t}-\mathrm{t}^{3}\right) \hat{\mathrm{k}}\right] } \\
& =\left(3 \mathrm{t}^{2}+1\right) \mathrm{t}+\left(2 \mathrm{t}^{3}-1\right)\left(\mathrm{t}^{2}-2 \mathrm{t}\right)+\left(2 \mathrm{t}^{2}+3 \mathrm{t}^{3}\right)\left(3 \mathrm{t}-\mathrm{t}^{3}\right) \\
& =3 \mathrm{t}^{3}+\mathrm{t}+2 \mathrm{t}^{5}-4 \mathrm{t}^{4}-\mathrm{t}^{2}+2 \mathrm{t}+6 \mathrm{t}^{3}-2 \mathrm{t}^{5}+9 \mathrm{t}^{4}-3 \mathrm{t}^{6} \\
\overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{~g}} & =3 \mathrm{t}-\mathrm{t}^{2}+9 \mathrm{t}^{3}+5 \mathrm{t}^{4}-3 \mathrm{t}^{6}
\end{aligned}
$$

Now taking derivative w.r.t t

$$
\frac{\mathrm{d}}{\mathrm{dt}}[\overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{~g}}]=3-2 \mathrm{t}-18 \mathrm{t}^{2}+20 \mathrm{t}^{3}-18 \mathrm{t}^{5}
$$

$$
\begin{aligned}
\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{g}}= & \left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\
3 \mathrm{t}^{2}+1 & 2 \mathrm{t}^{3}-1 & 2 \mathrm{t}^{2}+3 \mathrm{t}^{3} \\
\mathrm{t} & \mathrm{t}^{2}-2 \mathrm{t} & 3 \mathrm{t}-\mathrm{t}^{3}
\end{array}\right|=\hat{\mathrm{\imath}}\left|\begin{array}{cc}
2 \mathrm{t}^{3}-1 & 2 \mathrm{t}^{2}+3 \mathrm{t}^{3} \\
\mathrm{t}^{2}-2 \mathrm{t} & 3 \mathrm{t}-\mathrm{t}^{3}
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
3 \mathrm{t}^{2}+1 & 2 \mathrm{t}^{2}+3 \mathrm{t}^{3} \\
\mathrm{t} & 3 \mathrm{t}-\mathrm{t}^{3}
\end{array}\right|+\hat{\mathrm{k}}\left|\begin{array}{cc}
3 \mathrm{t}^{2}+1 & 2 \mathrm{t}^{3}-1 \\
\mathrm{t} & \mathrm{t}^{2}-2 \mathrm{t}
\end{array}\right| \\
& =\hat{\mathrm{i}}\left[\left(2 \mathrm{t}^{3}-1\right)\left(3 \mathrm{t}-\mathrm{t}^{3}\right)-\left(\mathrm{t}^{2}-2 \mathrm{t}\right)\left(2 \mathrm{t}^{2}+3 \mathrm{t}^{3}\right)\right]-\hat{\mathrm{f}}\left[\left(3 \mathrm{t}^{2}+1\right)\left(3 \mathrm{t}-\mathrm{t}^{3}\right)-(\mathrm{t})\left(2 \mathrm{t}^{2}+3 \mathrm{t}^{3}\right)\right] \\
& +\hat{\mathrm{k}}\left[\left(3 \mathrm{t}^{2}+1\right)\left(\mathrm{t}^{2}-2 \mathrm{t}\right)-(\mathrm{t})\left(2 \mathrm{t}^{3}-1\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
&=\hat{\imath}\left[6 t^{4}-2 t^{6}-3 t+t^{3}-2 t^{4}-3 t^{5}+4 t^{3}+6 t^{4}\right]-\hat{\jmath}\left[9 t^{3}-3 t^{5}+3 t-t^{3}-2 t^{3}-3 t^{4}\right] \\
&+\widehat{k}\left[3 t^{4}-6 t^{3}+t^{2}-2 t-2 t^{4}+t\right] \\
& \vec{f} \times \vec{g}= \hat{i}\left[-3 t+5 t^{3}-10 t^{4}-3 t^{5}-2 t^{6}\right]-\hat{\jmath}\left[3 t+6 t^{2}-3 t^{4}-3 t^{5}\right]+\hat{k}\left[-t+t^{2}-6 t^{3}+t^{4}\right]
\end{aligned}
$$

Now

$$
\frac{d}{d t}[\vec{f} \times \vec{g}]=\left[-3+15 t^{2}-40 t^{3}-15 t^{4}-12 t^{5}\right] \hat{\imath}-\left[3+12 t-12 t^{3}-15 t^{4}\right] \hat{\jmath}+\left[-1+2 t-18 t^{2}+4 t^{3}\right] \hat{k}
$$

$$
\text { (ii)If } \quad \overrightarrow{\mathbf{f}}(t)=\cos \mathbf{t} \hat{\mathbf{\imath}}+\sin \mathbf{t} \hat{\mathbf{\jmath}}+\hat{\mathbf{k}} \quad \& \quad \overrightarrow{\mathbf{g}}(t)=\mathbf{t} \hat{\mathbf{\imath}}+(2 \mathbf{t}-\mathbf{1}) \hat{\mathbf{\jmath}}+\mathbf{t}^{2} \hat{\mathbf{k}} .
$$

Solution: Given $\overrightarrow{\mathrm{f}}(t)=\cos t \hat{\imath}+\sin t \hat{\jmath}+\hat{\mathrm{k}} \& \quad \overrightarrow{\mathrm{~g}}(t)=\mathrm{t} \hat{\imath}+(2 \mathrm{t}-1) \hat{\jmath}+\mathrm{t}^{2} \hat{\mathrm{k}}$
Now

$$
\begin{aligned}
& \overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{~g}}=[\cos t \hat{\imath}+\sin t \hat{\jmath}+\hat{\mathrm{k}}] \cdot\left[\mathrm{t} \hat{\imath}+(2 \mathrm{t}-1) \hat{\jmath}+\mathrm{t}^{2} \hat{\mathrm{k}}\right]=(\cos \mathrm{t}) \mathrm{t}+(\sin \mathrm{t})(2 \mathrm{t}-1)+(1)\left(\mathrm{t}^{2}\right) \\
& \overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{~g}}=\mathrm{t} \cos \mathrm{t}+2 \mathrm{t} \sin \mathrm{t}-\sin \mathrm{t}+\mathrm{t}^{2}
\end{aligned}
$$

Now taking derivative w.r.t t

$$
\frac{\mathrm{d}}{\mathrm{dt}}[\overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{~g}}]=-\mathrm{t} \sin \mathrm{t}+\cos \mathrm{t}+2 \mathrm{tcos} \mathrm{t}+2 \sin \mathrm{t}-\cos \mathrm{t}+2 \mathrm{t} \leq(2-\mathrm{t}) \sin \mathrm{t}+2 \mathrm{t} \cos \mathrm{t}+2
$$

$\boldsymbol{\&} \quad \vec{f} \times \vec{g}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \cos t & \sin t & 1 \\ t & 2 \mathrm{t}-1 & \mathrm{t}^{2}\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}\sin \mathrm{t} & 1 \\ 2 \mathrm{t}-1 & \mathrm{t}^{2}\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}\cos \mathrm{t} & 1 \\ \mathrm{t}\end{array}\right|+\hat{\mathrm{k}}\left|\begin{array}{cc}\cos \mathrm{t} & \sin \mathrm{t} \\ \mathrm{t} & 2 \mathrm{t}-1\end{array}\right|$

$$
=\hat{\imath}\left[(\sin t)\left(t^{2}\right)-(2 t-1)(1)\right]-\hat{\jmath}\left[(\cos t)\left(t^{2}\right)-(t)(1)\right]+\hat{k}[(\cos t)(2 t-1)-(t)(\sin t)]
$$

$$
\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{g}}=\hat{\mathrm{i}}\left[\mathrm{t}^{2} \sin \mathrm{t}-2 \mathrm{t}+1\right]-\hat{\mathrm{f}}\left[\mathrm{t}^{2} \cos \mathrm{t}-\mathrm{t}\right]+\hat{\mathrm{k}}[2 \mathrm{t} \cos \mathrm{t}-\cos \mathrm{t}-\mathrm{t} \sin \mathrm{t}]
$$

Now taking derivative w. r.t t

$$
\begin{aligned}
& \frac{d}{d t}[f \times \vec{g}]=\left[t^{2} \cos t+2 t \sin t-2\right] \hat{\imath}-\left[-t^{2} \sin t+2 t \cos t-1\right] \hat{\jmath}+[-2 t \sin t+2 \cos t+\sin t-t \cos t-\sin t] \hat{k} \\
& \frac{d}{d t}[\vec{f} \times \vec{g}]=\left[t^{2} \cos t+2 t \sin t-2\right] \hat{\imath}-\left[-t^{2} \sin t+2 t \cos t-1\right] \hat{\jmath}+[-2 t \sin t+2 \cos t-t \cos t] \hat{k}
\end{aligned}
$$

Q\#03: (i) If $\overrightarrow{\mathrm{r}}$ is position vector of moving point then show that $\overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=\mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}} \quad$ here $|\overrightarrow{\mathrm{r}}|=r$.

$$
\text { (ii)Interpret the relation } \overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=0 \quad \& \overrightarrow{\mathrm{r}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=0 \text {. }
$$

(i) If $\overrightarrow{\mathrm{r}}$ is position vector of moving point then show that $\overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=\mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}}$ here $|\overrightarrow{\mathrm{r}}|=r$.

Solution: If $\overrightarrow{\mathrm{r}}$ is position vector of moving point. Then

$$
\text { Differentiate w.r.t } t \quad \begin{aligned}
& \vec{r} \cdot \vec{r}=r^{2} \\
& \frac{d}{d t}[\vec{r} \cdot \vec{r}]=\frac{d}{d t} r^{2} \\
& \frac{d \vec{r}}{d t} \cdot \vec{r}+\vec{r} \cdot \frac{d \vec{r}}{d t}=2 r \frac{d r}{d t} \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
2 \overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=2 r \frac{\mathrm{dr}}{\mathrm{dt}} & \\
\overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=r \frac{\mathrm{dr}}{\mathrm{dt}} & \text { Hence proved. }
\end{aligned}
$$

(ii)Interpret the relation $\overrightarrow{\mathbf{r}} \cdot \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=0 \quad \& \overrightarrow{\mathbf{r}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=0$.
(a) If $\overrightarrow{\mathrm{r}} \quad \& \frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}$ are perpendicular. $\left(\theta=90^{\circ}\right)$ Then

As

$$
\begin{aligned}
\overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=|\overrightarrow{\mathrm{r}}|\left|\frac{\mathrm{dr}}{\mathrm{dt}}\right| \cos 90^{\circ}=|\overrightarrow{\mathrm{r}}|\left|\frac{\mathrm{dr}}{\mathrm{dt}}\right|(0) & \text { Because } \cos 90^{\circ}=0 \\
\overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{~d} \vec{r}}{\mathrm{dt}}=0 &
\end{aligned}
$$

(b) If $\overrightarrow{\mathrm{r}} \quad \& \frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}$ are parallel. $\left(\theta=0^{0}\right)$ Then

As

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=|\overrightarrow{\mathrm{r}}|\left|\frac{\mathrm{dr}}{\mathrm{dt}}\right| \sin 0^{0}=|\overrightarrow{\mathrm{r}}|\left|\frac{\mathrm{dr}}{\mathrm{dt}}\right|(0) \\
& \quad \overrightarrow{\mathrm{r}} \times \frac{\mathrm{d} \vec{r}}{\mathrm{dt}}=0
\end{aligned}
$$

Q\#04: If $\overrightarrow{\mathrm{r}}=\cos 5 \mathrm{t} \hat{\imath}+\sin 5 \mathrm{t} \hat{\jmath}$. Then show that $\quad \overrightarrow{\mathrm{r}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=5 \hat{\mathrm{k}}$.
Solution: Given vector function $\overrightarrow{\mathrm{r}}=\cos 5 \mathrm{t} \hat{\imath}+\sin 5 t \hat{\jmath} \quad$ Then $\quad \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=-5 \sin 5 t \hat{\imath}+5 \cos 5 t \hat{\jmath}$

Now

$$
\begin{aligned}
\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\cos 5 \mathrm{t} & \sin 5 \mathrm{t} & 0 \\
-5 \sin 5 \mathrm{t} & 5 \cos 5 \mathrm{t}
\end{array}\right|=\hat{\mathrm{k}}\left|\begin{array}{cc}
\cos 5 \mathrm{t} & \sin 5 \mathrm{t} \\
-5 \sin 5 \mathrm{t} & 5 \cos 5 \mathrm{t}
\end{array}\right| \quad \therefore \text { Expanding by } \mathrm{C}_{3} \\
& =\hat{\mathrm{k}}[(\cos 5 \mathrm{t})(5 \cos 5 \mathrm{t})-(-5 \sin 5 \mathrm{t})(\sin 5 \mathrm{t})] \\
& =5 \hat{\mathrm{k}}\left[\cos ^{2} 5 \mathrm{t}+\sin ^{2} 5 \mathrm{t}\right]
\end{aligned}
$$

Hence proved $\quad \vec{r} \times \frac{d \vec{r}}{d t}=5 \hat{k}$.
Q\#05: If $\overrightarrow{\mathrm{f}}(t)=\overrightarrow{\mathrm{a}} \cos \omega \mathrm{t}+\overrightarrow{\mathrm{b}} \sin \omega t$ then show that $\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{f}}^{\prime}=\omega(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})$.
Solution: Given

$$
\overrightarrow{\mathrm{f}}(t)=\overrightarrow{\mathrm{a}} \cos \omega \mathrm{t}+\overrightarrow{\mathrm{b}} \sin \omega \mathrm{t}
$$

Then $\quad \vec{f}^{\prime}(t)=-\vec{a} \omega \sin \omega t+\vec{b} \omega \cos \omega t$
Now
$\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{f}}^{\prime}=(\overrightarrow{\mathrm{a}} \cos \omega \mathrm{t}+\overrightarrow{\mathrm{b}} \sin \omega \mathrm{t}) \times(-\overrightarrow{\mathrm{a}} \omega \sin \omega \mathrm{t}+\overrightarrow{\mathrm{b}} \omega \cos \omega \mathrm{t})$
$=-(\vec{a} \times \vec{a}) \omega \cos \omega t \sin \omega t+(\vec{a} \times \vec{b}) \omega \cos ^{2} \omega t+(-\vec{b} \times \vec{a}) \omega \sin ^{2} \omega t+(\vec{b} \times \vec{b}) \omega \cos \omega t \sin \omega t$

$=0+(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \omega \cos ^{2} \omega \mathrm{t}+(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \omega \sin ^{2} \omega \mathrm{t}+0$
 $=\omega(\vec{a} \times \vec{b})\left[\cos ^{2} \omega t+\sin ^{2} \omega t\right]$
 $\vec{f}^{\prime}=\omega(\vec{a} \times \vec{b})$

$$
\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{a}}=0 \& \overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{b}}=0
$$

$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=-\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{a}} \quad \overrightarrow{\mathrm{f}} \times$

Hence proved

Q\#06: If $\hat{\mathrm{r}}$ is a unit vector then prove that $\left|\hat{\mathrm{r}} \times \frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{dt}}\right|=\left|\frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{dt}}\right|$
Solution: If $\hat{\mathrm{r}}$ is a unit vector.
Then $\quad\left|\hat{\mathrm{r}} \times \frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{dt}}\right|=|\hat{\mathrm{r}}|\left|\frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{dt}}\right| \sin \theta$
We know that $\hat{\mathrm{r}}$ \& $\frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{dt}}$ are perpendicular vectors. Then $\theta=90^{\circ}$

$$
\begin{aligned}
& \left|\hat{r} \times \frac{d \widehat{r}}{d t}\right|=|\hat{r}|\left|\frac{d \hat{r}}{d t}\right| \sin 90^{0} \\
& \left|\hat{r} \times \frac{d \hat{r}}{d t}\right|=(\boldsymbol{1})\left|\frac{d \hat{r}}{d t}\right| \\
& \left|\hat{r} \times \frac{d}{d t}\right|=\left|\frac{d \hat{r}}{d t}\right|
\end{aligned}
$$

$$
\left|\hat{\mathrm{r}} \times \frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{dt}}\right|=(1)\left|\frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{dt}}\right| \quad \text { (1) } \quad \therefore|\hat{\mathrm{r}}|=1 \& \sin 90^{0^{\prime}}=1
$$

Hence proved.

Q\#07: If $\vec{r}=\vec{a} \sin \omega t+\vec{b} \cos \omega t+\frac{\vec{c}}{\omega^{2}} t \sin \omega t$ then prove that $\frac{d^{2} \vec{r}}{d t^{2}}+\omega^{2} \vec{r}=\frac{2 \vec{c}}{\omega} \cos \omega t$.
Where $\vec{a}, \vec{b}, \vec{c}$ are constant vectors and ω is a scalar.
Solution: Given vector function is

$$
\begin{equation*}
\vec{r}=\vec{a} \sin \omega t+\vec{b} \cos \omega t+\frac{\vec{c}}{\omega^{2}} t \sin \omega t \tag{i}
\end{equation*}
$$

Then

$$
\frac{d \vec{r}}{d t}=\vec{a} \omega \cos \omega t-\vec{b} \omega \sin \omega t+\frac{\vec{c}}{\omega^{2}} \omega t \cos \omega t+\frac{\vec{c}}{\omega^{2}} \sin \omega t
$$

$$
\frac{d \vec{r}}{d t}=\vec{a} \omega \cos \omega t-\vec{b} \omega \sin \omega t+\frac{\vec{c}}{\omega} t \cos \omega t+\frac{\vec{c}}{\omega^{2}} \sin \omega t
$$

\&

$$
\begin{aligned}
& \frac{d^{2} \vec{r}}{d t^{2}}=-\vec{a} \omega^{2} \sin \omega t-\vec{b} \quad \omega^{2} \cos \omega t-\frac{\vec{c}}{\omega} \omega t \sin \omega t+\frac{\vec{c}}{\omega} \cos \omega t+\frac{\vec{c}}{\omega^{2}} \omega \cos \omega t \\
& \frac{d^{2} \vec{r}}{{d t^{2}}^{2}}=-\vec{a} \omega^{2} \sin \omega t-\vec{b} \quad \omega^{2} \cos \omega t-\vec{c} t \sin \omega t+\frac{\vec{c}}{\omega} \cos \omega t+\frac{\vec{c}}{\omega} \cos \omega t \\
& \frac{d^{2} \vec{r}}{d t^{2}}=-\omega^{2}\left[\vec{a} \sin \omega t+\vec{b} \cos \omega t+\frac{\vec{c}}{\omega^{2}} t \sin \omega t\right]+2 \frac{\vec{c}}{\omega} \cos \omega t \\
& \frac{d^{2} \vec{r}}{d t^{2}}=-\omega^{2} \vec{r}+\frac{2 \vec{c}}{\omega} \cos \omega t \\
& \frac{d^{2} \vec{r}}{d t^{2}}+\omega^{2} \vec{r}=\frac{2 \vec{c}}{\omega} \cos \omega t \quad \text { From(i) } \\
& \text { Hence proved. }
\end{aligned}
$$

Q\#08: If $\overrightarrow{\mathrm{r}}=\boldsymbol{a} \cos \mathrm{t} \hat{\mathrm{\imath}}+\mathrm{a} \sin \mathrm{t} \hat{\jmath}+\mathrm{a} \mathrm{t} \tan \alpha \hat{\mathrm{k}}$ then show that
(i) $\left[\begin{array}{lll}\frac{d \vec{r}}{d t} & \frac{d^{2} \vec{r}}{} & \frac{d^{3} \vec{r}}{\mathrm{dt}^{2}} \\ \mathrm{dt}^{3}\end{array}\right]=\mathrm{a}^{3} \tan \alpha$
(ii) $\left|\frac{d \vec{r}}{d t} \times \frac{d^{2} \vec{r}}{d t^{2}}\right|=a^{2} \sec \alpha$

Solution: Given vector function is $\overrightarrow{\mathrm{r}}=\boldsymbol{a} \cos \mathrm{t} \hat{\mathrm{\imath}}+\mathrm{a} \sin \mathrm{t} \hat{\jmath}+\mathrm{at} \tan \alpha \hat{\mathrm{k}}$
Then $\frac{d \vec{r}}{d t}=-a \sin t \hat{\imath}+a \cos t \hat{\jmath}+a \tan \alpha \hat{k} ;$

$$
\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=-\boldsymbol{a} \cos \mathrm{t} \hat{\imath}-a \sin t \hat{\jmath}+0 \hat{\mathrm{k}}
$$

\& $\quad \frac{\mathrm{d}^{3} \vec{r}}{\mathrm{dt}^{3}}=\boldsymbol{a} \sin \mathrm{t} \hat{\mathrm{i}}-\mathrm{a} \cos \mathrm{t} \hat{\jmath}+0 \hat{\mathrm{k}}$
(i)

Now taking L.H.S

$$
\begin{aligned}
{\left[\begin{array}{ll}
\frac{d^{\vec{r}}}{d t} & \frac{d^{2} \vec{r}}{d t^{2}}
\end{array} \frac{d^{3} \vec{r}}{d t^{3}}\right] } & =\frac{d \vec{r}}{d t} \cdot\left(\frac{d^{2} \vec{r}}{d t^{2}} \times \frac{d^{3} \vec{r}}{d t^{3}}\right)=\left|\begin{array}{ccc}
-a \sin t & a \cos t & a \tan \alpha \\
-a \cos t & -a \sin t & 0 \\
a \sin t & -a \cos t & 0
\end{array}\right|=a \tan \alpha\left|\begin{array}{cc}
-a \cos t & -a \sin t \\
a \sin t & -a \cos t
\end{array}\right| \therefore \text { Expandingby } C_{3} \\
& \left.=a \tan \alpha[(-a \cos t)(-a \cos t)-(a \sin t)(-\sin t)]=a \tan \alpha \operatorname{anc}^{2} \cos ^{2} t+a^{2} \sin ^{2} t\right]
\end{aligned}
$$

$$
\left[\begin{array}{lll}
\frac{\mathrm{d}_{\mathrm{r}}}{\mathrm{dt}} & \frac{\mathrm{~d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}} & \frac{\mathrm{~d}^{3}}{\mathrm{dt}^{3}}
\end{array}\right]=\mathrm{a}^{3} \tan \alpha
$$

Hence proved.

(ii)Now Taking cross product
$\frac{d \vec{r}}{d t} \times \frac{d^{2} \vec{r}}{d t^{2}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ -a \sin t & a \cos t & a \tan \alpha \\ -a \cos t & -a \sin t & 0\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}a \cos t & a \tan \alpha \\ 0\end{array}\right|-\hat{\jmath}\left|\begin{array}{ll}-a \sin t & a \tan \alpha \\ -a \cos t & 0\end{array}\right|+\hat{k}\left|\begin{array}{cc}-a \sin t & a \cos t \\ -a \cos t & -a \sin t\end{array}\right|$

$$
\begin{aligned}
& =\hat{\mathrm{i}}[(\mathrm{a} \cos \mathrm{t})(0)-(-\mathrm{a} \sin \mathrm{t})(\mathrm{a} \tan \alpha)]-\hat{\jmath}[(-\mathrm{a} \sin \mathrm{t})(0)-(-\mathrm{a} \cos \mathrm{t})(\mathrm{a} \tan \alpha)] \\
& +\hat{\mathrm{k}}[(-\mathrm{a} \sin \mathrm{t})(-\mathrm{a} \sin \mathrm{t})-(-\mathrm{a} \cos \mathrm{t})(\mathrm{a} \cos \mathrm{t})] \\
& =\hat{i}\left[0+\mathrm{a}^{2} \sin \mathrm{t} \tan \alpha\right]-\hat{H}\left[0+\mathrm{a}^{2} \cos \mathrm{t} \tan \alpha\right]+\hat{\mathrm{k}}\left[\mathrm{a}^{2} \sin ^{2} \mathrm{t}+\mathrm{a}^{2} \cos ^{2} \mathrm{t}\right] \\
& =\hat{\mathrm{i}}\left[\mathrm{a}^{2} \sin \mathrm{t} \tan \alpha\right]-\hat{\mathrm{f}}\left[\mathrm{a}^{2} \cos \mathrm{t} \tan \alpha\right]+\hat{\mathrm{k}} \mathrm{a}^{2}\left[\sin ^{2} \mathrm{t}+\cos ^{2} \mathrm{t}\right]
\end{aligned}
$$

$\frac{d \vec{r}}{d t} \times \frac{d^{2} \vec{r}}{d t^{2}}=\left[a^{2} \sin t \tan \alpha\right] \hat{i}-\hat{\jmath}\left[a^{2} \cos t \tan \alpha\right] \hat{\jmath}+a^{2} \hat{k}$

Taking magnitude

$$
\begin{aligned}
\left|\frac{d \vec{r}}{d t} \times \frac{d^{2} \vec{r}}{d t^{2}}\right| & =\sqrt{\left(\mathrm{a}^{2} \sin \mathrm{t} \tan \alpha\right)^{2}+\left(\mathrm{a}^{2} \cos \mathrm{t} \tan \alpha\right)^{2}+\left(\mathrm{a}^{2}\right)^{2}} \\
& =\sqrt{\left[\left(\mathrm{a}^{2}\right)^{2}\right]\left[\sin ^{2} \mathrm{t} \tan ^{2} \alpha+\cos ^{2} \mathrm{t} \tan ^{2} \alpha+1\right]} \\
& =\sqrt{\left[\left(\mathrm{a}^{2}\right)^{2}\right]\left[\left(\sin ^{2} \mathrm{t}+\cos ^{2} \mathrm{t}\right) \tan ^{2} \alpha+1\right]}=\sqrt{\left(\mathrm{a}^{2}\right)^{2}\left[\tan ^{2} \alpha+1\right]} \\
& =\sqrt{\left(\mathrm{a}^{2}\right)^{2}\left[\sec ^{2} \alpha\right]}=\sqrt{\left(\mathrm{a}^{2} \sec \alpha\right)^{2}} \\
\left|\frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} \times \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{d \mathrm{t}^{2}}\right| & =\mathrm{a}^{2} \sec \alpha \quad \text { Hence proved }
\end{aligned}
$$

Q\#09: If $\overrightarrow{\mathrm{r}}=\cos 2 \mathrm{t} \overrightarrow{\mathrm{a}}+\sin 2 \mathrm{t} \overrightarrow{\mathrm{b}}$. Where $\overrightarrow{\mathrm{a}} \& \overrightarrow{\mathrm{~b}}$ are constant vectors. Show that
(i)

$$
\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}+4 \overrightarrow{\mathrm{r}}=0
$$

(ii) $\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=2(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})$

Solution: Given vector $\quad \vec{r}=\cos 2 t \vec{a}+\sin 2 t \vec{b}$
Then

$$
\begin{equation*}
\frac{\mathrm{d} \vec{r}}{\mathrm{dt}}=-2 \sin 2 t \vec{a}+2 \cos 2 t \vec{b} \tag{i}
\end{equation*}
$$

(i) $\frac{d^{2} \vec{r}}{\mathrm{dt}^{2}}=-4 \cos 2 \mathrm{t} \overrightarrow{\mathrm{a}}-4 \sin 2 \mathrm{t} \overrightarrow{\mathrm{b}}$

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} \vec{r}}{\mathrm{dt}^{2}}=-4[\cos 2 \mathrm{t} \quad \overrightarrow{\mathrm{a}}+\sin 2 \mathrm{t} \overrightarrow{\mathrm{~b}}] \\
& \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}=-4 \overrightarrow{\mathrm{r}} \quad \therefore \text { From }(\mathrm{i})
\end{aligned}
$$

$$
\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{t}^{2}}+4 \overrightarrow{\mathrm{r}}=0 \quad \text { Hence proved }
$$

(ii) Now $\vec{r} \times \frac{d \vec{r}}{d t}=(\cos 2 t \vec{a}+\sin 2 t \vec{b}) \times(-2 \sin 2 t \quad \vec{a}+2 \cos 2 t \vec{b})$

$$
\begin{array}{rlr}
= & -2 \cos 2 t \sin 2 t(\vec{a} \times \vec{a})+2 \cos ^{2} 2 t(\vec{a} \times \vec{b})+2 \sin ^{2} 2 t(-\vec{b} \times \vec{a}) \\
& +2 \cos 2 t \sin 2 t(\vec{b} \times \vec{b}) \\
= & 0+2 \cos ^{2} 2 t(\vec{a} \times \vec{b})+2 \sin ^{2} 2 t(\vec{a} \times \vec{b})+0 & \therefore \vec{a} \times \vec{a}=0 \& \vec{b} \times \vec{b}=0 \\
= & 2(\vec{a} \times \vec{b})\left[\cos ^{2} 2 t+\sin ^{2} 2 t\right] \\
\vec{r} \times \frac{d \vec{r}}{d t}= & 2(\vec{a} \times \vec{b})
\end{array}
$$

Q\#10: If $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}} \mathrm{e}^{3 \mathrm{t}}+\overrightarrow{\mathrm{b}} \mathrm{e}^{-3 \mathrm{t}}$. Where $\overrightarrow{\mathrm{a}} \& \overrightarrow{\mathrm{~b}}$ are constant vectors. Show that $\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}-9 \overrightarrow{\mathrm{r}}=0$
Solution: Given vector function $\quad \vec{r}=\vec{a} \mathrm{e}^{3 \mathrm{t}}+\overrightarrow{\mathrm{b}} \mathrm{e}^{-3 \mathrm{t}}$ \qquad

$$
\text { Then } \frac{d \vec{r}}{d t}=3 \vec{a} e^{3 t}-3 \vec{b} e^{-3 t}
$$

$$
\& \quad \frac{d^{2} \vec{r}}{d t^{2}}=9 \vec{a} e^{3 t}+9 \vec{b} e^{-3 t}
$$

$$
\frac{d^{2} \vec{r}}{d^{2}}=9\left[\vec{a} e^{3 t}+\vec{b} e^{-3 t}\right]
$$

$$
\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}=9 \overrightarrow{\mathrm{r}} \quad \therefore \quad \text { From }(i)
$$

$$
\frac{d^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}-9 \overrightarrow{\mathrm{r}}=0 \quad \text { Hence proved. }
$$

Q\#11: If $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}} \mathrm{e}^{2 \mathrm{t}}+\overrightarrow{\mathrm{b}} \mathrm{e}^{3 \mathrm{t}}$. Where $\overrightarrow{\mathrm{a}} \& \overrightarrow{\mathrm{~b}}$ are constant vectors. Show that $\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}-5 \frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}+6 \overrightarrow{\mathrm{r}}=0$
Solution: Given vector function $\quad \vec{r}=\overrightarrow{\mathrm{a}} \mathrm{e}^{2 \mathrm{t}}+\overrightarrow{\mathrm{b}} \mathrm{e}^{3 \mathrm{t}}--------(i)$
Then $\quad \frac{d \vec{r}}{d t}=2 \vec{a} e^{2 t}+3 \vec{b} e^{3 t}$
\&

$$
\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}=4 \overrightarrow{\mathrm{a}} \mathrm{e}^{2 \mathrm{t}}+9 \overrightarrow{\mathrm{~b}} \mathrm{e}^{3 \mathrm{t}}
$$

Now

$$
\begin{aligned}
\frac{d^{2} \vec{r}}{d t^{2}}-5 \frac{d \vec{r}}{d t}+6 \vec{r} & =4 \vec{a} e^{2 t}+9 \vec{b} e^{3 t}-5\left[2 \vec{a} e^{2 t}+3 \vec{b} e^{3 t}\right]+6\left[\vec{a} e^{2 t}+\vec{b} e^{3 t}\right] \\
& =4 \vec{a} e^{2 t}+9 \vec{b} e^{3 t}-10 \vec{a} e^{2 t}-15 \vec{b} e^{3 t}+6 \vec{a} e^{2 t}+6 \vec{b} e^{3 t} \\
\frac{d^{2} \vec{r}}{d t^{2}}-5 \frac{d \vec{r}}{d t}+6 \vec{r} & =0
\end{aligned}
$$

Hence proved .

Q\#12: (i) If $\quad \overrightarrow{\mathrm{r}}=\boldsymbol{a} \cos \mathrm{t} \hat{\imath}+\mathrm{a} \sin \mathrm{t} \hat{\jmath}+\mathrm{b} t \hat{\mathrm{k}}$ then show that
(a) $\left|\frac{\mathrm{d} \vec{r}}{\mathrm{dt}}\right|^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$
(b) $\quad\left|\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} \times \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}{ }^{2}}\right|^{2}=\mathrm{a}^{2}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)$
(c) $\left[\begin{array}{lll}\frac{d \vec{r}}{d t} & \frac{\mathrm{~d}^{2} \vec{r}}{d t^{2}} & \frac{\mathrm{~d}^{3} \vec{r}}{\mathrm{dt}^{3}}\end{array}\right]=\mathrm{a}^{2} \boldsymbol{b}$
(ii) If $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{c}_{1}} \mathrm{e}^{\omega \mathrm{t}}+\overrightarrow{\mathrm{c}_{2}} \mathrm{e}^{-\omega \mathrm{t}}$. Where $\overrightarrow{\mathrm{c}_{1}} \& \overrightarrow{\mathrm{c}_{2}}$ are constant vectors. Show that $\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}-\omega^{2} \overrightarrow{\mathrm{r}}=0$
(i) If $\overrightarrow{\mathrm{r}}=\boldsymbol{a} \cos \mathrm{t} \hat{\mathrm{i}}+\mathrm{a} \sin \mathrm{t} \hat{\jmath}+\mathrm{b}$ t k then show that

Solution: Given vector function $\quad \vec{r}=a \cos t \hat{\imath}+a \sin t \hat{\jmath}+b t \hat{k}$
Then
\&

$$
\frac{d \vec{r}}{d t}=-a \sin t \hat{\imath}+a \cos t \hat{\jmath}+b \hat{k}
$$

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} \vec{r}}{\mathrm{dt}^{2}}=-\boldsymbol{a} \cos \mathrm{t} \hat{\imath}-\mathrm{a} \sin \mathrm{t} \hat{\jmath}+0 \hat{\mathrm{k}} \\
& \frac{\mathrm{~d}^{3} \vec{r}}{\mathrm{dt}^{3}}=\boldsymbol{a} \sin \mathrm{t} \hat{\imath}-\mathrm{a} \cos \mathrm{t} \hat{\jmath}+0 \hat{\mathrm{k}}
\end{aligned}
$$

(a) $\left|\frac{d \vec{r}}{d t}\right|=\sqrt{(a \sin t)^{2}+(-a \cos t)^{2}+(b)^{2}}=\sqrt{a^{2} \sin ^{2} t+a^{2} \cos ^{2} t+b^{2}}=\sqrt{a^{2}\left[\sin ^{2} t+\cos ^{2} t\right]+b^{2}}$

$$
\left|\frac{d \vec{r}}{d t}\right|=\sqrt{a^{2}+b^{2}}
$$

Taking square on both sides

$$
\left|\frac{d \vec{r}}{d t}\right|^{2}=a^{2}+b^{2}
$$

Hence proved
(b) $\frac{d \vec{r}}{d t} \times \frac{d^{2} \vec{r}}{d t^{2}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ -a \sin t & a \cos t & b \\ -a \cos t & -a \sin t & 0\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}a \cos t & b \\ -a \sin t & 0\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}-a \sin t & b \\ -a \cos t & 0\end{array}\right|+\hat{k}\left|\begin{array}{cc}-a \sin t & a \cos t \\ -a \cos t & -a \sin t\end{array}\right|$

$$
\begin{aligned}
= & \hat{\imath}[(a \cos t)(0)-(-a \sin t)(b)]-\hat{\jmath}[(-a \sin t)(0)-(-a \cos t)(b)] \\
& +\hat{k}[(-a \sin t)(-a \sin t)-(-a \cos t)(a \cos t)] \\
= & \hat{\imath}[0+a b \sin t]-\hat{\jmath}[0+a b \cos t]+\hat{k}\left[a^{2} \sin ^{2} t+a^{2} \cos ^{2} t\right] \\
= & \hat{\imath}[a b \sin t]-\hat{\jmath}[a b \cos t]+\hat{k} a^{2}\left[\sin ^{2} t+\cos ^{2} t\right]
\end{aligned}
$$

$$
\frac{d \vec{r}}{d t} \times \frac{d^{2} \vec{r}}{d t^{2}}=[a b \sin t] \hat{\imath}-\hat{\jmath}[a b \cos t] \hat{\jmath}+a^{2} \hat{k}
$$

Taking magnitude $\left|\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} \times \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}\right|=\sqrt{(\mathrm{ab} \sin \mathrm{t})^{2}+(\mathrm{ab} \cos \mathrm{t})^{2}+\left(\mathrm{a}^{2}\right)^{2}}=\sqrt{\left[\mathrm{a}^{2} \mathrm{~b}^{2}\right]\left[\sin ^{2} \mathrm{t}+\cos ^{2} \mathrm{t}\right]+\mathrm{a}^{4}}$

$$
\left|\frac{d \vec{r}}{d t} \times \frac{d^{2} \vec{r}}{d t^{2}}\right|=\sqrt{a^{2} b^{2}+a^{4}}=\sqrt{a^{2}\left(b^{2}+a^{2}\right)}
$$

Taking square on both sides $\quad\left|\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} \times \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}\right|^{2}=\mathrm{a}^{2}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)$
(c) $\left.\quad \begin{array}{lll}\frac{d \vec{r}}{d t} & \frac{d^{2} \vec{r}}{d t^{2}} & \frac{d^{3} \vec{r}}{d t^{3}}\end{array}\right]=\frac{d \vec{r}}{d t} \cdot\left(\frac{d^{2} \vec{r}}{d t^{2}} \times \frac{d^{3} \vec{r}}{d t^{3}}\right)=\left|\begin{array}{ccc}-a \sin t & a \cos t & b \\ -a \cos t & -a \sin t & 0 \\ a \sin t & -a \cos t & 0\end{array}\right|=b\left|\begin{array}{ll}-a \cos t & -a \sin t \\ a \sin t & -a \cos t\end{array}\right| \therefore$ Expanding by C_{3}

$$
=\mathrm{b}[(-\mathrm{a} \cos \mathrm{t})(-\mathrm{a} \cos \mathrm{t})-(\mathrm{a} \sin \mathrm{t})(-\sin \mathrm{t})]=\mathrm{b}\left[\mathrm{a}^{2} \cos ^{2} \mathrm{t}+\mathrm{a}^{2} \sin ^{2} \mathrm{t}\right]
$$

$$
\left[\begin{array}{lll}
\frac{d \vec{r}}{d t} & \frac{d^{2} \vec{r}}{d^{2} t^{2}} & \frac{d^{3} \vec{r}}{d^{3}}
\end{array}\right]=\mathrm{a}^{2} \mathrm{~b} \quad \text { Hence proved. }
$$

(ii) If $\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{c}_{1}} \mathbf{e}^{\omega \mathrm{t}}+\overrightarrow{\mathbf{c}_{\mathbf{2}}} \mathbf{e}^{-\omega \mathrm{t}}$. Where $\overrightarrow{\mathbf{c}_{\mathbf{1}}} \& \overrightarrow{\mathbf{c}_{\mathbf{2}}}$ are constant vectors. Show that $\frac{\mathrm{d}^{2} \overrightarrow{\mathbf{r}}}{\mathrm{dt}^{2}}-\omega^{2} \overrightarrow{\mathbf{r}}=\mathbf{0}$

Solution: Given vector function $\vec{r}=\overrightarrow{c_{1}} e^{\omega t}+\overrightarrow{c_{2}} e^{-\omega t}$ \qquad
Then

$$
\begin{align*}
& \frac{\mathrm{dr}}{\mathrm{dt}}=\omega \overrightarrow{\mathrm{c}_{1}} \mathrm{e}^{\omega \mathrm{t}}-\omega \overrightarrow{\mathrm{c}_{2}} \mathrm{e}^{-\omega \mathrm{t}} \\
& \frac{\mathrm{~d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}=\omega^{2} \overrightarrow{\mathrm{c}_{1}} \mathrm{e}^{\omega \mathrm{t}}+\omega^{2} \overrightarrow{\mathrm{c}_{2}} e^{-\omega \mathrm{t}} \\
& \frac{\mathrm{~d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}=\omega^{2}\left[\overrightarrow{\mathrm{c}_{1}} \mathrm{e}^{\omega \mathrm{t}}+\overrightarrow{\mathrm{c}_{2}} \mathrm{e}^{-\omega \mathrm{t}}\right] \\
& \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}=\omega^{2} \overrightarrow{\mathrm{r}} \tag{i}\\
& \frac{\mathrm{~d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}-\omega^{2} \overrightarrow{\mathrm{r}}=0
\end{align*}
$$

Hence proved.

Q\#13:If $\overrightarrow{\mathrm{f}}(\mathrm{t})$ is a vector function. Show that $\frac{\mathrm{d}}{\mathrm{dt}}\left(\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{f}}^{\prime}\right)=\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{f}}$ "
Solution: If $\overrightarrow{\mathrm{f}}(\mathrm{t})$ is a vector function. Then

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{dt}}\left(\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{f}}^{\prime}\right) & =\frac{\mathrm{d}}{\mathrm{dt}} \overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{f}}^{\prime}+\overrightarrow{\mathrm{f}} \times \frac{\mathrm{d}}{\mathrm{dt}} \overrightarrow{\mathrm{f}}^{\prime} \\
& =\overrightarrow{\mathrm{f}}^{\prime} \times \overrightarrow{\mathrm{f}}^{\prime}+\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{f}}^{\prime \prime} \\
& =0+\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{f}}^{\prime \prime} \quad \therefore \overrightarrow{\mathrm{f}}^{\prime} \times \overrightarrow{\mathrm{f}}^{\prime}=0 \\
\frac{\mathrm{~d}}{\mathrm{dt}}\left(\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{f}}^{\prime}\right) & =\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{f}}^{\prime \prime} \quad \text { Hence proved. }
\end{aligned}
$$

-

Q\#14: If $\overrightarrow{\mathrm{r}}=\mathrm{t}^{3} \hat{\imath}+\left(2 \mathrm{t}^{3}-\frac{1}{5 \mathrm{t}^{2}}\right) \hat{\jmath}$. Where n is a constant. show that $\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=\hat{\mathrm{k}}$.
Solution: Given vector function is

$$
\overrightarrow{\mathrm{r}}=\mathrm{t}^{3} \hat{\imath}+\left(2 \mathrm{t}^{3}-\frac{1}{5 t^{2}}\right) \hat{\jmath}
$$

Differentiate w. r.t t

$$
\frac{d \vec{r}}{d t}=3 t^{2} \hat{\imath}+\left(6 t^{2}-\frac{-2}{5 t^{3}}\right) \hat{\jmath}=3 t^{2} \hat{\imath}+\left(6 t^{2}+\frac{2}{5 t^{3}}\right) \hat{\jmath}
$$

Now $\quad \overrightarrow{\mathrm{r}} \times \frac{\mathrm{d} \vec{r}}{\mathrm{dt}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \mathrm{t}^{3} & 2-\frac{1}{5 t^{2}} & 0 \\ 3 \mathrm{t}^{2} & 6 \mathrm{t}^{2}+\frac{2}{5 t^{3}} & 0\end{array}\right|=0 \hat{\imath}-0 \hat{\mathrm{j}}+\hat{\mathrm{k}}\left|\begin{array}{cc}\mathrm{t}^{3} & 2 \mathrm{t}^{3}-\frac{1}{5 t^{2}} \\ 3 \mathrm{t}^{2} & 6 \mathrm{t}^{2}+\frac{2}{5 t^{3}}\end{array}\right|$

$$
=\hat{\mathrm{k}}\left[\left(\mathrm{t}^{3}\right)\left(6 \mathrm{t}^{2}+\frac{2}{5 t^{3}}\right)-\left(3 \mathrm{t}^{2}\right)\left(2 \mathrm{t}^{3}-\frac{1}{5 t^{2}}\right)\right]
$$

$$
=\hat{\mathrm{k}}\left[6 \mathrm{t}^{5}+\frac{2}{5}-6 \mathrm{t}^{3}+\frac{3}{5}\right]
$$

$$
=\widehat{\mathrm{k}}\left[\frac{2}{5}+\frac{3}{5}\right]=\widehat{\mathrm{k}}\left[\frac{2+3}{5}\right]=\widehat{\mathrm{k}}\left[\frac{5}{5}\right]
$$

$$
=\widehat{k}[1]
$$

$$
\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=\widehat{\mathrm{k}} \quad \text { Hence proved. }
$$

Q\#15:If $\overrightarrow{\mathrm{a}}=5 \mathrm{t}^{2} \hat{\imath}+\mathrm{t} \hat{\jmath}-\mathrm{t}^{3} \hat{\mathrm{k}} \quad \& \overrightarrow{\mathrm{~b}}=\sin \mathrm{t} \hat{\imath}-\cos \mathrm{t} \hat{\jmath}$
(i) $\frac{d}{d t}(\vec{a} \cdot \vec{b})$
(ii) $\frac{\mathrm{d}}{\mathrm{dt}}(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{a}})$ (iii) $\frac{\mathrm{d}}{\mathrm{dt}}(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})$

Solution: Given vectors $\quad \vec{a}=5 t^{2} \hat{\imath}+t \hat{\jmath}-t^{3} \hat{k} \quad \& \quad \vec{b}=\sin t \hat{\imath}-\cos t \hat{\jmath}$
(i) $\vec{a} \cdot \vec{b}=\left(5 t^{2} \hat{\imath}+t \hat{\jmath}-t^{3} \hat{k}\right) \cdot(\sin t \hat{\imath}-\cos t \hat{\jmath}+0 \hat{k})=5 t^{2} \sin t-t \cos t-t^{3}(0)$
$\vec{a} \cdot \vec{b}=5 t^{2} \sin t-t \cos t$
Now $\left.\quad \frac{d}{d t}(\vec{a} \cdot \vec{b})=5 / t^{2} \cos t+2 t \sin t\right]-[-t \sin t+\cos t]=5 t^{2} \cos t+10 t \sin t+t \sin t-\cos t$

$$
=\left(5 t^{2}-1\right) \cos t+11 t \sin t
$$

(ii) $\vec{a} \cdot \vec{a}=\left(5 t^{2} \hat{\imath}+t \hat{\jmath}-t^{3} \hat{k}\right) \cdot\left(5 t^{2} \hat{\imath}+t \hat{\jmath}-t^{3} \hat{k}\right)=\left(5 t^{2}\right)\left(5 t^{2}\right)+(t)(t)+\left(-t^{3}\right)\left(-t^{3}\right)=25 t^{4}+t^{2}+t^{6}$
$\vec{a} \cdot \vec{a}=t^{6}+25 t^{4}+t^{2}$

Differentiate w.r. t t

$$
\frac{\mathrm{d}}{\mathrm{dt}}(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{a}})=6 \mathrm{t}^{5}+100 \mathrm{t}^{3}+2 \mathrm{t}
$$

(iii) $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 5 t^{2} & t & -t^{3} \\ \sin t & -\cos t & 0\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}t & -t^{3} \\ -\cos t & 0\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}5 t^{2} & -t^{3} \\ \sin t & 0\end{array}\right|+\hat{k}\left|\begin{array}{cc}5 t^{2} & t \\ \sin t & -\cos t\end{array}\right|$

$$
\begin{aligned}
& =\hat{i}\left[(t)(0)-(\cos t)\left(-t^{3}\right)\right]-\hat{\jmath}\left[\left(5 t^{2}\right)(0)-(\sin t)\left(-t^{3}\right)\right]+\hat{k}\left[\left(5 t^{2}\right)(-\cos t)-(\sin t)(t)\right] \\
& =\hat{i}\left[0-t^{3} \cos t\right]-\hat{\jmath}\left[0+t^{3} \sin t\right]+\hat{k}\left[-5 t^{2} \cos t-t \sin t\right] \\
& =-\hat{i}\left[t^{3} \cos t\right]-\hat{\jmath}\left[t^{3} \sin t\right]+\hat{k}\left[-5 t^{2} \cos t-t \sin t\right]
\end{aligned}
$$

Differentiate w.r. $\boldsymbol{t} \boldsymbol{t}$

$$
\begin{aligned}
\frac{d}{d t}(\vec{a} \times \vec{b}) & =-\hat{i}\left[-t^{3} \sin t+3 t^{2} \cos t\right]-\left\{\left[t^{3} \cos t+3 t^{2} \sin t\right]+\hat{k}\left[-5\left(-t^{2} \sin t+2 t \cos t\right)-(t \cos t+\sin t)\right]\right. \\
& =\hat{i}\left[t^{3} \sin t-3 t^{2} \cos t\right]-\hat{\jmath}\left[t^{3} \cos t+3 t^{2} \sin t\right]+\hat{k}\left[5 t^{2} \sin t-10 t \cos t-t \cos t-\sin t\right] \\
& =\hat{i}\left[t^{3} \sin t-3 t^{2} \cos t\right]-\hat{\jmath}\left[t^{3} \cos t+3 t^{2} \sin t\right]+\hat{k}\left[\left(5 t^{2}-1\right) \sin t-11 t \cos t\right]
\end{aligned}
$$

Q\#16: If $\overrightarrow{\mathrm{f}}(\mathrm{t})$ is a vector function. Show that $\frac{\mathrm{d}}{\mathrm{dt}}\left[\overrightarrow{\mathrm{f}} .\left(\overrightarrow{\mathrm{f}}^{\prime} \times \overrightarrow{\mathrm{f}}^{\prime \prime}\right)\right]=\overrightarrow{\mathrm{f}} \cdot\left(\overrightarrow{\mathrm{f}}^{\prime \prime} \times \overrightarrow{\mathrm{f}}^{\prime \prime \prime}\right)$
Solution: If $\overrightarrow{\mathrm{f}}(\mathrm{t})$ is a vector function. Then

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{dt}}\left[\overrightarrow{\mathrm{f}} \cdot\left(\overrightarrow{\mathrm{f}}^{\prime} \times \overrightarrow{\mathrm{f}}^{\prime \prime}\right)\right] & =\frac{\mathrm{d}}{\mathrm{dt}} \overrightarrow{\mathrm{f}} \cdot\left(\overrightarrow{\mathrm{f}}^{\prime} \times \overrightarrow{\mathrm{f}}^{\prime \prime}\right)+\left[\overrightarrow{\mathrm{f}} \cdot\left(\frac{\mathrm{~d}}{\mathrm{dt}} \overrightarrow{\mathrm{f}}^{\prime} \times \overrightarrow{\mathrm{f}}^{\prime \prime}\right)+\overrightarrow{\mathrm{f}} \cdot\left(\overrightarrow{\mathrm{f}}^{\prime} \times \frac{\mathrm{d}}{\mathrm{dt}} \overrightarrow{\mathrm{f}}^{\prime \prime}\right)\right. \\
& =\overrightarrow{\mathrm{f}}^{\prime} \cdot\left(\overrightarrow{\mathrm{f}}^{\prime} \times \overrightarrow{\mathrm{f}}^{\prime \prime}\right)+\overrightarrow{\mathrm{f}} \times\left(\overrightarrow{\mathrm{f}}^{\prime \prime} \times \overrightarrow{\mathrm{f}}^{\prime \prime}\right)+\overrightarrow{\mathrm{f}} \times\left(\overrightarrow{\mathrm{f}}^{\prime \prime} \times \overrightarrow{\mathrm{f}}^{\prime \prime \prime}\right) \\
& =0+0+\overrightarrow{\mathrm{f}} \cdot\left(\overrightarrow{\mathrm{f}}^{\prime \prime} \times \overrightarrow{\mathrm{f}}^{\prime \prime \prime}\right)
\end{aligned}
$$

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left[\overrightarrow{\mathrm{f}} .\left(\overrightarrow{\mathrm{f}}^{\prime} \times \overrightarrow{\mathrm{f}}^{\prime \prime}\right)\right]=\overrightarrow{\mathrm{f}} \cdot\left(\overrightarrow{\mathrm{f}}^{\prime \prime} \times \overrightarrow{\mathrm{f}}^{\prime \prime \prime}\right) \quad \text { Hence proved. }
$$

Q\#17: Show that $\frac{d}{d t}\left[\vec{a} \times \frac{d \vec{b}}{d t}-\frac{d \vec{a}}{d t} \times \vec{b}\right]=\vec{a} \times \frac{d^{2} \vec{b}}{d t^{2}}-\frac{d^{2} \vec{a}}{d t^{2}} \times \vec{b}$
Solution: Let $\quad \frac{\mathrm{d}}{\mathrm{dt}}\left[\overrightarrow{\mathrm{a}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{b}}}{\mathrm{dt}}-\frac{\mathrm{d} \overrightarrow{\mathrm{a}}}{\mathrm{dt}} \times \overrightarrow{\mathrm{b}}\right]=\frac{\mathrm{d}}{\mathrm{dt}}\left[\overrightarrow{\mathrm{a}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{b}}}{\mathrm{dt}}\right]-\frac{\mathrm{d}}{\mathrm{dt}}\left[\frac{\mathrm{d} \overrightarrow{\mathrm{a}}}{\mathrm{dt}} \times \overrightarrow{\mathrm{b}}\right]$

$$
\begin{aligned}
& =\left[\frac{d \vec{a}}{d t} \times \frac{d \vec{b}}{d t}+\vec{a} \times \frac{d}{d t}\left(\frac{d \vec{b}}{d t}\right)\right]-\left[\frac{d}{d t}\left(\frac{d \vec{a}}{d t}\right) \times \vec{b}+\frac{d \vec{a}}{d t} \times \frac{d \vec{b}}{d t}\right] \\
& =\frac{d \vec{a}}{d t} \times \frac{d \vec{b}}{d t}+\vec{a} \times \frac{d^{2} \vec{b}}{d t^{2}}-\frac{d^{2} \vec{a}}{d t^{2}} \times \vec{b}-\frac{d \vec{a}}{d t} \times \frac{d \vec{b}}{d t}
\end{aligned}
$$

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left[\overrightarrow{\mathrm{a}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{~b}}}{\mathrm{dt}}-\frac{\mathrm{d} \overrightarrow{\mathrm{a}}}{\mathrm{dt}} \times \overrightarrow{\mathrm{b}}\right]=\overrightarrow{\mathrm{a}} \times \frac{\mathrm{d}^{2} \vec{b}}{\mathrm{dt}^{2}}-\frac{\mathrm{d}^{2} \vec{a}}{d \mathrm{t}^{2}} \times \overrightarrow{\mathrm{b}} \quad \text { Hence proved. }
$$

Q\#18: If $\hat{\mathrm{r}}(t)$ is a unit vector then show that $\hat{\mathrm{r}} .\left(\hat{\mathrm{r}} \times \frac{\mathrm{d}^{2} \hat{\mathrm{r}}}{\mathrm{dt}^{2}}\right)+\left(\frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{dt}}\right)^{2}=1$.
Solution: If $\hat{\mathrm{r}}(t)$ is a unit vector. Then

$$
\begin{aligned}
& \hat{\mathrm{r}} . \hat{\mathrm{r}}=|\hat{\mathrm{r}}|^{2} \\
& \hat{\mathrm{r}} . \hat{\mathrm{r}}=1 \quad-------(i)
\end{aligned}
$$

Differentiate (i) w.r.t $t \quad \frac{\mathrm{~d}}{\mathrm{dt}}$ ($\left.\hat{\mathrm{r}} . \hat{\mathrm{r}}\right)=\frac{\mathrm{d}}{\mathrm{dt}}$ (1)

$$
\begin{array}{r}
\frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{dt}} \cdot \hat{\mathrm{r}}+\hat{\mathrm{r}} \cdot \frac{\mathrm{~d} \hat{\mathrm{r}}}{\mathrm{dt}}=0 \\
2 \hat{\mathrm{r}} \cdot \frac{\mathrm{~d} \hat{\mathrm{r}}}{\mathrm{dt}}=0 \\
\hat{\mathrm{r}} \cdot \mathrm{~d} \mathrm{\hat{r}} \frac{\mathrm{dt}}{}=0
\end{array}
$$

Again differentiate w.r. $t \quad t \perp \frac{\mathrm{~d}}{\mathrm{dt}}\left(\hat{\mathrm{r}} \cdot \frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{dt}}\right)=\frac{\mathrm{d}}{\mathrm{dt}}(0)$

$$
\begin{align*}
& \hat{\mathrm{r}} \cdot \frac{\mathrm{~d}^{2} \hat{\mathrm{r}}}{\mathrm{dt} t^{2}}+\frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{dt}} \cdot \frac{\mathrm{~d} \hat{\mathrm{r}}}{\mathrm{dt}}=0 \\
& \hat{\mathrm{r}} \cdot \frac{\mathrm{~d}^{2} \hat{\mathrm{r}}}{\mathrm{dt}}+\left(\frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{dt}}\right)^{2}=0-. \tag{ii}
\end{align*}
$$

Adding (i) \& (ii)

$$
\begin{aligned}
& \widehat{\mathrm{r}} \cdot \hat{\mathrm{r}}+\hat{\mathrm{r}} \cdot \frac{\mathrm{~d}^{2} \hat{\mathrm{r}}}{\mathrm{dt}}+\left(\frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{dt}}\right)^{2}=1+0 \\
& \hat{\mathrm{r}} .\left(\hat{\mathrm{r}} \cdot \frac{\mathrm{~d}^{2} \hat{\mathrm{r}}}{\mathrm{dt}}\right)+\left(\frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{dt}}\right)^{2}=1
\end{aligned}
$$

Hence proved.

Q\#19: If \hat{a} is a unit vector in the direction of \vec{a}. Then prove that $\hat{a} \times \frac{d \hat{a}}{d t}=\frac{1}{|\vec{a}|^{2}} \vec{a} \times \frac{d \vec{a}}{d t}$
Solution: If \mathfrak{a} is \boldsymbol{a} unit vector in the direction of $\overrightarrow{\mathrm{a}}$. Then

$$
\begin{equation*}
\hat{a}=\frac{\vec{a}}{|\vec{a}|} \tag{i}
\end{equation*}
$$

Differentiate (i) w.r.t t.

$$
\begin{equation*}
\frac{\mathrm{d} \hat{a}}{\mathrm{dt}}=\frac{1}{|\vec{a}|} \frac{\mathrm{d} \overrightarrow{\mathrm{a}}}{\mathrm{dt}} . \tag{ii}
\end{equation*}
$$

Taking cross product of (i) \& (ii)

$$
\begin{aligned}
& \hat{a} \times \frac{d \hat{a}}{d t}=\frac{\vec{a}}{|\vec{a}|} \times \frac{1}{|\vec{a}|} \frac{d \vec{a}}{d t} \\
& \hat{a} \times \frac{d \hat{a}}{d t}=\frac{1}{|\vec{a}|^{2}} \vec{a} \times \frac{d \vec{a}}{d t}
\end{aligned}
$$

Hence proved.
Q\#20: If $\overrightarrow{\mathrm{r}}(t)$ is a vector of magnitude 2. then show that $\overrightarrow{\mathrm{r}} \cdot\left(\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}\right)+\left(\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}\right)^{2}=1$.
Solution: If $\overrightarrow{\mathrm{r}}(t)$ is a vector of magnitude 2. $\quad\{|\overrightarrow{\mathrm{r}}|=2\}$
. Then

$$
\begin{align*}
& \overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{r}}=|\overrightarrow{\mathrm{r}}|^{2} \\
& \overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{r}}=4
\end{align*} \quad \therefore|\overrightarrow{\mathrm{r}}|^{2}=4
$$

Differentiate (i) w.r.t t

$$
\frac{\mathrm{d}}{\mathrm{dt}}(\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{r}})=\frac{\mathrm{d}}{\mathrm{dt}}(4)
$$

$$
\frac{d \vec{r}}{d t} \cdot \vec{r}+\vec{r} \cdot \frac{d \vec{r}}{d t}=0
$$

$$
\therefore \frac{\mathrm{d} \vec{r}}{\mathrm{dt}} \cdot \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}
$$

$$
2 \overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=0
$$

$$
\overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=0
$$

Again differentiate w.r.t

$$
\begin{array}{ll}
& \frac{d}{d t}\left(\vec{r} \cdot \frac{d \vec{r}}{d t}\right)=\frac{d}{d t}(0) \\
\vec{r} \cdot \frac{d^{2} \vec{r}}{d t^{2}}+\frac{d \vec{r}}{d t} \cdot \frac{d \vec{r}}{d t}=0 & \therefore \frac{d \vec{r}}{d t} \cdot \frac{d \vec{r}}{d t}=\left(\frac{d \vec{r}}{d t}\right)^{2} \\
\overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{~d}^{2} \vec{r}}{\mathrm{dt}^{2}}+\left(\frac{\mathrm{d} \vec{r}}{d t}\right)^{2}=0-\cdots--(i i) &
\end{array}
$$

Adding (i) \& (ii)

$$
\begin{aligned}
& \vec{r} \cdot \vec{r}+\vec{r} \cdot \frac{d^{2} \vec{r}}{d t^{2}}+\left(\frac{d \vec{r}}{d t}\right)^{2}=4+0 \\
& \vec{r} \cdot\left(\vec{r} \times \frac{d^{2} \vec{r}}{d t^{2}}\right)+\left(\frac{d \vec{r}}{d t}\right)^{2}=4
\end{aligned}
$$

Hence proved.

Q\#21: If $\overrightarrow{\mathrm{f}}, \overrightarrow{\mathrm{g}}$ \& $\overrightarrow{\mathrm{h}}$ are vector function of scalar variable t. then show that
(i) $\quad \frac{\mathrm{d}}{\mathrm{dt}}[\overrightarrow{\mathrm{f}} \cdot(\overrightarrow{\mathrm{g}} \times \overrightarrow{\mathrm{h}}])=\overrightarrow{\mathrm{f}}^{\prime} \cdot(\overrightarrow{\mathrm{g}} \times \overrightarrow{\mathrm{h}})+\overrightarrow{\mathrm{f}} \cdot\left(\overrightarrow{\mathrm{g}}^{\prime} \times \overrightarrow{\mathrm{h}}\right)+\overrightarrow{\mathrm{f}} \cdot\left(\overrightarrow{\mathrm{g}} \times \overrightarrow{\mathrm{h}}^{\prime}\right)$
(ii) $\quad \frac{\mathrm{d}}{\mathrm{dt}}[\overrightarrow{\mathrm{f}} \times(\overrightarrow{\mathrm{g}} \times \overrightarrow{\mathrm{h}}])=\overrightarrow{\mathrm{f}}^{\prime} \times(\overrightarrow{\mathrm{g}} \times \overrightarrow{\mathrm{h}})+\overrightarrow{\mathrm{f}} \times\left(\overrightarrow{\mathrm{g}}^{\prime} \times \overrightarrow{\mathrm{h}}\right)+\overrightarrow{\mathrm{f}} \times\left(\overrightarrow{\mathrm{g}} \times \overrightarrow{\mathrm{h}}^{\prime}\right)$
(i) $\frac{d}{d t}[\overrightarrow{\mathbf{f}} \cdot(\overrightarrow{\mathbf{g}} \times \overrightarrow{\mathbf{h}}])=\overrightarrow{\mathbf{f}}^{\prime} \cdot(\overrightarrow{\mathbf{g}} \times \overrightarrow{\mathbf{h}})+\overrightarrow{\mathbf{f}} \cdot\left(\overrightarrow{\mathbf{g}}^{\prime} \times \overrightarrow{\mathbf{h}}\right)+\overrightarrow{\mathbf{f}} \cdot\left(\overrightarrow{\mathbf{g}} \times \overrightarrow{\mathbf{h}}^{\prime}\right)$

Solution: Let

$$
\begin{aligned}
& \frac{d}{d t}[\vec{f} \cdot(\vec{g} \times \vec{h}])=\frac{d}{d t} \vec{f} \cdot(\vec{g} \times \vec{h})+\vec{f} \cdot\left(\frac{d}{d t} \vec{g} \times \overrightarrow{\mathrm{h}}\right)+\overrightarrow{\mathrm{f}} \cdot\left(\overrightarrow{\mathrm{~g}} \times \frac{\mathrm{d}}{\mathrm{dt}} \overrightarrow{\mathrm{~h}}\right) \\
& \frac{\mathrm{d}}{\mathrm{dt}}[\overrightarrow{\mathrm{f}} \cdot(\overrightarrow{\mathrm{~g}} \times \overrightarrow{\mathrm{h}}])=\overrightarrow{\mathrm{f}}^{\prime} \cdot(\overrightarrow{\mathrm{g}} \times \overrightarrow{\mathrm{h}})+\overrightarrow{\mathrm{f}} \cdot\left(\vec{g}^{\prime} \times \overrightarrow{\mathrm{h}}\right)+\overrightarrow{\mathrm{f}} \cdot\left(\overrightarrow{\mathrm{~g}} \times \overrightarrow{\mathrm{h}}^{\prime}\right) \text { Hence proved. }
\end{aligned}
$$

(ii) $\frac{\mathbf{d}}{\mathrm{dt}}[\overrightarrow{\mathbf{f}} \times(\overrightarrow{\mathbf{g}} \times \overrightarrow{\mathbf{h}}])=\overrightarrow{\mathbf{f}}^{\prime} \times(\overrightarrow{\mathbf{g}} \times \overrightarrow{\mathbf{h}})+\overrightarrow{\mathbf{f}} \times\left(\overrightarrow{\mathbf{g}}^{\prime} \times \overrightarrow{\mathbf{h}}\right)+\overrightarrow{\mathbf{f}} \times\left(\overrightarrow{\mathbf{g}} \times \overrightarrow{\mathbf{h}}^{\prime}\right)$

Solution: Let

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{dt}}[\overrightarrow{\mathrm{f}} \times(\overrightarrow{\mathrm{g}} \times \overrightarrow{\mathrm{h}})]=\frac{\mathrm{d}}{\mathrm{dt}} \overrightarrow{\mathrm{f}} \times(\overrightarrow{\mathrm{g}} \times \overrightarrow{\mathrm{h}})+\overrightarrow{\mathrm{f}} \times\left(\frac{\mathrm{d}}{\mathrm{dt}} \overrightarrow{\mathrm{~g}} \times \overrightarrow{\mathrm{h}}\right)+\overrightarrow{\mathrm{f}} \times\left(\overrightarrow{\mathrm{g}} \times \frac{\mathrm{d}}{\mathrm{dt}} \overrightarrow{\mathrm{~h}}\right) \\
& \frac{\mathrm{d}}{\mathrm{dt}}[\overrightarrow{\mathrm{f}} \times(\overrightarrow{\mathrm{g}} \times \overrightarrow{\mathrm{h}})]=\overrightarrow{\mathrm{f}}^{\prime} \times(\overrightarrow{\mathrm{g}} \times \overrightarrow{\mathrm{h}})+\overrightarrow{\mathrm{f}} \times\left(\overrightarrow{\mathrm{g}}^{\prime} \times \overrightarrow{\mathrm{h}}\right)+\overrightarrow{\mathrm{f}} \times\left(\overrightarrow{\mathrm{g}} \times \overrightarrow{\mathrm{h}}^{\prime}\right) \text { Hence proved. }
\end{aligned}
$$

Q\#22: If $\overrightarrow{\mathrm{f}}, \overrightarrow{\mathrm{g}}$ \& $\overrightarrow{\mathrm{h}}$ are vector functions of scalar variable t and if
$\overrightarrow{\mathrm{f}}^{\prime}=\overrightarrow{\mathrm{h}} \times \overrightarrow{\mathrm{f}}$ \& $\overrightarrow{\mathrm{g}}^{\prime}=\overrightarrow{\mathrm{h}} \times \overrightarrow{\mathrm{g}}$ Then show that $\frac{\mathrm{d}}{\mathrm{dt}}(\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{g}})=\overrightarrow{\mathrm{h}} \times(\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{g}})$.
Solution: Taking L.H.S

$$
\frac{\mathrm{d}}{\mathrm{dt}}(\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{g}})=\frac{\mathrm{d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}} \times \overrightarrow{\mathrm{g}}+\overrightarrow{\mathrm{f}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{~g}}}{\mathrm{dt}}=\overrightarrow{\mathrm{f}}^{\prime} \times \overrightarrow{\mathrm{g}}+\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{g}}^{\prime}
$$

Using given values

$$
\begin{align*}
& \overrightarrow{\mathrm{f}}^{\prime}=\overrightarrow{\mathrm{h}} \times \overrightarrow{\mathrm{f}} \& \quad \vec{g}^{\prime}=\overrightarrow{\mathrm{h}} \times \overrightarrow{\mathrm{g}} \\
& \frac{\mathrm{~d}}{\mathrm{dt}}(\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{g}})=(\overrightarrow{\mathrm{h}} \times \overrightarrow{\mathrm{f}}) \times \overrightarrow{\mathrm{g}}+\overrightarrow{\mathrm{f}} \times(\overrightarrow{\mathrm{h}} \times \overrightarrow{\mathrm{g}}) \\
&=(\overrightarrow{\mathrm{h}} \cdot \overrightarrow{\mathrm{~g}}) \overrightarrow{\mathrm{f}}-(\overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{~g}}) \overrightarrow{\mathrm{h}}+(\overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{~g}}) \overrightarrow{\mathrm{h}}-(\overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{~h}}) \overrightarrow{\mathrm{g}} \\
& \frac{d}{\mathrm{dt}}(\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{g}})=(\overrightarrow{\mathrm{h}} \cdot \overrightarrow{\mathrm{~g}}) \overrightarrow{\mathrm{f}}-(\overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{~h}}) \overrightarrow{\mathrm{g}}---------(i) \tag{i}
\end{align*}
$$

Now taking R.H.S

$$
\begin{equation*}
\overrightarrow{\mathrm{h}} \times(\overrightarrow{\mathrm{g}} \times \overrightarrow{\mathrm{f}})=(\overrightarrow{\mathrm{h}} \cdot \overrightarrow{\mathrm{~g}}) \overrightarrow{\mathrm{f}}-(\overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{~h}}) \overrightarrow{\mathrm{g}} \tag{ii}
\end{equation*}
$$

From (i) \& (ii) Hence proved that

$$
\frac{\mathrm{d}}{\mathrm{dt}}(\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{g}})=\overrightarrow{\mathrm{h}} \times(\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{g}})
$$

Q\#23: If $\hat{\mathrm{u}}(t)$ is a unit vector then show that $\hat{\mathrm{u}} .\left(\hat{\mathrm{u}} \times \frac{\mathrm{d}^{2} \widehat{\mathrm{u}}}{\mathrm{dt}^{2}}\right)+\left(\frac{\mathrm{d} \widehat{\mathrm{u}}}{\mathrm{dt}}\right)^{2}=1$.
Solution: If $\hat{u}(t)$ is a unit vector. Then

$$
\begin{aligned}
& \text { û. } \hat{\mathrm{u}}=|\hat{\mathrm{u}}|^{2} \\
& \text { û. } \hat{\mathrm{u}}=1 \quad--------(i)
\end{aligned} \quad \therefore|\hat{u}|=1
$$

Differentiate (i) w.r.t t

$$
\frac{d}{d t}(\hat{u} . \hat{u})=\frac{d}{d t}(1)
$$

$$
\begin{array}{r}
\frac{d \hat{u}}{d t} \cdot \hat{u}+\hat{u} \cdot \frac{d \hat{u}}{d t}=0 \\
2 \hat{u} \cdot \frac{d \widehat{u}}{d t}=0 \\
\hat{u} \cdot \frac{d \widehat{u}}{d t}=0
\end{array}
$$

Again differentiate w.r. $t \quad \frac{\mathrm{~d}}{\mathrm{dt}}\left(\hat{\mathrm{u}} . \frac{\mathrm{d} \hat{\mathrm{u}}}{\mathrm{dt}}\right)=\frac{\mathrm{d}}{\mathrm{dt}}(0)$

$$
\begin{aligned}
& \hat{u} \cdot \frac{d^{2} \widehat{u}}{d t^{2}}+\frac{d \hat{u}}{d t} \cdot \frac{d \widehat{u}}{d t}=0 \\
& \hat{u} \cdot \frac{d^{2} \widehat{u}}{d t^{2}}+\left(\frac{d \hat{u}}{d t}\right)^{2}=0-\cdots-\cdots-(i i)
\end{aligned}
$$

Adding (i) \& (ii)

$$
\hat{u} . \hat{u}+\hat{u} \cdot \frac{d^{2} \widehat{u}}{d t^{2}}+\left(\frac{d \widehat{u}}{d t}\right)^{2}=1+0
$$

$$
\hat{u} .\left(\hat{u} \cdot \frac{d^{2} \hat{u}}{\mathrm{dt}^{2}}\right)+\left(\frac{d \hat{u}}{d t}\right)^{2}=1
$$

Hence proved.
Q\#24(i) Show that $\frac{\mathrm{d}}{\mathrm{dt}}\left[\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{g}}^{\prime}-\overrightarrow{\mathrm{f}}^{\prime} \times \overrightarrow{\mathrm{g}}\right]=\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{g}}^{\prime \prime}-\overrightarrow{\mathrm{f}}^{\prime \prime} \times \overrightarrow{\mathrm{g}}$
Solution: Let

$$
\begin{aligned}
\frac{d}{d t}\left[\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{g}}^{\prime}-\overrightarrow{\mathrm{f}}{ }^{\prime} \times \overrightarrow{\mathrm{g}}\right]= & \frac{\mathrm{d}}{\mathrm{dt}}\left[\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{g}}^{\prime}\right]-\frac{\mathrm{d}}{\mathrm{dt}}\left[\overrightarrow{\mathrm{f}}{ }^{\prime} \times \overrightarrow{\mathrm{g}}\right] \\
& =\left[\frac{\mathrm{d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}} \times \overrightarrow{\mathrm{g}}^{\prime}+\overrightarrow{\mathrm{f}} \times \frac{\mathrm{d}}{\mathrm{dt}}\left(\overrightarrow{\mathrm{~g}}^{\prime}\right)\right]-\left[\frac{\mathrm{d}}{\mathrm{dt}}\left(\overrightarrow{\mathrm{f}}^{\prime}\right) \times \overrightarrow{\mathrm{g}}+\overrightarrow{\mathrm{f}}{ }^{\prime} \times \frac{\mathrm{d} \overrightarrow{\mathrm{~g}}}{\mathrm{dt}}\right] \\
& =\overrightarrow{\mathrm{f}}^{\prime} \times \overrightarrow{\mathrm{g}}^{\prime}+\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{g}}^{\prime \prime}-\overrightarrow{\mathrm{f}}^{\prime \prime} \times \overrightarrow{\mathrm{g}}-\overrightarrow{\mathrm{f}}^{\prime} \times \overrightarrow{\mathrm{g}}^{\prime} \\
\frac{\mathrm{d}}{\mathrm{dt}}\left[\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{g}}^{\prime}-\overrightarrow{\mathrm{f}}^{\prime} \times \overrightarrow{\mathrm{g}}\right]= & \overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{g}}^{\prime \prime}-\overrightarrow{\mathrm{f}}^{\prime \prime} \times \overrightarrow{\mathrm{g}}
\end{aligned}
$$

Hence proved

Q\#24 (ii)If $\hat{\mathrm{f}}(\mathrm{t})$ is a unit vector in the direction of vector $\overrightarrow{\mathrm{g}}(t)$. Then show that $\hat{\mathrm{f}} \times \hat{\mathrm{f}}{ }^{\prime}=\frac{\overrightarrow{\mathrm{g}} \times \vec{g}^{\prime}}{\overrightarrow{\mathrm{g}} \cdot \overrightarrow{\mathrm{g}}}$.
Solution: If $\hat{\mathrm{f}}(\mathrm{t})$ is a unit vector in the direction of vector $\overrightarrow{\mathrm{g}}(\mathrm{t})$. Then

$$
\begin{align*}
\hat{f} & =\frac{\overrightarrow{\mathrm{g}}}{\mathrm{~g}} \\
\mathrm{~g} \hat{\mathrm{f}} & =\overrightarrow{\mathrm{g}} \\
\overrightarrow{\mathrm{~g}} & =\mathrm{g} \text { f }---------------------------(i) \tag{i}
\end{align*} \quad \therefore|\overrightarrow{\mathrm{g}}|=\mathrm{g}
$$

Differentiate w.r.t t

$$
\begin{equation*}
\vec{g}^{\prime}=g \hat{f}^{\prime}+g^{\prime} \hat{f} . \tag{ii}
\end{equation*}
$$

Taking cross product of equation (i) \& (ii)

$$
\begin{aligned}
\overrightarrow{\mathrm{g}} \times \overrightarrow{\mathrm{g}}^{\prime} & =\mathrm{g} \hat{\mathrm{f}} \times\left[\mathrm{g} \hat{\mathrm{f}}^{\prime}+\mathrm{g} \mathrm{f}^{\prime}\right] \\
\overrightarrow{\mathrm{g}} \times \overrightarrow{\mathrm{g}}^{\prime} & =\mathrm{g}^{2}\left(\hat{\mathrm{f}} \times \hat{\mathrm{f}}^{\prime}\right)+\mathrm{gg}^{\prime}(\hat{\mathrm{f}} \times \hat{\mathrm{f}}) \\
\overrightarrow{\mathrm{g}} \times \overrightarrow{\mathrm{g}}^{\prime} & =(\overrightarrow{\mathrm{g}} \cdot \overrightarrow{\mathrm{~g}})\left(\hat{\mathrm{f}} \times \hat{\mathrm{f}}^{\prime}\right)+\mathrm{gg}^{\prime}(0) \\
\overrightarrow{\mathrm{g}} \times \overrightarrow{\mathrm{g}}^{\prime} & =(\overrightarrow{\mathrm{g}} \cdot \overrightarrow{\mathrm{~g}})\left(\hat{\mathrm{f}} \times \hat{\mathrm{f}}^{\prime}\right)+0 \\
\overrightarrow{\mathrm{~g}} \times \overrightarrow{\mathrm{g}}^{\prime} & =(\overrightarrow{\mathrm{g}} \cdot \overrightarrow{\mathrm{~g}})\left(\hat{\mathrm{f}} \times \hat{\mathrm{f}}^{\prime}\right) \\
\frac{\overrightarrow{\mathrm{g}} \times \overrightarrow{\mathrm{g}}^{\prime}}{\overrightarrow{\mathrm{g}} \cdot \overrightarrow{\mathrm{~g}}} & =\hat{\mathrm{f}} \times \hat{\mathrm{f}}^{\prime}
\end{aligned}
$$

Hence proved

$$
\hat{\mathrm{f}} \times \hat{\mathrm{f}}^{\prime}=\frac{\overrightarrow{\mathrm{g}} \times \overrightarrow{\mathrm{g}}^{\prime}}{\overrightarrow{\mathrm{g}} \overrightarrow{\mathrm{~g}}}{ }^{\prime}
$$

Q\#25: If $\quad \overrightarrow{\mathrm{r}}(t)=2 t \hat{\mathrm{i}}+\mathrm{t}^{2} \hat{\jmath}+\frac{1}{3} \mathrm{t}^{3} \hat{\mathrm{k}}$ then show that

Solution: Given vector function $\quad \vec{r}=2 t \hat{\imath}+t^{2} \hat{\jmath}+\frac{1}{3} t^{3} \hat{k}$
Then

$$
\begin{aligned}
& \frac{d \vec{r}}{d t}=2 \hat{\imath}+2 t \hat{\jmath}+\frac{1}{3} 3 t^{2} \hat{k}=2 \hat{\imath}+2 t \hat{\jmath}+t^{2} \hat{k} \\
& \frac{d^{2} \vec{r}}{d t^{2}}=0 \hat{\imath}+2 \hat{\jmath}+2 t \hat{k} \quad \& \quad \frac{d^{3} \vec{r}}{d t^{3}}=0 \hat{\imath}+0 \hat{\jmath}+2 \hat{k}
\end{aligned}
$$

(i) $\frac{d \vec{r}}{d t} \times \frac{d^{2} \vec{r}}{d t^{2}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 2 t & t^{2} \\ 0 & 2 & 2 t\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}2 t & t^{2} \\ 2 & 2 \mathrm{t}\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}2 & t^{2} \\ 0 & 2 \mathrm{t}\end{array}\right|+\hat{\mathrm{k}}\left|\begin{array}{cc}2 & 2 \mathrm{t} \\ 0 & 2\end{array}\right|$

$$
\begin{aligned}
& =\hat{\imath}\left[(2 \mathrm{t})(2 \mathrm{t})-(2)\left(\mathrm{t}^{2}\right)\right]-\hat{\mathrm{\jmath}}\left[(2)(2 \mathrm{t})-(0)\left(\mathrm{t}^{2}\right)\right]+\hat{\mathrm{k}}[(2)(2)-(0)(2 \mathrm{t})] \\
& =\hat{\imath}\left[4 \mathrm{t}^{2}-2 \mathrm{t}^{2}\right]-\hat{\mathrm{\jmath}}[4 \mathrm{t}-0]+\hat{\mathrm{k}}[4-0]=2 \mathrm{t}^{2} \hat{\imath}-4 \mathrm{t} \hat{\jmath}+4 \hat{\mathrm{k}}
\end{aligned}
$$

(ii) $\left[\begin{array}{lll}\frac{d \vec{r}}{d t} & \frac{d^{2} \vec{r}}{d t^{2}} & \frac{d^{3} \vec{r}}{d^{3}}\end{array}\right]=\frac{d \vec{r}}{d t} \cdot\left(\frac{d^{2} \vec{r}}{\mathrm{dt}^{2}} \times \frac{d^{3} \vec{r}}{\mathrm{dt}^{3}}\right)=\left|\begin{array}{ccc}2 & 2 \mathrm{t} & \mathrm{t}^{2} \\ 0 & 2 & 2 \mathrm{t} \\ 0 & 0 & 2\end{array}\right|$
\therefore Expanding by R3

$$
=0+0+2\left|\begin{array}{cc}
2 & 2 t \\
0 & 2
\end{array}\right|=2[(2)(2)-(0)(2 t)]=2(4-0)=2(4)
$$

$$
\left[\begin{array}{lll}
\frac{\mathrm{d}_{\mathrm{r}}}{\mathrm{dt}} & \frac{\mathrm{~d}^{2} \overrightarrow{\mathrm{r}}}{} & \frac{\mathrm{~d}^{3} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}
\end{array} \frac{\mathrm{~d}}{\mathrm{~d} \mathrm{t}^{3}}\right]=8
$$

Hence proved.

(iii) Given $\overrightarrow{\mathrm{r}}=2 t \hat{\mathrm{\imath}}+\mathrm{t}^{2} \hat{\jmath}+\frac{1}{3} \mathrm{t}^{3} \hat{\mathrm{k}}$

Now

$$
\begin{align*}
& \overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=\left(2 t \hat{\mathrm{\imath}}+\mathrm{t}^{2} \hat{\jmath}+\frac{1}{3} \mathrm{t}^{3} \hat{k}\right) \cdot\left(2 \hat{\imath}+2 \mathrm{t} \hat{\jmath}+\mathrm{t}^{2} \hat{\mathrm{k}}\right)=2 \mathrm{t}(2)+\mathrm{t}^{2}(2 \mathrm{t})+\left(\frac{1}{3} \mathrm{t}^{3}\right) \\
& \overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=4 \mathrm{t}+2 \mathrm{t}^{3}+\frac{1}{3} \mathrm{t}^{5} \tag{i}
\end{align*}
$$

Then

$$
|\vec{r}|=\sqrt{(2 t)^{2}+\left(t^{2}\right)^{2}+\left(\frac{1}{3} t^{3}\right)^{2}}=\sqrt{4 t^{2}+t^{4}+\frac{1}{9} t^{6}}
$$

Taking square on both sides

$$
r^{2}=4 t^{2}+t^{4}+\frac{1}{9} t^{6}
$$

Differentiate w.r.t t

$$
2 \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}}=8 \mathrm{t}+4 \mathrm{t}^{3}+\frac{1}{9}\left(6 \mathrm{t}^{5}\right)=8 \mathrm{t}+4 \mathrm{t}^{3}+\frac{2}{3} \mathrm{t}^{5}
$$

Dividing by

$$
\begin{equation*}
\mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}}=4 \mathrm{t}+2 \mathrm{t}^{3}+\frac{1}{3} \mathrm{t}^{5} . \tag{ii}
\end{equation*}
$$

From (i) \& (ii) hence proved

$$
\overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=\mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}}
$$

Q\#26: If $\overrightarrow{\mathrm{f}}(\mathrm{t})$ is a vector function then show that $\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\overrightarrow{\mathrm{f}}}{|\overrightarrow{\mathrm{f}}|}\right)=\frac{\overrightarrow{\mathrm{f}^{\prime}}(\overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{f}})-\overrightarrow{\mathrm{f}}\left(\overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{f}^{\prime}}\right)}{(\overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{f}})^{3 / 2}}$.
Solution: Let $\overrightarrow{\mathrm{f}}=\mathrm{f}_{1} \hat{\imath}+\mathrm{f}_{2} \hat{\jmath}+\mathrm{f}_{3} \hat{\mathrm{k}}$
Taking product with itself

$$
\overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{f}}=\left(\mathrm{f}_{1} \hat{\imath}+\mathrm{f}_{2} \hat{\jmath}+\mathrm{f}_{3} \hat{\mathrm{k}}\right) \cdot\left(\mathrm{f}_{1} \hat{\imath}+\mathrm{f}_{2} \hat{\jmath}+\mathrm{f}_{3} \hat{\mathrm{k}}\right)=\mathrm{f}_{1}{ }^{2}+\mathrm{f}_{2}{ }^{2}+\mathrm{f}_{3}{ }^{2}-\cdots---(i)
$$

Taking magnitude of given vector.

$$
\begin{aligned}
& |\overrightarrow{\mathrm{f}}|=\sqrt{\mathrm{f}_{1}{ }^{2}+\mathrm{f}_{2}{ }^{2}+\mathrm{f}_{3}{ }^{2}} \\
& |\overrightarrow{\mathrm{f}}|=(\overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{f}})^{1 / 2}
\end{aligned}
$$

If $\quad \overrightarrow{\mathrm{f}^{\prime}}=\mathrm{f}_{1}{ }^{\prime} \hat{\imath}+\mathrm{f}_{2}{ }^{\prime} \hat{\jmath}+\mathrm{f}_{3}{ }^{\prime} \hat{\mathrm{k}}$
Then $\quad \vec{f} \cdot \vec{f}^{\prime}=|\vec{f}|\left|\vec{f}{ }^{\prime}\right|$ \qquad
Now taking

$$
\begin{aligned}
& \text { L.H.S }=\frac{d}{d t}\left(\frac{\vec{f}}{|\vec{f}|}\right)=\frac{|\vec{f}| \vec{f}{ }^{\prime}-\vec{f}\left|\overrightarrow{f^{\prime}}\right|}{(|\vec{f}|)^{2}} \\
& =\frac{\left.|\overrightarrow{\mathrm{f}}|| | \overrightarrow{\mathrm{f}}\left|\overrightarrow{\mathrm{f}}{ }^{\prime}-\overrightarrow{\mathrm{f}}\right| \overrightarrow{\mathrm{f}^{\prime}} \mid\right]}{(|\overrightarrow{\mathrm{f}}|)^{3}} \\
& =\frac{|\vec{f}||\vec{f}| \vec{f} \vec{f}^{\prime}-\vec{f}|\vec{f}||\vec{f} '|}{\left[(\overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{f}})^{1 / 2}\right]^{3}} \\
& =\frac{(|\vec{f}|)^{2} \vec{f}{ }^{\prime}-\vec{f}(\vec{f} \cdot \vec{f} \uparrow)}{(\vec{f} \vec{f})^{3 / 2}} \\
& =\frac{(\vec{f} \cdot \vec{f}) \overrightarrow{f^{\prime}}-\vec{f}(\vec{f} \cdot \vec{f} \prime)}{(\vec{f} \cdot \vec{f})^{3 / 2}} \\
& \text { =R.H.S } \\
& \therefore \text { Multiplying and dividing by }|\overrightarrow{\mathrm{f}}| \\
& \therefore \text { From(ii) }|\overrightarrow{\mathrm{f}}|=(\overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{f}})^{1 / 2} \\
& \therefore \text { From(iii) } \overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{f}^{\prime}}=|\overrightarrow{\mathrm{f}}|\left|\overrightarrow{\mathrm{f}^{\prime}}\right| \\
& \therefore \overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{f}}=(|\overrightarrow{\mathrm{f}}|)^{2}
\end{aligned}
$$

Hence proved That L.H.S $=$ R.H.S

Q\#27: Show that

(i) Necessary and sufficient condition for a vector $\overrightarrow{\mathrm{f}}$ of scalar variable to be a constant is $\frac{\mathrm{d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}}=0$

Proof: By given condition. That $\overrightarrow{\mathrm{f}}$ be constant vector. Then $\overrightarrow{\mathrm{f}}=$ constant
Differentiate w.r.t $\quad \frac{d \vec{f}}{d t}=\frac{d}{d t}$ (constant $) \quad \Rightarrow \quad \frac{d \vec{f}}{d t}=0$
Conversely, suppose that $\frac{d \vec{f}}{d t}=0 \quad \Rightarrow d \vec{f}=0 d t$
On integrating both sides $\quad \int \mathrm{d} \overrightarrow{\mathrm{f}}=\int 0 \mathrm{dt}$

$$
\overrightarrow{\mathrm{f}}=0 . \mathrm{t}+\text { constant } \Rightarrow \overrightarrow{\mathrm{f}}=\text { constant }
$$

Hence prove that
The Necessary and sufficient condition for a vector $\overrightarrow{\mathrm{f}}$ of scalar variable t to be a constant is $\frac{\mathrm{d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}}=0$. (ii)Necessary and sufficient condition for a vector $\overrightarrow{\mathrm{f}}$ of scalar variable to have a constant magnitude is $\overrightarrow{\mathrm{f}} \cdot \frac{\mathrm{d} \overrightarrow{\mathrm{f}}}{\mathrm{d} t} 0$.

Proof: By given condition. That vector $\overrightarrow{\mathrm{f}}$ have a constant magnitude. Then $|\overrightarrow{\mathrm{f}}|=$ constant
Taking square on both sides $\quad|\overrightarrow{\mathrm{f}}|^{2}=($ constant $) 2=$ constant
We know that

$$
\overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{f}}=|\overrightarrow{\mathrm{f}}|{ }^{2} \text { then } \quad \overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{f}}=\text { constant }
$$

Differentiate w.r.t $t \quad \frac{\mathrm{~d}}{\mathrm{dt}}(\overrightarrow{\mathrm{f}} . \overrightarrow{\mathrm{f}})=\frac{\mathrm{d}}{\mathrm{dt}}$ (constant)

$$
\frac{d \vec{f}}{d t} \cdot \vec{f}+\vec{f} \cdot \frac{d \vec{f}}{d t}=0 \quad \therefore \vec{f} \cdot \frac{d \vec{f}}{d t}=\frac{d \vec{f}}{d t} \cdot \vec{f}
$$

Conversely, suppose that

$$
2 \overrightarrow{\mathrm{f}} \cdot \frac{\mathrm{~d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}}=0 \quad \Rightarrow \overrightarrow{\mathrm{f}} \cdot \frac{\mathrm{~d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}}=0
$$

$$
\begin{aligned}
& \overrightarrow{\mathrm{f}} \cdot \frac{\mathrm{~d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}}=0 \\
& \mathrm{f} \frac{\mathrm{df}}{\mathrm{dt}}=0 \quad \Rightarrow \mathrm{fdf}=0 \mathrm{dt}
\end{aligned}
$$

$$
\therefore \overrightarrow{\mathrm{f}} \cdot \frac{\mathrm{~d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}}=\mathrm{f} \frac{\mathrm{df}}{\mathrm{dt}}
$$

on integrating both sides $\quad \int \mathrm{fdf}=\int 0 \mathrm{dt}$

$$
\Rightarrow \frac{|\vec{f}|^{2}}{2}=0 . t+\text { constant } \Rightarrow|\overrightarrow{\mathrm{f}}|^{2}=2(\text { constant })
$$

Taking square-root on both sides $|\vec{f}|=\sqrt{2(\text { constant) }} \quad \Rightarrow|\vec{f}|=$ constant

Hence prove that Necessary and sufficient condition for a vector $\overrightarrow{\mathrm{f}}$ of scalar variable to have a constant magnitude is $\overrightarrow{\mathrm{f}} \cdot \frac{\mathrm{d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}}=0$
(iii)Necessary and sufficient condition for a vector $\overrightarrow{\mathrm{f}}$ of scalar variable to have a constant direction is $\overrightarrow{\mathrm{f}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}}=0$

Proof: Let $\hat{\mathrm{r}}$ be unit vector in the direction of vector $\overrightarrow{\mathrm{f}}$. By given condition, that direction is constant .

$$
\begin{equation*}
\hat{\mathrm{r}}=\text { constant } \quad \text { Then } \quad \frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{dt}}=0 \tag{i}
\end{equation*}
$$

As we know that

$$
\begin{equation*}
\hat{\mathrm{r}}=\frac{\overrightarrow{\mathrm{f}}}{\mathrm{f}} \quad \Rightarrow \overrightarrow{\mathrm{f}}=\mathrm{f} \hat{\mathrm{r}} \tag{ii}
\end{equation*}
$$

Differentiate w.r.t $t \quad \frac{\mathrm{~d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{f} \hat{\mathrm{r}})$

$$
\begin{equation*}
\frac{\mathrm{d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}}=\frac{\mathrm{df}}{\mathrm{dt}} \hat{\mathrm{r}}+f \frac{\mathrm{~d} \hat{\mathrm{r}}}{\mathrm{dt}}- \tag{iii}
\end{equation*}
$$

Takin cross product of equation (ii) \& (iii)

$$
\begin{array}{ll}
\overrightarrow{\mathrm{f}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}}=\mathrm{f} \hat{\mathrm{r}} \times\left(\frac{\mathrm{df}}{\mathrm{dt}} \hat{\mathrm{r}}+\mathrm{f} \frac{\mathrm{dr}}{\mathrm{dt}}\right) \\
\overrightarrow{\mathrm{f}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}}=\mathrm{f} \frac{\mathrm{df}}{\mathrm{dt}}(\hat{\mathrm{r}} \times \hat{\mathrm{r}})+\mathrm{f}^{2}\left(\hat{\mathrm{r}} \times \frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{dt}}\right) & \\
\overrightarrow{\mathrm{f}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}}=\mathrm{f} \frac{\mathrm{df}}{\mathrm{dt}}(0)+\mathrm{f}^{2}\left(\hat{\mathrm{r}} \times \frac{\mathrm{dr}}{\mathrm{dt}}\right) & \therefore \hat{\mathrm{r}} \times \hat{\mathrm{r}}=0 \\
\overrightarrow{\mathrm{f}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}}=0+\mathrm{f}^{2}\left(\hat{\mathrm{r}} \times \frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{dt}}\right) \\
\overrightarrow{\mathrm{f}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}}=\mathrm{f}^{2}\left(\hat{\mathrm{r}} \times \frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{dt}}\right) \\
\overrightarrow{\mathrm{f}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}}=\mathrm{f}^{2}(\hat{\mathrm{r}} \times 0) \\
\overrightarrow{\mathrm{f}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}}=0
\end{array}
$$

Conversely, suppose that

$$
\overrightarrow{\mathrm{f}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}}=0
$$

Then equation (iv) will become

$$
f^{2}\left(\hat{r} \times \frac{d \hat{r}}{d t}\right)=0 \quad \Rightarrow \quad \hat{r} \times \frac{d \hat{r}}{d t}=0
$$

Here $\hat{\mathrm{r}} \neq 0$ but

$$
\frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{dt}}=0
$$

Therefore $\hat{\mathrm{r}}=$ constant
Hence prove that Necessary and sufficient condition for a vector $\overrightarrow{\mathrm{f}}$ of scalar variable to have a constant direction is $\overrightarrow{\mathrm{f}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}}=0$.

Q\#28: A particle that move along a curve . $\mathrm{x}=2 \mathrm{t}^{2}, \mathrm{y}=\mathrm{t}^{2}-4 \mathrm{t}, \mathrm{z}=3 \mathrm{t}-5$. Where \boldsymbol{t} is time Find component of velocity and acceleration at $\boldsymbol{t}=\mathbf{1}$ in the direction of $\hat{\imath}+3 \hat{\jmath}+3 \hat{k}$.

Solution: Let $\overrightarrow{\mathrm{r}}(\mathrm{t})$ be a position vector. Then $\quad \overrightarrow{\mathrm{r}}=x \hat{\imath}+y \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}$
Putting

$$
\begin{aligned}
& x=2 t^{2}, y=t^{2}-4 t, z=3 t-5 \\
& \vec{r}=2 t^{2} \hat{\imath}+\left(t^{2}-4 t\right) \hat{\jmath}+(3 t-5) \hat{k}
\end{aligned}
$$

Velocity: Differentiate w.r.t t.

$$
\begin{aligned}
& \vec{v}=\frac{d \vec{r}}{d t}=4 t \hat{\imath}+(2 t-4) \hat{\jmath}+3 \hat{k} \\
& \vec{v}=4 \hat{\imath}+[2(2)-4] \hat{\jmath}+3 \hat{k}=4 \hat{\imath}-2 \hat{\jmath}+3 \hat{k} \quad \Rightarrow \vec{v}=4 \hat{\imath}-2 \hat{\jmath}+3 \hat{k}
\end{aligned}
$$

At $t=1$:
Acceleration: Differentiate w. r.t $t . \quad \vec{a}=\frac{d \vec{v}}{d t}=0 \hat{\imath}+2 \hat{\jmath}+0 \hat{k}$
At $t=1$:

$$
\vec{a}=4 \hat{\imath}+2 \hat{\jmath}+0 \hat{k} \Rightarrow \vec{a}=4 \hat{\imath}+2 \hat{\jmath}
$$

Let $\quad \overrightarrow{\mathrm{u}}=\hat{\imath}+3 \hat{\jmath}+3 \hat{\mathrm{k}}$
Then

$$
\hat{u}=\frac{\vec{u}}{|\vec{u}|}=\frac{\hat{1}+3 \hat{\jmath}+3 \hat{k}}{\sqrt{(1)^{2}+(3)^{2}+(3)^{2}}}=\frac{1+3 \hat{\jmath}+3 \hat{k}}{\sqrt{1+9+9}}=\frac{\hat{\imath}+3 \hat{\jmath}+3 \hat{k}}{\sqrt{19}}
$$

Now
Component of $\overrightarrow{\mathrm{v}}$ along $\overrightarrow{\mathrm{u}}=\overrightarrow{\mathrm{v}} \cdot \hat{\mathrm{u}}=(4 \hat{\imath}-2 \hat{\jmath}+3 \hat{\mathrm{k}}) \cdot\left(\frac{\hat{1}+3 \hat{\jmath}+3 \hat{\mathrm{k}}}{\sqrt{19}}\right)=\frac{(4 \hat{1}-2 \hat{\jmath}+3 \hat{\mathrm{k}}) \cdot(\hat{1}+3 \hat{\jmath}+3 \hat{\mathrm{k}})}{\sqrt{19}}=\frac{4-6+9}{\sqrt{19}}=\frac{7}{\sqrt{19}}$
Component of \vec{a} along $\vec{u}=\vec{a} \cdot \hat{u}=(4 \hat{\imath}+2 \hat{\jmath}+0 \hat{k}) \cdot\left(\frac{\hat{\imath}+3 \hat{\jmath}+3 \hat{k}}{\sqrt{19}}\right)=\frac{(4 \hat{\imath}+2 \hat{\jmath}+0 \widehat{k}) \cdot(\hat{\imath}+3 \hat{\jmath}+3 \hat{k})}{\sqrt{19}}=\frac{4+6+0}{\sqrt{19}}=\frac{10}{\sqrt{19}}$
Q\#29: A particle moves, so that its position vector is given by $\overrightarrow{\mathrm{r}}=\cos \omega \mathrm{t} \hat{\mathrm{\imath}}+\sin \omega \mathrm{t} \hat{\jmath}$. Where ω is constant. Show that (i) the velocity $\overrightarrow{\mathrm{v}}$ of a particle is perpendicular to $\overrightarrow{\mathrm{r}}$ (ii) The acceleration $\overrightarrow{\mathrm{a}}$ is directed toward the origin and has magnitude proportional to the displacement \vec{r} from the origin. (iii) $\vec{r} \times \vec{v}=\vec{c}$. (\vec{c} is constant vector)

Solution: Given position vector

$$
\begin{equation*}
\overrightarrow{\mathrm{r}}=\cos \omega t \hat{\imath}+\sin \omega t \hat{\jmath} \tag{i}
\end{equation*}
$$

Velocity: Differentiate w. r.t t. $\overrightarrow{\mathrm{v}}=\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=-\omega \sin \omega t \hat{\imath}+\omega \cos \omega t \hat{\jmath}$ \qquad
Acceleration: Differentiate w.r.t t. $\overrightarrow{\mathrm{a}}=\frac{\mathrm{d} \overrightarrow{\mathrm{v}}}{\mathrm{dt}}=-\omega^{2} \cos \omega t \hat{\imath}-\omega^{2} \sin \omega t \hat{\jmath}-$
(i) we have to prove $\overrightarrow{\mathrm{v}} \perp \overrightarrow{\mathrm{r}}$ for this $\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{r}}=0$

$$
\vec{v} \cdot \vec{r}=(-\omega \sin \omega t \hat{\imath}+\omega \cos \omega t \hat{\jmath}) \cdot(\cos \omega t \hat{\imath}+\sin \omega t \hat{\jmath}=-\omega \sin \omega t \cos \omega t+\omega \sin \omega t \cos \omega t
$$

$$
\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{r}}=0
$$

Hence prove
(ii) We have to prove $\overrightarrow{\mathrm{a}} \propto-\overrightarrow{\mathrm{r}}$.

For this using (iii) $\quad \vec{a}=-\omega^{2} \cos \omega t \hat{\imath}-\omega^{2} \sin \omega t \hat{\jmath}=-\omega^{2}[\cos \omega t \hat{\imath}+\sin \omega t \hat{\jmath}]$

$$
\vec{a}=-\omega^{2} \vec{r} \quad \therefore \text { From }(i)
$$

This shows that $\overrightarrow{\mathrm{a}} \propto-\overrightarrow{\mathrm{r}}$. Negative sign indicate the acceleration $\overrightarrow{\mathrm{a}}$ is directed toward the origin.
(iii) We have to prove $\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{c}}$. (\vec{c} is constant vector)

$$
\begin{aligned}
\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{v}} & =\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
\cos \omega \mathrm{t} & \sin \omega \mathrm{t} & 0 \\
-\omega \sin \omega \mathrm{t} & \omega \cos \omega \mathrm{t} & 0
\end{array}\right|=\hat{\mathrm{k}}\left|\begin{array}{cc}
\cos \omega \mathrm{t} & \sin \omega \mathrm{t} \\
-\omega \sin \omega \mathrm{t} & \omega \cos \omega \mathrm{t}
\end{array}\right| \quad \therefore \text { Expanding by C3 } \\
& =\hat{\mathrm{k}}[(\cos \omega \mathrm{t})(\omega \cos \omega \mathrm{t})-(-\omega \sin \omega \mathrm{t})(\sin \omega \mathrm{t})]=\hat{\mathrm{k}}\left[\omega^{2} \cos ^{2} \omega \mathrm{t}+\omega^{2} \sin ^{2} \omega \mathrm{t}\right] \\
& =\hat{\mathrm{k}}\left[\omega^{2}\left(\cos ^{2} \omega \mathrm{t}+\sin ^{2} \omega \mathrm{t}\right)\right] \\
\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{v}} & =\omega^{2} \hat{\mathrm{k}} \quad \text { Hence proved } \quad \overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{c}} \quad \text { Here } \overrightarrow{\mathrm{c}}=\omega^{2} \hat{\mathrm{k}}(\mathrm{c} \text { is constant vector })
\end{aligned}
$$

Q\#30: A particle moves along a curve whose parametric equation are $\mathrm{x}=\mathrm{e}^{-\mathrm{t}}, \mathrm{y}=2 \cos 3 \mathrm{t}, \mathrm{z}=2 \sin 3 \mathrm{t}$, where t is time
(a) Determine its velocity and acceleration at any time t (b) Find magnitudes of velocity and acceleration at $t=0$.

Solution: Let $\overrightarrow{\mathrm{r}}(\mathrm{t})$ be a position vector. Then $\overrightarrow{\mathrm{r}}=\mathrm{xî}+\mathrm{y} \hat{\mathrm{r}}+\mathrm{z} \hat{\mathrm{k}}$
Putting $\mathrm{x}=\mathrm{e}^{-\mathrm{t}}, \mathrm{y}=2 \cos 3 \mathrm{t}$ and $\mathrm{z}=2 \sin 3 \mathrm{t}$

$$
\vec{r}=e^{-t} \hat{\imath}+2 \cos 3 t \hat{\jmath}+2 \sin 3 t \hat{k}
$$

(a) Velocity: Differentiate w. r.t t.

$$
\begin{aligned}
& \vec{v}=\frac{d \vec{r}}{d t}=-e^{-t} \hat{\imath}-6 \sin 3 t \hat{\jmath}+6 \cos 3 t \hat{k} \\
& \vec{a}=\frac{d \vec{v}}{d t}=e^{-t} \hat{\imath}-18 \cos 3 t \hat{\jmath}-18 \sin 3 t \hat{k}
\end{aligned}
$$

Acceleration: Differentiate w. r.t t.
(b) Magnitude of Velocity: at $\mathrm{t}=0$

$$
\begin{aligned}
& \overrightarrow{\mathrm{v}}=-\mathrm{e}^{-0 \hat{\imath}}-6 \sin 3(0) \hat{\jmath}+6 \cos 3(0) \hat{\mathrm{k}}=-1 \hat{\imath}-0 \hat{\jmath}+6 \hat{\mathrm{k}} \\
& |\overrightarrow{\mathrm{v}}|=\sqrt{(-1)^{2}+(0)^{2}+(6)^{2}}=\sqrt{1+0+36}=\sqrt{37}
\end{aligned}
$$

Magnitude of Acceleration: at $\boldsymbol{t}=0$

$$
\begin{aligned}
& \overrightarrow{\mathrm{a}}=\frac{\mathrm{d} \overrightarrow{\mathrm{v}}}{\mathrm{dt}}=\mathrm{e}^{-0} \hat{\imath}-18 \cos 3(0) \hat{\jmath}-18 \sin 3(0) \hat{\mathrm{k}}=1 \hat{\imath}-18 \hat{\jmath}+0 \hat{\mathrm{k}} \\
& |\overrightarrow{\mathrm{a}}|=\sqrt{(1)^{2}+(18)^{2}+(0)^{2}}=\sqrt{1+324+0}=\sqrt{325}
\end{aligned}
$$

Q\#31: Find the velocity and acceleration of a particle moves along a curve whose parametric equation are
$\mathrm{x}=2 \sin 3 \mathrm{t}, \mathrm{y}=2 \cos 3 \mathrm{t}$ and $\mathrm{z}=8 \mathrm{t}$ at any time. Find the magnitude of velocity and acceleration.
Solution: Let $\overrightarrow{\mathrm{r}}(\mathrm{t})$ be a position vector. Then $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\mathrm{\jmath}}+\mathrm{z} \hat{\mathrm{k}}$
Putting $\mathrm{x}=2 \sin 3 \mathrm{t}, \mathrm{y}=2 \cos 3 \mathrm{t}$ and $\mathrm{z}=8 \mathrm{t} \quad$ Then $\quad \overrightarrow{\mathrm{r}}=2 \sin 3 \mathrm{t} \hat{\mathrm{t}}+2 \cos 3 \mathrm{t} \hat{\jmath}+8 \mathrm{t} \hat{\mathrm{k}}$
Velocity: Differentiate w.r.t t.

$$
\vec{v}=\frac{d \vec{r}}{d t}=6 \cos 3 t \hat{\imath}-6 \sin 3 t \hat{\jmath}+8 \hat{k}
$$

$|\vec{v}|=\sqrt{(6 \cos 3 t)^{2}+(-6 \sin 3 t)^{2}+(8)^{2}}=\sqrt{36 \cos ^{2} 3 t+36 \sin ^{2} 3 t+64}=\sqrt{36\left[\cos ^{2} 3 t+\sin ^{2} 3 t\right]+64}=\sqrt{100}=\mathbf{1 0}$
Acceleration: Differentiate w. r.t t. $\overrightarrow{\mathrm{a}}=\frac{\mathrm{d} \overrightarrow{\mathrm{v}}}{\mathrm{dt}}=-18 \sin 3 \mathrm{t} \hat{\imath}-18 \cos 3 \mathrm{t} \hat{\jmath}+0 \hat{\mathrm{k}}$
$|\vec{a}|=\sqrt{(-18 \sin 3 t)^{2}+(-18 \cos 3 t)^{2}+(0)^{2}}=\sqrt{324 \sin ^{2} 3 t+324 \cos ^{2} 3 t+0}=\sqrt{324\left[\sin ^{2} 3 t+\cos ^{2} 3 t\right]}=\sqrt{324}=18$
Q\#32: A particle that move along a curve. $\mathrm{x}=2 \mathrm{t}^{2}, \mathrm{y}=\mathrm{t}^{2}-4 \mathrm{t}, \mathrm{z}=3 \mathrm{t}-5$. Where \boldsymbol{t} is time Find component of velocity and acceleration at $\boldsymbol{t}=\mathbf{1}$ in the direction of $\overrightarrow{\mathrm{b}}=\hat{\imath}-3 \hat{\jmath}+2 \hat{\mathrm{k}}$.

Solution: Let $\overrightarrow{\mathrm{r}}(\mathrm{t})$ be a position vector. Then $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\imath}+y \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}$
Putting $\mathrm{x}=2 \mathrm{t}^{2}, \mathrm{y}=\mathrm{t}^{2}-4 \mathrm{t}, \mathrm{z}=3 \mathrm{t}-5$ Then $\overrightarrow{\mathrm{r}}=2 \mathrm{t}^{2} \hat{\mathrm{i}}+\left(\mathrm{t}^{2}-4 \mathrm{t}\right) \hat{\jmath}+(3 \mathrm{t}-5) \hat{\mathrm{k}}$
Velocity: Differentiate w.r.t t.

$$
\vec{v}=\frac{d \vec{r}}{d t}=4 t \hat{\imath} 4(2 t-4) \hat{\jmath}+3 \hat{k}
$$

At $\boldsymbol{t}=1: \quad \overrightarrow{\mathrm{v}}=4 \hat{\imath}+[2(2)-4] \hat{\jmath}+3 \hat{\mathrm{k}}=4 \hat{\imath}-2 \hat{\jmath}+3 \hat{\mathrm{k}} \quad \Rightarrow \overrightarrow{\mathrm{v}}=4 \hat{\imath}-2 \hat{\jmath}+3 \hat{\mathrm{k}}$
Acceleration: Differentiate w.r.t $t \quad \vec{a}=\frac{d \vec{v}}{d t}=0 \hat{\imath}+2 \hat{\jmath}+0 \hat{k}$
At $t=1$

$$
\vec{a}=4 \hat{\imath} 4 \hat{\jmath}+0 \hat{k} \Rightarrow \vec{a}=4 \hat{\imath}+2 \hat{\jmath}
$$

Let $\overrightarrow{\mathrm{b}}=\hat{\imath}-3 \hat{\jmath}+2 \hat{\mathrm{k}} \quad$ Then $\hat{\mathrm{b}}=\frac{\overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{b}}|}=\frac{\hat{\mathrm{\imath}}-3 \hat{\jmath}+2 \hat{\mathrm{k}}}{\sqrt{(1)^{2}+(-3)^{2}+(2)^{2}}}=\frac{\hat{1}-3 \hat{\jmath}+2 \hat{k}}{\sqrt{1+9+4}}=\frac{\hat{\imath}-3 \hat{\jmath}+2 \hat{k}}{\sqrt{14}}$
Now
Component of $\overrightarrow{\mathrm{v}}$ along $\overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{v}} \cdot \hat{\mathrm{b}}=(4 \hat{\imath}-2 \hat{\jmath}+3 \hat{\mathrm{k}}) \cdot\left(\frac{\hat{1}-3 \hat{\jmath}+2 \hat{\mathrm{k}}}{\sqrt{14}}\right)=\frac{(4 \hat{1}-2 \hat{\jmath}+3 \hat{\mathrm{k}}) \cdot(\hat{1}-3 \hat{\jmath}+2 \hat{\mathrm{k}})}{\sqrt{14}}$

$$
=\frac{4+6+6}{\sqrt{14}}=\frac{16}{\sqrt{14}}=\frac{16 \sqrt{14}}{\sqrt{14} \cdot \sqrt{14}}=\frac{16 \sqrt{14}}{14}=\frac{8 \sqrt{14}}{7}
$$

Component of \vec{a} along $\vec{b}=\vec{a} \cdot \hat{b}=(4 \hat{\imath}+2 \hat{\jmath}+0 \hat{k}) \cdot\left(\frac{\hat{1}-3 \hat{\jmath}+2 \widehat{k}}{\sqrt{14}}\right)=\frac{(4 \hat{1}+2 \hat{\jmath}+0 \widehat{k}) \cdot(\hat{1}-3 \hat{\jmath}+2 \widehat{k})}{\sqrt{14}}$

$$
=\frac{4-6+0}{\sqrt{14}}=\frac{-2 \sqrt{14}}{\sqrt{14} \cdot \sqrt{14}}=\frac{-2 \sqrt{14}}{14}=\frac{-\sqrt{14}}{7}
$$

INTEGRATION OF A VECTOR FUNCTION :

Integration of a vector function is define as the inverse or reverse process of differentiation.
Let $\overrightarrow{\mathrm{f}}(\mathrm{t})$ \& $\overrightarrow{\mathrm{g}}(\mathrm{t})$ are two vector function. such that $\frac{\mathrm{d}}{\mathrm{dt}}[\overrightarrow{\mathrm{g}}(\mathrm{t})]=\overrightarrow{\mathrm{f}}(\mathrm{t})$ Then $\int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}=\overrightarrow{\mathrm{g}}(\mathrm{t})+$ c
\{ c is a constant of integration\}. This is called indefinite integral of a vector function.
Definite integral is define on the interval $[a, b]$ as $\int_{a}^{b} \vec{f}(t)=|\vec{g}(t)|_{a}^{b}=\overrightarrow{\mathrm{g}}(\mathrm{b})-\overrightarrow{\mathrm{g}}(\mathrm{a})$.
Theorem \# I: if $\overrightarrow{\mathrm{f}}(\mathrm{t})=\mathrm{f}_{1}(\mathrm{t}) \hat{\mathrm{i}}+\mathrm{f}_{2}(\mathrm{t}) \hat{\jmath}+\mathrm{f}_{3}(\mathrm{t}) \hat{\mathrm{k}} \quad$ Then prove that
$\int \vec{f}(t) d t=\hat{i} \int f_{1}(t) d t+\hat{\jmath} \int f_{2}(t) d t+\hat{k} \int f_{1}(t) d t$
Proof: Let

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}[\overrightarrow{\mathrm{~F}}(\mathrm{t})]=\overrightarrow{\mathrm{f}}(\mathrm{t}) \tag{i}
\end{equation*}
$$

Then

$$
\begin{equation*}
\int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}=\overrightarrow{\mathrm{F}}(\mathrm{t}) \tag{ii}
\end{equation*}
$$

Let

$$
\overrightarrow{\mathrm{F}}(\mathrm{t})=\mathrm{F}_{1}(\mathrm{t}) \hat{\mathrm{i}}+\mathrm{F}_{2}(\mathrm{t}) \hat{\jmath}+\mathrm{F}_{3}(\mathrm{t}) \hat{\mathrm{k}}-\cdots-(i i i)
$$

Put in equation (i)

$$
\begin{gathered}
\frac{d}{d t}\left[F_{1}(t) \hat{\imath}+F_{2}(t) \hat{\jmath}+F_{3}(t) \hat{k}\right]=\overrightarrow{\mathrm{f}}(\mathrm{t}) \\
\frac{\mathrm{d}}{\mathrm{dt}}\left[\mathrm{~F}_{1}(\mathrm{t})\right] \hat{\mathrm{i}}+\frac{\mathrm{d}}{\mathrm{dt}}\left[\mathrm{~F}_{2}(\mathrm{t})\right] \hat{\jmath}+\frac{\mathrm{d}}{\mathrm{dt}}\left[\mathrm{~F}_{3}(\mathrm{t})\right] \hat{\mathrm{k}}=\mathrm{f}_{1}(\mathrm{t}) \hat{\mathrm{i}}+\mathrm{f}_{2}(\mathrm{t}) \hat{\jmath}+\mathrm{f}_{3}(\mathrm{t}) \hat{\mathrm{k}}
\end{gathered}
$$

Equating coefficients of $\hat{1}, \hat{\jmath} \& \hat{\mathrm{k}}$

$$
\begin{aligned}
\frac{d}{d t}\left[F_{1}(t)\right]=f_{1}(t) & \Rightarrow \int f_{1}(t) d t=F_{1}(t) \\
\frac{d}{d t}\left[F_{2}(t)\right]=f_{2}(t) & \Longleftrightarrow \int f_{2}(t) d t=F_{2}(t) \\
\frac{d}{d t}\left[F_{3}(t)\right]=f_{3}(t) & \Rightarrow \int f_{3}(t) d t=F_{3}(t)
\end{aligned}
$$

Using values in equation (iii)

$$
\vec{F}(t)=\left[\int f_{1}(t) d t\right] \hat{\imath}+\left[\int f_{2}(t) d t\right] \hat{\jmath}+\left[\int f_{1}(t) d t\right] \hat{k}
$$

Equation (ii) will become

$$
\int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}=\hat{\mathrm{i}} \int \mathrm{f}_{1}(\mathrm{t}) \mathrm{dt}+\hat{\jmath} \int \mathrm{f}_{2}(\mathrm{t}) \mathrm{dt}+\hat{\mathrm{k}} \int \mathrm{f}_{1}(\mathrm{t}) \mathrm{dt}
$$

Hence proved.

Example\#01: If $\overrightarrow{\mathrm{f}}(\mathrm{t})=\left(\mathrm{t}-\mathrm{t}^{2}\right) \hat{\imath}+2 \mathrm{t}^{3} \hat{\mathrm{\jmath}}-3 \hat{\mathrm{k}}$ Find $($ i $) \int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}($ ii $) \int_{1}^{2} \overrightarrow{\mathrm{f}}(\mathrm{t}) d t$
Solution: Given $\quad \overrightarrow{\mathrm{f}}(\mathrm{t})=\left(\mathrm{t}-\mathrm{t}^{2}\right) \hat{\mathrm{\imath}}+2 \mathrm{t}^{3} \hat{\mathrm{\jmath}}-3 \hat{\mathrm{k}}$
(i) $\int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}=\int\left[\left(\mathrm{t}-\mathrm{t}^{2}\right) \hat{\mathrm{\imath}}+2 \mathrm{t}^{3} \hat{\jmath}-3 \hat{\mathrm{k}}\right] \mathrm{d}=\hat{\mathrm{r}}\left[\int\left(\mathrm{t}-\mathrm{t}^{2}\right) \mathrm{dt}\right]+\hat{\mathrm{\jmath}}\left[2 \int \mathrm{t}^{3} \mathrm{dt}\right]+\hat{\mathrm{k}}\left[-\int 3 \mathrm{dt}\right]$

$$
=\hat{\imath}\left[\frac{t^{2}}{2}-\frac{\mathrm{t}^{3}}{3}\right]+\hat{\jmath}\left[2\left(\frac{\mathrm{t}^{4}}{4}\right)\right]+\hat{\mathrm{k}}[-3 \mathrm{t}]
$$

$$
\int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}=\hat{\imath}\left[\frac{\mathrm{t}^{2}}{2}-\frac{\mathrm{t}^{3}}{3}\right]+\hat{\jmath}\left[\frac{\mathrm{t}^{4}}{2}\right]-3 \hat{\mathrm{k}}[\mathrm{t}]+c
$$

(ii) $\int_{1}^{2} \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}=\hat{\mathrm{r}}\left[\frac{\mathrm{t}^{2}}{2}-\frac{\mathrm{t}^{3}}{3}\right]_{1}^{2}+\hat{\jmath}\left[\frac{\mathrm{t}^{4}}{2}\right]_{1}^{2}-3 \hat{\mathrm{k}}[\mathrm{t}]{ }_{1}^{2}=\hat{\mathrm{\imath}}\left[\left(\frac{2^{2}}{2}-\frac{2^{3}}{3}\right)-\left(\frac{1^{2}}{2}-\frac{1^{3}}{3}\right)\right]+\hat{\jmath}\left[\frac{2^{4}}{2}-\frac{1^{4}}{2}\right]-3 \hat{\mathrm{k}}[2-1]$

$$
=\hat{\imath}\left[2-\frac{8}{3}-\frac{1}{2}+\frac{1}{3}\right]+\hat{\jmath}\left[8-\frac{1}{2}\right]-3 \hat{k}[1]
$$

$\int_{1}^{2} \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}=\frac{-5}{6} \hat{\mathrm{I}}+\frac{15}{2} \hat{\jmath}-3 \hat{\mathrm{k}}$
Example\# 02: Solve $\vec{a} \times \frac{d^{2} \vec{v}}{d t^{2}}=\vec{b} . \vec{a} \& \vec{b}$ are constant vectors and \vec{v} is a vector function of t.
Solution: Given equation is

$$
\overrightarrow{\mathrm{a}} \times \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{v}}}{\mathrm{dt}^{2}}=\overrightarrow{\mathrm{b}}
$$

On Integrating both sides

$$
\int\left(\vec{a} \times \frac{d^{2} \vec{v}}{\mathrm{dt}^{2}}\right) \mathrm{dt}=\int \overrightarrow{\mathrm{b}} \mathrm{dt}-\cdots-\cdots(i)
$$

Let

$$
\begin{aligned}
& \frac{d}{d t}\left(\vec{a} \times \frac{d \hat{v}}{d t}\right)=\frac{d \vec{a}}{d t} \times \frac{d \vec{v}}{d t}+\vec{a} \times \frac{d^{2} \vec{v}}{d t^{2}}=\vec{a} \times \frac{d^{2} \vec{v}}{d t^{2}} \quad \therefore \frac{d \vec{a}}{d t}=0 \\
& d\left(\vec{a} \times \frac{d \vec{v}}{d t}\right)=\left(\vec{a} \times \frac{d^{2} \vec{v}}{d t^{2}}\right) d t
\end{aligned}
$$

On Integrating both side

$$
\int d\left(\vec{a} \times \frac{d \vec{v}}{d t}\right)=\int\left(\vec{a} \times \frac{d^{2} \vec{v}}{d t^{2}}\right) d t
$$

$$
\vec{a} \times \frac{d \vec{v}}{d t}=\int \vec{b} d t
$$

$$
\therefore \operatorname{From}_{(i)}
$$

$$
\vec{a} \times \frac{d \vec{v}}{d t}=\vec{b} t+\vec{c}
$$

$$
\frac{d}{d t}(\vec{a} \times \vec{v})=\frac{d \vec{a}}{d t} \times \frac{d \vec{v}}{d t}+\vec{a} \times \frac{d \vec{v}}{d t}=\vec{a} \times \frac{d \vec{v}}{d t} \quad \therefore \frac{d \vec{a}}{d t}=0
$$

$$
d(\vec{a} \times \vec{v})=\left(\vec{a} \times \frac{d \vec{v}}{d t}\right) d t
$$

On Integrating both sides

$$
\begin{aligned}
& \int \mathrm{d}(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{v}})=\int\left(\overrightarrow{\mathrm{a}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{v}}}{\mathrm{dt}}\right) \mathrm{dt} \\
& \quad \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{v}}=\int(\overrightarrow{\mathrm{b}} \mathrm{t}+\overrightarrow{\mathrm{c}}) \mathrm{dt} \\
& \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{b}} \frac{\mathrm{t}^{2}}{2}+\overrightarrow{\mathrm{c}} \mathrm{t}+\overrightarrow{\mathrm{d}} \quad \text { \{Where } \vec{c} \& \vec{d} \text { are constant of integration\} }
\end{aligned}
$$

Example\#03:Find the value of $\overrightarrow{\mathrm{r}}$ satisfying the equation $\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}=\overrightarrow{\mathrm{a}}$. Where \vec{a} is a constant of vector, also it is given that when $t=0, \vec{r}=0$ and $\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=\overrightarrow{\mathrm{u}}$.

Solution: Given equation $\quad \frac{\mathrm{d}^{2} \vec{r}}{\mathrm{dt}^{2}}=\vec{a}$
On integrating both sides

$$
\begin{equation*}
\frac{\mathrm{dr}}{\mathrm{dt}}=\overrightarrow{\mathrm{a}} \int 1 \mathrm{dt}=\overrightarrow{\mathrm{a}} \mathrm{t}+\mathrm{A} . \tag{i}
\end{equation*}
$$

When $t=0$ \& $\frac{d \vec{r}}{d t}=\overrightarrow{\mathrm{u}} \quad$ then $\quad \overrightarrow{\mathrm{u}}=\overrightarrow{\mathrm{a}}(0)+\mathrm{A} \quad \Rightarrow \quad A=\overrightarrow{\mathrm{u}}$
Using in equation (i)

$$
\frac{\mathrm{d} \vec{r}}{\mathrm{dt}}=\vec{a} \mathrm{t}+\overrightarrow{\mathrm{u}}
$$

On integrating both sides

$$
\overrightarrow{\mathrm{r}}=\int(\overrightarrow{\mathrm{a}} \mathrm{t}+\overrightarrow{\mathrm{u}}) \mathrm{dt}=\overrightarrow{\mathrm{a}} \frac{\mathrm{t}^{2}}{2}+\overrightarrow{\mathrm{u}} \mathrm{t}+\mathrm{B}-(\mathrm{ai})
$$

When $t=0$ \& $\overrightarrow{\mathrm{r}}=0 \quad$ then

Using in equation (ii)

$$
0=\overrightarrow{\mathrm{a}} \frac{(0)^{2}}{2}+\overrightarrow{\mathrm{u}}(0)+\mathrm{B} \Rightarrow \quad \boldsymbol{B}=0
$$

$$
\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}} \frac{\mathrm{t}^{2}}{2}+\overrightarrow{\mathrm{u}} \mathrm{t}
$$

Exercise \# 3.3

Q\#01: Integrate the following w. r.t t.
(i) $\left(\mathrm{t}^{2}+1\right) \hat{\imath}+\left(\mathrm{t}^{3}+\mathrm{t}^{2}+3\right) \hat{\jmath}+(2-\mathrm{t}) \hat{\mathrm{k}}$ (ii) $\cos \mathrm{t} \hat{\imath}+\left(\mathrm{tsec}^{2} \mathrm{t}+\tan \mathrm{t}\right) \hat{\jmath}+\sin \mathrm{t} \hat{\mathrm{k}}$

Solution: (i) Let $\quad \overrightarrow{\mathrm{f}}(\mathrm{t})=\left(\mathrm{t}^{2}+1\right) \hat{\imath}+\left(\mathrm{t}^{3}+\mathrm{t}^{2}+3\right) \hat{\jmath}+(2-\mathrm{t}) \hat{\mathrm{k}}$
On integrating both sides

$$
\begin{aligned}
\int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt} & =\int\left[\left(\mathrm{t}^{2}+1\right) \hat{\imath}+\left(\mathrm{t}^{3}+\mathrm{t}^{2}+3\right) \hat{\jmath}+(2-\mathrm{t}) \hat{\mathrm{k}}\right] \mathrm{dt} \\
& =\hat{\imath}\left[\int\left(\mathrm{t}^{2}+1\right) \mathrm{dt}\right]+\hat{\jmath}\left[\int\left(\mathrm{t}^{3}+\mathrm{t}^{2}+3\right) \mathrm{dt}\right]+\hat{\mathrm{k}}\left[\int(2-\mathrm{t}) \mathrm{dt}\right] \\
\int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt} & =\hat{\mathrm{r}}\left[\frac{\mathrm{t}^{3}}{3}+\mathrm{t}\right]+\hat{\jmath}\left[\frac{\mathrm{t}^{4}}{4}+\frac{\mathrm{t}^{3}}{3}+3 \mathrm{t}\right]+\hat{\mathrm{k}}\left[2 \mathrm{t}-\frac{\mathrm{t}^{2}}{2}\right]
\end{aligned}
$$

(ii) Let $\overrightarrow{\mathrm{f}}(\mathrm{t})=\cos \mathrm{t} \hat{\mathrm{\imath}}+\left(\operatorname{tsec}^{2} \mathrm{t}+\tan \mathrm{t}\right) \hat{\jmath}+\sin \mathrm{t} \hat{\mathrm{k}}$

On integrating both sides

$$
\begin{aligned}
\int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt} & =\int\left[\cos \mathrm{t} \hat{\imath}+\left(\operatorname{tsec}^{2} \mathrm{t}+\tan \mathrm{t}\right) \hat{\jmath}+\sin \mathrm{t} \hat{\mathrm{k}}\right] \mathrm{dt} \\
& =\hat{\imath}\left[\int \cos \mathrm{tdt}\right]+\hat{\jmath}\left[\int\left(\operatorname{tsec}^{2} \mathrm{t}+\tan \mathrm{t}\right) \mathrm{dt}\right]+\hat{\mathrm{k}}\left[\int \sin \mathrm{tdt}\right] \\
& =\hat{\mathrm{\imath}}[\sin \mathrm{t}]+\hat{\jmath}\left[\mathrm{t} \operatorname{tant}-\int \operatorname{tantdt}+\int \operatorname{tantdt}\right]+\hat{\mathrm{k}}[-\cos \mathrm{t}]
\end{aligned}
$$

$$
\int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}=\sin \mathrm{t} \hat{\mathrm{r}}+\mathrm{t} \tan \mathrm{t} \hat{\jmath}-\cos \mathrm{t} \hat{\mathrm{k}}
$$

Q\#O2: If $\overrightarrow{\mathrm{r}}=5 \mathrm{t}^{2} \hat{\imath}+\mathrm{t} \hat{\jmath}-\mathrm{t}^{3} \hat{\mathrm{k}}$. Prove that $\int_{1}^{3}\left(\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d}^{2} \hat{\mathrm{r}}}{\mathrm{dt}^{2}}\right) \mathrm{dt}=-52 \hat{\mathrm{\imath}}+400 \hat{\jmath}-40 \hat{\mathrm{k}}$
Solution: Given vector $\overrightarrow{\mathrm{r}}=5 \mathrm{t}^{2} \hat{\imath}+\mathrm{t} \hat{\jmath}-\mathrm{t}^{3} \hat{k} \quad$ Then $\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=10 \mathrm{t} \hat{\imath}+1 \hat{\jmath}-3 \mathrm{t}^{2} \hat{\mathrm{k}} \& \quad \frac{\mathrm{~d}^{2} \overrightarrow{\mathrm{r}}}{d t^{2}}=10 \hat{\imath}+0 \hat{\jmath}-6 \mathrm{t} \hat{\mathrm{k}}$

$$
\text { Now } \begin{aligned}
\vec{r} \times \frac{d^{2} \vec{r}}{d t^{2}} & =\left|\begin{array}{ccc}
\hat{1} & \hat{\jmath} & \hat{k} \\
5 t^{2} & t & -t^{3} \\
10 & 0 & -6 t
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
t & -t^{3} \\
0 & -6 t
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
5 t^{2} & -t^{3} \\
10 & -6 t
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
5 t^{2} & t \\
10 & 0
\end{array}\right| \\
& =\left[-6 t^{2}-0\right] \hat{\imath}-\left[-30 t^{3}+10 t^{3}\right] \hat{\jmath}+[0-10 t] \hat{k}=-6 t^{2} \hat{\imath}-\left[-20 t^{3}\right] \hat{\jmath}+[-10 t] \hat{k} \\
\vec{r} \times \frac{d^{2} \vec{r}}{d t^{2}} & =-6 t^{2} \hat{\imath}+20 t^{3} \hat{\jmath}-10 t \hat{k}
\end{aligned}
$$

On Integrating.

$$
\begin{aligned}
& \int\left(\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}\right) \mathrm{dt}=\int\left[-6 \mathrm{t}^{2} \hat{\imath}+20 \mathrm{t}^{3} \hat{\jmath}-10 \mathrm{t} \hat{\mathrm{k}}\right] \mathrm{dt}=\hat{\mathrm{r}}\left[-6 \int \mathrm{t}^{2} \mathrm{dt}\right]+\hat{\jmath}\left[20 \int \mathrm{t}^{3} \mathrm{dt}\right]+\hat{\mathrm{k}}\left[-10 \int \mathrm{tdt}\right] \\
& \int\left(\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} \boldsymbol{2}\right) \mathrm{dt}=\hat{\imath}\left[-6\left(\frac{\mathrm{t}^{3}}{3}\right)\right]+\hat{\jmath}\left[20\left(\frac{t^{4}}{4}\right)\right]+\hat{\mathrm{k}}\left[-10\left(\frac{\mathrm{t}^{2}}{2}\right)\right]=\hat{\imath}\left[-2 \mathrm{t}^{3}\right]+\hat{\jmath}\left[5 \mathrm{t}^{4}\right]+\hat{\mathrm{k}}\left[-5 \mathrm{t}^{2}\right]
\end{aligned}
$$

Now applying limits

$$
\begin{aligned}
\int_{1}^{3}\left(\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}\right) \mathrm{dt} & =-2 \hat{\mathrm{r}}\left[\mathrm{t}^{3}\right]_{1}^{3}+5 \hat{\jmath}\left[\mathrm{t}^{4}\right]_{1}^{3}-5 \hat{\mathrm{k}}\left[\mathrm{t}^{2}\right]_{1}^{3}=-2 \hat{\mathrm{r}}\left[3^{3}-1^{3}\right]+5 \hat{\jmath}\left[3^{4}-1^{4}\right]-5 \hat{\mathrm{k}}\left[3^{2}-1^{2}\right] \\
& =-2 \hat{\imath}[27-1]+5 \hat{\jmath}[81-1]-5 \hat{\mathrm{k}}[9-1]=-2 \hat{\mathrm{r}}[26]+5 \hat{\mathrm{j}}[80]-5 \hat{\mathrm{k}}[8]
\end{aligned}
$$

$$
\int_{1}^{3}\left(\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}\right) \mathrm{dt}=-52 \hat{\mathrm{\imath}}+400 \hat{\jmath}-40 \hat{\mathrm{k}} \quad \text { Hence proved. }
$$

Q\#03:Determine a vector function which has $2 \cos 2 \mathrm{t} \hat{\imath}+2 \sin 2 \mathrm{t} \hat{\jmath}+4 \hat{\mathrm{k}}$ as its derivative
and $\hat{\mathrm{\imath}}+\hat{\mathrm{\jmath}}+\hat{\mathrm{k}}$ as its value at $\mathrm{t}=0$.
Solution: Let $\overrightarrow{\mathrm{f}}(\mathrm{t})$ be a required vector which has derivative

$$
\vec{f}^{\prime}(\mathrm{t})=2 \cos 2 \mathrm{t} \hat{\imath}+2 \sin 2 \mathrm{t} \hat{\jmath}+4 \hat{k}
$$

On integrating both sides

$$
\begin{aligned}
\overrightarrow{\mathrm{f}}(\mathrm{t}) & =\int[2 \cos 2 \mathrm{t} \hat{\imath}+2 \sin 2 \mathrm{t} \hat{\jmath}+4 \hat{\mathrm{k}}] \mathrm{dt}=\hat{\imath}\left[2 \int \cos 2 \mathrm{tdt}\right]+\hat{\jmath}\left[2 \int \sin 2 \mathrm{t} \mathrm{dt}\right]+\hat{\mathrm{k}}\left[\int 4 \mathrm{dt}\right] \\
& =\hat{\imath}\left[2\left(\frac{\sin 2 \mathrm{t}}{2}\right)\right]+\hat{\jmath}\left[2\left(\frac{-\cos 2 \mathrm{t}}{2}\right)\right]+\hat{\mathrm{k}}[4 \mathrm{t}] \\
\overrightarrow{\mathrm{f}}(\mathrm{t}) & =\sin 2 \mathrm{t} \hat{\imath}-\cos 2 \mathrm{t} \hat{\jmath}+4 \mathrm{t} \hat{\mathrm{k}}+\overrightarrow{\mathrm{A}}-------(i)
\end{aligned}
$$

Given initial values $t=0 \quad \& \quad \vec{f}(\mathrm{t})=\hat{\imath}+\hat{\jmath}+\hat{\mathrm{k}}$

$$
\begin{aligned}
& \hat{\imath}+\hat{\jmath}+\hat{k}=\sin 2(0) \hat{\imath}-\cos 2(0) \hat{\jmath}+4(0) \hat{k}+\vec{A} \\
& \hat{\imath}+\hat{\jmath}+\hat{k}=0 \hat{\imath}-1 \hat{\jmath}+0 \hat{k}+\vec{A} \quad \Rightarrow \quad \vec{A}=\hat{\imath}+2 \hat{\jmath}+\hat{k}
\end{aligned}
$$

Using in equation (i)

$$
\begin{aligned}
& \overrightarrow{\mathrm{f}}(\mathrm{t})=\sin 2 \mathrm{t} \hat{\mathrm{\imath}}-\cos 2 \mathrm{t} \hat{\jmath}+4 \mathrm{t} \hat{\mathrm{k}}+\hat{\imath}+2 \hat{\jmath}+\hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{f}}(\mathrm{t})=(1+\sin 2 \mathrm{t}) \hat{\imath}+(2-\cos 2 \mathrm{t}) \hat{\jmath}+(4 \mathrm{t}+1) \hat{\mathrm{k}}
\end{aligned}
$$

Q\#04: Solve $\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}=\overrightarrow{\mathrm{a}}$ where \vec{a} is a constant of vector, given that $\overrightarrow{\mathrm{r}}=0$ and $\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=0$ at $t=0$.
Solution: Given equation

$$
\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt} \mathrm{t}^{2}}=\overrightarrow{\mathrm{a}}
$$

On integrating both sides

$$
\begin{equation*}
\frac{\mathrm{d} \vec{r}}{\mathrm{dt}}=\overrightarrow{\mathrm{a}} \int 1 \mathrm{dt}=\overrightarrow{\mathrm{a}} \mathrm{t}+\mathrm{A} . \tag{i}
\end{equation*}
$$

When $t=0 \quad \& \frac{\mathrm{dr}}{\mathrm{dt}}=0 \quad$ then $\quad 0=\overrightarrow{\mathrm{a}}(0)+\mathrm{A} \quad \Rightarrow \quad A=0$
Using in equation (i)

$$
\frac{\mathrm{d} \vec{r}}{\mathrm{dt}}=\overrightarrow{\mathrm{a}} \mathrm{t}
$$

On integrating both sides

$$
\begin{equation*}
\overrightarrow{\mathrm{r}}=\int(\overrightarrow{\mathrm{a}} \mathrm{t}) \mathrm{dt}=\overrightarrow{\mathrm{a}} \frac{\mathrm{t}^{2}}{2}+\mathrm{B}- \tag{ii}
\end{equation*}
$$

When $t=0 \& \vec{r}=0$
then

$$
\boldsymbol{0}=\overrightarrow{\mathrm{a}} \frac{(0)^{2}}{2}+\mathrm{B} \quad \Rightarrow \boldsymbol{B}=\boldsymbol{0}
$$

Using in equation (ii)

$$
\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}} \frac{\mathrm{t}^{2}}{2}
$$

Q\#05: If $\overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t})=4 \hat{\imath}$ and $\overrightarrow{\mathrm{f}}(\mathrm{t})=0$ when $\mathrm{t}=0$ and $\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=4 \hat{\jmath}$ when $t=0$ show that the tip of position vector
$\overrightarrow{\mathrm{f}}(\mathrm{t})$ describes a parabola.
Solution: Given

$$
\overrightarrow{\mathrm{f}}^{\prime \prime}(\mathrm{t})=4 \hat{\imath}
$$

On integrating both sides

$$
\begin{equation*}
\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=\hat{\mathrm{\imath}} \int 4 \mathrm{dt} \Rightarrow \quad \overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=4 \mathrm{t} \hat{\mathrm{\imath}}+\overrightarrow{\mathrm{A}} . \tag{i}
\end{equation*}
$$

Given initial values at $\boldsymbol{t}=\mathbf{0} \quad \& \quad \overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=4 \hat{\jmath} \Rightarrow 4 \hat{\jmath}=4(0) \hat{\imath}+\overrightarrow{\mathrm{A}} \quad \Rightarrow \quad \overrightarrow{\mathrm{A}}=4 \hat{\jmath}$
Using $\overrightarrow{\mathrm{A}}=4 \hat{\jmath}$ in Equation (i)
On integrating both sides

$$
\begin{align*}
& \overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=4 \mathrm{t} \hat{\imath}+4 \hat{\jmath} \\
& \overrightarrow{\mathrm{f}}(\mathrm{t})=\int[4 \mathrm{t} \hat{\imath}+4 \hat{\jmath}] \mathrm{dt}=\hat{\imath}\left[4 \int \mathrm{tdt}\right]+\hat{\jmath} \int 4 \mathrm{dt}=\hat{\imath}\left[4\left(\frac{\mathrm{t}^{2}}{2}\right)\right]+\hat{\jmath}[4 \mathrm{t}]+\overrightarrow{\mathrm{B}} \\
& \overrightarrow{\mathrm{f}}(\mathrm{t})=2 \mathrm{t}^{2} \hat{\imath}+4 \mathrm{t} \hat{\jmath}+\overrightarrow{\mathrm{B}}------(i i)
\end{align*}
$$

Given initial values at $t=0 \quad$ \& $\quad \overrightarrow{\mathrm{f}}(\mathrm{t})=0 \Rightarrow 0=2(0)^{2} \hat{\imath}+4(0) \hat{\jmath}+\overrightarrow{\mathrm{B}}$
$\Rightarrow \vec{B}=0$
Using $\vec{B}=0$ in Equation (ii)

$$
\overrightarrow{\mathrm{f}}(\mathrm{t})=2 \mathrm{t}^{2} \hat{\mathrm{\imath}}+4 \mathrm{t} \hat{\mathrm{j}}-
$$

$$
\begin{gathered}
\overrightarrow{\mathrm{f}}(\mathrm{t})=x \hat{\imath}+\mathrm{y} \hat{\jmath} \\
\& \quad \mathrm{y}=4 \mathrm{t} \Rightarrow \mathrm{t}=\frac{\mathrm{y}}{4}
\end{gathered}
$$

Comparing equation (iii) with

Using $t=\frac{\mathrm{y}}{4}$ in equation (a)

$$
x=2\left(\frac{y}{4}\right)^{2} \quad \Rightarrow \quad x=2 \cdot \frac{y^{2}}{16} \quad \Rightarrow \quad x=\frac{y^{2}}{8}
$$

$$
\Rightarrow y^{2}=8 x
$$

This is an equation of parabola. Hence proved that the tip of position vector $\overrightarrow{\mathrm{f}}(\mathrm{t})$ describes a parabola.

Q\#06: Solve the equation $\frac{\mathrm{d}^{2} \vec{v}}{\mathrm{dt}^{2}}+2 \frac{\mathrm{~d} \overrightarrow{\mathrm{v}}}{\mathrm{dt}}+4 \overrightarrow{\mathrm{v}}=0$. Where $\overrightarrow{\mathrm{v}}$ is a vector function of t .
Solution: Given equation $\quad \frac{d^{2} \vec{v}}{d t^{2}}+2 \frac{d \vec{v}}{d t}+4 \vec{v}=0$
This is higher order differential equation we can solve it by the following method.
Put $\quad \frac{d^{2} \vec{v}}{d t^{2}}=D^{2} \vec{v} \quad \& \quad \frac{d \vec{v}}{d t}=D \vec{v} \quad$ in given equation

$$
D^{2} \vec{v}+2 D \vec{v}+4 \vec{v}=0 \quad \Rightarrow \quad\left[D^{2}+2 D+4\right] \vec{v}=0
$$

Characteristic equation:

$$
D^{2}+2 D+4=0 \quad \text { \{This is a quadratic equation in } D \text { \} }
$$

By using quadratic formula $D=\frac{-2 \pm \sqrt{2^{2}-4(1)(4)}}{2(1)}=\frac{-2 \pm \sqrt{4-16}}{2}=\frac{-2 \pm \sqrt{-12}}{2}=\frac{-2 \pm 2 \sqrt{3} \mathrm{i}}{2}=-1 \pm \sqrt{3} \mathrm{i}$

Characteristic Solution:

$$
\left.\overrightarrow{\mathrm{v}}(\mathrm{t})=\mathrm{e}^{-\mathrm{t}} / \overrightarrow{\mathrm{a}} \cos \sqrt{3} \mathrm{t}+\overrightarrow{\mathrm{b}} \sin \sqrt{3} \mathrm{t}\right\}
$$

Q\#07 : Solve the equation $\frac{d^{2} \vec{v}}{\mathrm{dt}^{2}}= \pm \omega^{2} \vec{v} \quad$ Where \vec{v} is a vector function of $\mathrm{t} \& \omega$ is a constant .
Solution: Given equation $\quad \frac{d^{2} \vec{v}}{d t^{2}}= \pm \omega^{2} \vec{v} \quad \Rightarrow \quad \frac{\mathrm{~d}^{2} \vec{v}}{\mathrm{dt}^{2}} \mp \omega^{2} \vec{v}=0$
This is Higher order differential equation we can solve it by the following method.
Put $\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{v}}}{\mathrm{dt}^{2}}=\mathrm{D}^{2} \overrightarrow{\mathrm{v}}$

$$
D^{2} \vec{v} \mp \omega^{2} \vec{v}=0 \Leftrightarrow\left[D^{2} \mp \omega^{2}\right] \vec{v}=0
$$

Characteristic equation :

$$
\begin{aligned}
\mathrm{D}^{2} \mp \omega^{2} & =0 \\
D^{2} & = \pm \omega^{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{D}^{2}=\omega^{2} & \& \\
\boldsymbol{D}= \pm \omega & \&
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{D}^{2} & =-\omega^{2} \\
D & = \pm \mathrm{i} \omega \quad \therefore \text { Taking square-root }
\end{aligned}
$$

Characteristic Solution:

$$
\vec{v}(t)=\vec{a} e^{\omega t}+\vec{b} e^{-\omega t}
$$

$$
\& \quad \vec{v}(t)=\vec{c} \cos \omega t+\vec{d} \sin \omega t
$$

Q\#08:If $\vec{v}(t)$ is a vector function, Solve the equation $\quad \frac{d^{2} \vec{v}}{d t^{2}}=\vec{a} t+\vec{b} \quad$ where \vec{a} and \vec{b} are constants and both $\overrightarrow{\mathrm{v}}(\mathrm{t})$ \& $\overrightarrow{\mathrm{v}}^{\prime}(\mathrm{t})$ both vanishes at $\boldsymbol{t}=\mathbf{0}$.

Solution: Given Equation is $\quad \frac{\mathrm{d}^{2} \vec{v}}{\mathrm{dt}^{2}}=\overrightarrow{\mathrm{a}} \mathrm{t}+\overrightarrow{\mathrm{b}} \quad$ Or $\quad \overrightarrow{\mathrm{v}}^{\prime \prime}(\mathrm{t})=\overrightarrow{\mathrm{a}} \mathrm{t}+\overrightarrow{\mathrm{b}}$
On integrating both sides

$$
\begin{align*}
& \vec{v}^{\prime}(\mathrm{t})=\int(\overrightarrow{\mathrm{a}} \mathrm{t}+\overrightarrow{\mathrm{b}}) \mathrm{dt} \\
& \overrightarrow{\mathrm{v}}^{\prime}(\mathrm{t})=\overrightarrow{\mathrm{a}} \frac{\mathrm{t}^{2}}{2}+\overrightarrow{\mathrm{b}} \mathrm{t}+\overrightarrow{\mathrm{A}}--- \tag{i}
\end{align*}
$$

Given initial values at $t=0 \quad \& \quad \vec{v}^{\prime}(\mathrm{t})=0 \quad \Rightarrow \quad 0=\overrightarrow{\mathrm{a}} \frac{(0)^{2}}{2}+\overrightarrow{\mathrm{b}}(0)+\overrightarrow{\mathrm{A}} \quad \Rightarrow \quad \overrightarrow{\mathrm{A}}=0$
Using in Equation (i)

$$
\overrightarrow{\mathrm{v}}^{\prime}(\mathrm{t})=\overrightarrow{\mathrm{a}} \frac{\mathrm{t}^{2}}{2}+\overrightarrow{\mathrm{b}} \mathrm{t}
$$

On integrating both sides

$$
\begin{align*}
& \overrightarrow{\mathrm{v}}(\mathrm{t})=\int\left[\overrightarrow{\mathrm{a}} \frac{\mathrm{t}^{2}}{2}+\overrightarrow{\mathrm{b}} \mathrm{t}\right] \mathrm{dt}=\hat{\mathrm{i}}\left[4 \int \mathrm{tdt}\right]+\hat{\mathrm{j}} \int 4 \mathrm{dt}=\overrightarrow{\mathrm{a}} \frac{\mathrm{t}^{3}}{2.3}+\overrightarrow{\mathrm{b}} \frac{\mathrm{t}^{2}}{2}+\overrightarrow{\mathrm{B}} \\
& \overrightarrow{\mathrm{v}}(\mathrm{t})=\overrightarrow{\mathrm{a}} \frac{\mathrm{t}^{3}}{6}+\overrightarrow{\mathrm{b}} \frac{\mathrm{t}^{2}}{2}+\overrightarrow{\mathrm{B}} \quad----(i i) \tag{ii}
\end{align*}
$$

Given initial values at $t=0 \quad \& \quad \vec{v}(t)=0 \Rightarrow 0=\vec{a} \frac{(0)^{3}}{6}+\vec{b} \frac{(0)^{2}}{2}+\vec{B} \Rightarrow \vec{B}=0$

$$
\vec{v}(\mathrm{t})=\overrightarrow{\mathrm{a}} \frac{\mathrm{t}^{3}}{6}+\overrightarrow{\mathrm{b}} \frac{\mathrm{t}^{2}}{2}
$$

Q\#09: Solve the equation $\frac{\mathrm{d}^{2} \vec{v}}{\mathrm{dt}^{2}}-\frac{\mathrm{d}^{2} \vec{v}}{\mathrm{dt}^{2}}-2 \frac{\mathrm{~d} \overrightarrow{\mathrm{v}}}{\mathrm{dt}}=0$. Where $\overrightarrow{\mathrm{v}}$ is a vector function of t . Such that

$$
\vec{v}=0 ; \frac{d \vec{v}}{d t}=0 \quad \& \frac{d^{2} \vec{v}}{d t^{2}}=0 \text { at } t=0
$$

Solution: Given equation

$$
\frac{\mathrm{d}^{2} \vec{v}}{\mathrm{dt}^{2}}-\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{v}}}{\mathrm{dt}^{2}}-2 \frac{\mathrm{~d} \overrightarrow{\mathrm{v}}}{\mathrm{dt}}=0
$$

This is higher order differential equation we can solve it by using the following method.

Put

$$
\begin{array}{r}
\frac{\mathrm{d}^{3} \vec{v}}{\mathrm{dt}^{3}}=D^{3} \vec{v} ; \quad \frac{\mathrm{d}^{2} \vec{v}}{\mathrm{dt}^{2}}=\mathrm{D}^{2} \overrightarrow{\mathrm{v}} \\
\mathrm{D}^{3} \vec{v}-\mathrm{D}^{2} \vec{v}-2 \mathrm{D} \overrightarrow{\mathrm{v}}=0 \\
\\
{\left[\mathrm{D}^{3}-D^{2}-2 \mathrm{D}\right] \overrightarrow{\mathrm{v}}=0}
\end{array}
$$

$$
\& \quad \frac{d \vec{v}}{d t}=D \vec{v} \quad \text { in given equation }
$$

Characteristic equation:

$$
\begin{gathered}
\mathrm{D}^{3}-\mathrm{D}^{2}-2 \mathrm{D}=0 \\
\mathrm{D}\left[\mathrm{D}^{2}-\mathrm{D}-2\right]=0
\end{gathered}
$$

Either $D=0$ or $\quad D^{2}-D-2=0 \quad$ \{This is a quadratic equation in D \}

By using quadratic formula

$$
\boldsymbol{D}=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-2)}}{2(1)}=\frac{1 \pm \sqrt{1+8}}{2}=\frac{1 \pm \sqrt{9}}{2}=\frac{1 \pm 3}{2}
$$

$$
D=\frac{1+3}{2}=\frac{4}{2}=2 \text { or } D=\frac{1-3}{2}=\frac{-2}{2}=-1 \quad \text { Hence } D=-1,0,2
$$

Characteristic Solution :

$$
\begin{align*}
& \vec{v}(t)=c_{1} e^{-t}+c_{2} e^{0 t}+c_{3} e^{2 t} \\
& \vec{v}(t)=c_{1} e^{-t}+c_{2}+c_{3} e^{2 t} \tag{A}
\end{align*}
$$

At $\boldsymbol{t}=\mathbf{0} \quad \& \overrightarrow{\mathrm{v}}(\mathrm{t})=\hat{\imath} \quad \Rightarrow \mathrm{c}_{1} \mathrm{e}^{-(0)}+\mathrm{c}_{2}+\mathrm{c}_{3} \mathrm{e}^{2(0)}=\hat{\imath} \quad \Rightarrow \quad \mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{c}_{3}=\hat{\imath}$

$$
\vec{v}^{\prime}(\mathrm{t})=-\mathrm{c}_{1} \mathrm{e}^{-\mathrm{t}}+0+2 \mathrm{c}_{3} \mathrm{e}^{2 \mathrm{t}}
$$

At $t=0 \quad \& \quad \overrightarrow{\mathrm{v}}^{\prime}(\mathrm{t})=\hat{\jmath} \quad \Rightarrow-\mathrm{c}_{1} \mathrm{e}^{-(0)}+2 \mathrm{c}_{3} \mathrm{e}^{2(0)}=\hat{\jmath}$

$$
\begin{equation*}
\Rightarrow-c_{1}+2 c_{3}=\hat{y}-\cdots \tag{ii}
\end{equation*}
$$

$$
\vec{v}^{\prime \prime}(\mathrm{t})=\mathrm{c}_{1} \mathrm{e}^{-\mathrm{t}}+4 \mathrm{c}_{3} \mathrm{e}^{2 \mathrm{t}}
$$

At $\boldsymbol{t}=\mathbf{0} \quad \boldsymbol{\&} \overrightarrow{\mathrm{v}}^{\prime \prime}(\mathrm{t})=\hat{\mathrm{k}} \quad \Rightarrow \quad \mathrm{c}_{1} \mathrm{e}^{-(0)}+4 \mathrm{c}_{3} \mathrm{e}^{2(0)}=\hat{\mathrm{k}}$

$$
\begin{equation*}
\Rightarrow \quad c_{1}+4 c_{3}=\hat{k} \tag{iii}
\end{equation*}
$$

\qquad
Adding (ii) \& (iii)

$$
6 c_{3}=\hat{\jmath}+\hat{k} \Rightarrow c_{3}=\frac{1}{6}[\hat{\jmath}+\hat{k}]
$$

Using c_{3} in equation (iii)

$$
c_{1}+4\left(\frac{1}{6}[\hat{\jmath}+\hat{k}]\right)=\hat{\mathrm{k}} \quad \Rightarrow \quad c_{1}+\frac{2}{3}[\hat{\jmath}+\hat{k}]=\hat{k}
$$

$$
\Rightarrow \quad c_{1}=\hat{\mathrm{k}}-\frac{2}{3}[\hat{\mathrm{\jmath}}+\hat{\mathrm{k}}]=\hat{\mathrm{k}}-\frac{2}{3} \hat{\mathrm{\jmath}}-\frac{2}{3} \hat{\mathrm{k}}
$$

$$
\Rightarrow \quad c_{1}=-\frac{2}{3} \hat{\jmath}+\frac{1}{3} \hat{k}
$$

Using values of $c_{1} \& c_{3}$ in equation (i) $\quad-\frac{2}{3} \hat{\jmath}+\frac{1}{3} \hat{k}+c_{2}+\frac{1}{6}[\hat{\jmath}+\hat{k}]=\hat{\imath}$

$$
\begin{aligned}
& \Rightarrow \quad c_{2}=\hat{\imath}-\frac{2}{3} \hat{\jmath}+\frac{1}{3} \hat{k}+c_{2}+\frac{1}{6} \hat{\jmath}+\frac{1}{6} \hat{\mathrm{k}}=\hat{\imath}+\left(\frac{-4+1}{6}\right) \hat{\jmath}+\left(\frac{2+1}{6}\right) \hat{\mathrm{k}}=\hat{\imath}+\left(\frac{-3}{6}\right) \hat{\jmath}+\left(\frac{3}{6}\right) \hat{\mathrm{k}} \\
& \Rightarrow \quad \mathrm{c}_{2}=\hat{\imath}-\frac{1}{2} \hat{\jmath}+\frac{1}{2} \hat{\mathrm{k}}
\end{aligned}
$$

Using values of $\mathrm{c}_{1}, \mathrm{c}_{2}$ \& c_{3} in equation (i)

$$
\begin{aligned}
& \vec{v}(t)=\left(-\frac{2}{3} \hat{\jmath}+\frac{1}{3} \hat{k}\right) e^{-t}+\left(\hat{\imath}-\frac{1}{2} \hat{\jmath}+\frac{1}{2} \hat{k}\right)+\left(\frac{1}{6} \hat{\jmath}+\frac{1}{6} \hat{k}\right) e^{2 t} \\
& \vec{v}(t)=\hat{\imath}+\left(-\frac{2}{3} e^{-t}-\frac{1}{2}+\frac{1}{6} e^{2 t}\right) \hat{\jmath}+\left(\frac{1}{3} e^{-t}+\frac{1}{2}+\frac{1}{6} e^{2 t}\right)
\end{aligned}
$$

Q\#10: Prove that
(i) $\int \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}=\overrightarrow{\mathrm{a}} \cdot \int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}$
(ii) $\int \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}=\overrightarrow{\mathrm{a}} \times \int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}$
(i) $\int \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{f}}(\mathbf{t}) \mathbf{d t}=\overrightarrow{\mathbf{a}} \cdot \int \overrightarrow{\mathbf{f}}(\mathbf{t}) \mathbf{d t}$

Proof: Let

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{dt}}\left[\overrightarrow{\mathrm{a}} \cdot \int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}\right] & =\frac{\mathrm{d} \overrightarrow{\mathrm{a}}}{\mathrm{dt}} \cdot \int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}+\overrightarrow{\mathrm{a}} \cdot \frac{\mathrm{~d}}{\mathrm{dt}}\left[\int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}\right] \\
& =(0) \cdot \int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}+\overrightarrow{\mathrm{a}} \cdot \frac{\mathrm{~d}}{\mathrm{dt}}\left[\int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}\right] \\
\frac{\mathrm{d}}{\mathrm{dt}}\left[\overrightarrow{\mathrm{a}} \cdot \int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}\right] & =\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{f}}(\mathrm{t}) \\
\mathrm{d}\left(\overrightarrow{\mathrm{a}} \cdot \int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}\right) & =\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}
\end{aligned}
$$

On integrating both sides

$$
\begin{aligned}
\int \mathrm{d}\left(\overrightarrow{\mathrm{a}} \cdot \int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}\right) & =\int \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt} \\
\overrightarrow{\mathrm{a}} \cdot \int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt} & =\int \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}
\end{aligned}
$$

Hence proved that

$$
\int \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}=\overrightarrow{\mathrm{a}} \cdot \int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}
$$

(ii) $\int \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{f}}(\mathbf{t}) \mathbf{d t}=\overrightarrow{\mathbf{a}} \times \int \overrightarrow{\mathbf{f}}(\mathbf{t}) \mathbf{d t}$

Proof: Let

$$
\begin{aligned}
\frac{d}{d t}\left[\vec{a} \times \int \vec{f}(t) d t\right] & =\frac{d \vec{a}}{d t} \times \int \vec{f}(t) d t+\vec{a} \times \frac{d}{d t}\left[\int \vec{f}(t) d t\right] \\
& =(0) \times \int \vec{f}(t) d t+\vec{a} \times \frac{d}{d t}\left[\int \vec{f}(t) d t\right] \quad \therefore \frac{d \vec{a}}{d t}=0 \\
\frac{d}{d t}\left[\vec{a} \times \int \vec{f}(t) d t\right] & =\vec{a} \times \vec{f}(t) \\
d\left(\vec{a} \times \int \vec{f}(t) d t\right) & =\vec{a} \times \vec{f}(t) d t
\end{aligned}
$$

On integrating both sides ${ }^{\circ}$

$$
\begin{aligned}
\int \mathrm{d}(\overrightarrow{\mathrm{a}} & \left.\times \int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}\right)=\int \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt} \\
\overrightarrow{\mathrm{a}} \times \int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt} & =\int \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}
\end{aligned}
$$

Hence proved that

$$
\int \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}=\overrightarrow{\mathrm{a}} \times \int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}
$$

Q\#11: Evaluate $\int_{2}^{3} \overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} \mathrm{dt}$ if $\overrightarrow{\mathrm{r}}(2)=2 \hat{\imath}-\hat{\jmath}+2 \hat{\mathrm{k}} \boldsymbol{\&} \overrightarrow{\mathrm{r}}(3)=4 \hat{\imath}-2 \hat{\jmath}+3 \hat{\mathrm{k}}$.
Solution: We know that $\overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{dr}}{\mathrm{dt}}=\mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}} \quad$ Then
Let $\quad I=\int_{2}^{3} \overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{dr}}{\mathrm{dt}} \mathrm{dt}=\int_{2}^{3} \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}} \mathrm{dt}=\int_{2}^{3} \mathrm{rdr}=\left|\frac{\mathrm{r}^{2}}{2}\right|_{2}^{3}=\frac{1}{2}\left[\mathrm{r}^{2}\right]_{2}^{3}=\frac{1}{2}\left[\mathrm{r}^{2}(3)-\mathrm{r}^{2}(2)\right]$
$\Rightarrow I=\frac{1}{2}\left[|\vec{r}(3)|^{2}-|\vec{r}(2)|^{2}\right]$

Given that

$$
\vec{r}(2)=2 \hat{\imath}-\hat{\jmath}+2 \hat{k} \quad \& \quad \vec{r}(3)=4 \hat{\imath}-2 \hat{\jmath}+3 \hat{k} .
$$

Then

$$
\begin{aligned}
|\vec{r}(2)|^{2} & =(2)^{2}+(-1)^{2}+(2)^{2} \\
& =4+1+4
\end{aligned}
$$

$$
|\overrightarrow{\mathrm{r}}(2)|^{2}=9
$$

$$
\& \quad|\vec{r}(3)|^{2}=29
$$

Using values in equation (i)

$$
I=\frac{1}{2}\left[|\overrightarrow{\mathrm{r}}(3)|^{2}-|\overrightarrow{\mathrm{r}}(2)|^{2}\right]=\frac{1}{2}[29-9]=\frac{1}{2}[20]=10
$$

Hence

$$
\int_{2}^{3} \overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{dr}}{\mathrm{dt}} \mathrm{dt}=10
$$

Q\#12: Find $\overrightarrow{\mathrm{f}}(\mathrm{t})$ when $\quad \overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=\mathrm{e}^{\mathrm{t}} \hat{\imath}+2 \mathrm{t} \hat{\jmath}-\sin \mathrm{t} \hat{\mathrm{k}} \quad$ and $\overrightarrow{\mathrm{f}}(0)=2 \hat{\imath}+3 \hat{\jmath}+4 \hat{\mathrm{k}}$.
Solution: Given

$$
\overrightarrow{\mathrm{f}}^{\prime}(\mathrm{t})=\mathrm{e}^{\mathrm{t}} \hat{\imath}+2 \mathrm{t} \hat{\jmath}-\sin \mathrm{t} \hat{\mathrm{k}}
$$

On integrating both sides

$$
\begin{aligned}
\overrightarrow{\mathrm{f}}(\mathrm{t}) & =\int\left[\mathrm{e}^{\mathrm{t}} \hat{\imath}+2 \mathrm{t} \hat{\jmath}-\sin t \hat{\mathrm{k}}\right] \mathrm{dt}=\hat{\imath}\left[\int \mathrm{e}^{\mathrm{t}} \mathrm{dt}\right]+\hat{\jmath}\left[2 \int \mathrm{tdt}\right]+\hat{\mathrm{k}}\left[-\int \sin \mathrm{t} \mathrm{dt}\right] \\
& =\hat{\imath}\left[\mathrm{e}^{\mathrm{t}}\right]+\hat{\jmath}\left[2\left(\frac{\mathrm{t}^{2}}{2}\right)\right]+\hat{\mathrm{k}}[-(-\cos \mathrm{t})] \\
\overrightarrow{\mathrm{f}}(\mathrm{t}) & =\mathrm{e}^{\mathrm{t}} \hat{\imath}+\mathrm{t}^{2} \hat{\jmath}+\cos \mathrm{t} \hat{\mathrm{k}}+\overrightarrow{\mathrm{A}}----------(i)
\end{aligned}
$$

Given that $\overrightarrow{\mathrm{f}}(0)=2 \hat{\imath}+3 \hat{\jmath}+4 \hat{\mathrm{k}}$

$$
\begin{aligned}
& 2 \hat{\imath}+3 \hat{\jmath}+4 \hat{k}=\mathrm{e}^{0} \hat{\imath}+(0)^{2} \hat{\jmath}+\cos (0) \hat{\mathrm{k}}+\overrightarrow{\mathrm{A}} \\
& 2 \hat{\imath}+3 \hat{\jmath}+4 \hat{\mathrm{k}}=1 \hat{\imath}+0 \hat{\jmath}+1 \hat{\mathrm{k}}+\overrightarrow{\mathrm{A}} \Rightarrow \overrightarrow{\mathrm{~A}}=2 \hat{\imath}+3 \hat{\jmath}+4 \hat{\mathrm{k}}-\hat{\imath}-\hat{k} \Rightarrow \overrightarrow{\mathrm{~A}}=\hat{\imath}+3 \hat{\jmath}+3 \hat{k}
\end{aligned}
$$

Using in equation (i)

$$
\begin{aligned}
& \overrightarrow{\mathrm{f}}(\mathrm{t})=\mathrm{e}^{\mathrm{t}} \hat{\imath}+\mathrm{t}^{2} \hat{\jmath}+\cos \mathrm{t} \hat{\mathrm{k}}+\hat{\imath}+3 \hat{\jmath}+3 \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{f}}(\mathrm{t})=\left(1+\mathrm{e}^{\mathrm{t}}\right) \hat{\imath}+\left(3+\mathrm{t}^{2}\right) \hat{\jmath}+(3+\cos \mathrm{t}) \hat{\mathrm{k}}
\end{aligned}
$$

Q\#13: (a) If $\overrightarrow{\mathrm{f}}(\mathrm{t})=\left(3 \mathrm{t}^{2}-\mathrm{t}\right) \hat{\mathrm{\imath}}+(2-6 \mathrm{t}) \hat{\jmath}-4 \mathrm{t} \hat{\mathrm{k}}$. Find $($ i $) \int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}(\mathrm{ii}) \int_{2}^{4} \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}$
(b) $\int_{0}^{\pi / 2}[3 \sin t \hat{\imath}+2 \cos t \hat{\jmath}] d t$
(a) If $\overrightarrow{\mathbf{f}}(\mathbf{t})=\left(3 \mathbf{t}^{2}-\mathbf{t}\right) \hat{\mathbf{i}}+(2-6 \mathbf{t}) \hat{\mathbf{j}}-\mathbf{4 t} \hat{\mathbf{k}}$. Find (i) $\int \overrightarrow{\mathbf{f}}(\mathrm{t}) \mathrm{dt}(\mathrm{ii}) \int_{2}^{4} \overrightarrow{\mathbf{f}}(\mathrm{t}) \mathrm{dt}$

Solution: Given $\overrightarrow{\mathrm{f}}(\mathrm{t})=\left(3 \mathrm{t}^{2}-\mathrm{t}\right) \hat{\imath}+(2-6 \mathrm{t}) \hat{\jmath}-4 \mathrm{t} \hat{\mathrm{k}}$
(i) $\int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}=\int\left[\left(3 \mathrm{t}^{2}-\mathrm{t}\right) \hat{\mathrm{\imath}}+(2-6 \mathrm{t}) \hat{\mathrm{\jmath}}-4 \mathrm{t} \hat{\mathrm{k}}\right] \mathrm{dt}$

$$
\begin{aligned}
& =\hat{\imath}\left[\int\left(3 \mathrm{t}^{2}-\mathrm{t}\right) \mathrm{dt}\right]+\hat{\jmath}\left[\int(2-6 \mathrm{t}) \mathrm{dt}\right]+\hat{\mathrm{k}}\left[-4 \int \mathrm{t} \mathrm{dt}\right] \\
& =\hat{\mathrm{r}}\left[\frac{3 \mathrm{t}^{3}}{3}-\frac{\mathrm{t}^{2}}{2}\right]+\hat{\jmath}\left[2 \mathrm{t}-\frac{6 \mathrm{t}^{2}}{2}\right]+\hat{\mathrm{k}}\left[\frac{-4 \mathrm{t}^{2}}{2}\right]
\end{aligned}
$$

$\int \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}=\hat{\mathrm{r}}\left[\mathrm{t}^{3}-\frac{\mathrm{t}^{2}}{2}\right]+\hat{\mathrm{j}}\left[2 \mathrm{t}-3 \mathrm{t}^{2}\right]-2 \hat{\mathrm{k}}\left[\mathrm{t}^{2}\right]+\boldsymbol{c}\{$ c is constant of integration $\}$
(ii) $\int_{2}^{4} \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt} \quad=\hat{\mathrm{r}}\left[\mathrm{t}^{3}-\frac{\mathrm{t}^{2}}{2}\right]_{2}^{4}+\hat{\mathrm{\jmath}}\left[2 \mathrm{t}-3 \mathrm{t}^{2}\right]_{2}^{4}-2 \hat{\mathrm{k}}\left[\mathrm{t}^{2}\right]_{2}^{4}$

$$
\begin{aligned}
& =\hat{\imath}\left[\left(4^{3}-\frac{4^{2}}{2}\right)-\left(2^{2}-\frac{2^{2}}{2}\right)\right]+\hat{\jmath}\left[\left(2\{4\}-\frac{6(4)^{2}}{2}\right)-\left(2\{2\}-\frac{6(2)^{2}}{2}\right)\right]-2 \hat{\mathrm{k}}\left[4^{2}-2^{2}\right] \\
& =\hat{\imath}[64-8-4+2]+\hat{\jmath}[8-48-4+12]-2 \hat{k}[16-4]
\end{aligned}
$$

$$
\int_{2}^{4} \overrightarrow{\mathrm{f}}(\mathrm{t}) \mathrm{dt}=54 \hat{\imath}-32 \hat{\jmath}-24 \hat{\mathrm{k}}
$$

(b) $\int_{0}^{\frac{\pi}{2}}[3 \sin t \hat{i}+2 \cos t \hat{j}] d t$

Solution: Let $\quad I=\int_{0}^{\frac{\pi}{2}}[3 \sin t \hat{\imath}+2 \cos t \hat{\jmath}] d t$

$$
\begin{aligned}
& \boldsymbol{I}=\hat{\imath}\left[3 \int_{0}^{\frac{\pi}{2}} \sin t \mathrm{~d} t\right]+\hat{\jmath}\left[2 \int_{0}^{\frac{\pi}{2}} \cos t d t\right] \\
& \boldsymbol{I}=\hat{\imath}\left[3\left(\frac{-\cos t}{2}\right)\right]_{0}^{\frac{\pi}{2}}+\hat{\jmath}\left[2\left(\frac{\sin t}{2}\right)\right]_{0}^{\frac{\pi}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{I}=\frac{-3}{2} \hat{\imath}[\cos t]_{0}^{\frac{\pi}{2}}+\hat{\jmath}[\sin t]_{0}^{\frac{\pi}{2}} \\
& \boldsymbol{I}=\frac{-3}{2} \hat{\imath}\left[\cos \frac{\pi}{2}-\cos 0\right]+\hat{\jmath}\left[\sin \frac{\pi}{2}-\sin 0\right] \\
& \boldsymbol{I}=\frac{-3}{2} \hat{\imath}[0-1]+\hat{\jmath}[1-0] \\
& \boldsymbol{I}=\frac{3}{2} \hat{\imath}+\hat{\jmath}
\end{aligned}
$$

Q\#15: Evaluate $\int_{0}^{7} \overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} \mathrm{dt}$ if $\overrightarrow{\mathrm{r}}(0)=5 \hat{\imath}-3 \hat{\jmath}+2 \hat{\mathrm{k}} \& \overrightarrow{\mathrm{r}}(7)=\hat{\imath}+8 \hat{\jmath}+9 \hat{\mathrm{k}}$.
Solution: We know that $\quad \overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{dr}}{\mathrm{dt}}=\mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}}$ Then

$$
\begin{align*}
& I=\int_{0}^{7} \overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} \mathrm{dt}=\int_{0}^{7} \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}} \quad \mathrm{dt}=\int_{0}^{7} \mathrm{r} \quad \mathrm{dr}=\left|\frac{\mathrm{r}^{2}}{2}\right|_{0}^{7}=\frac{1}{2}\left[\mathrm{r}^{2}\right]_{0}^{7}=\frac{1}{2}\left[\mathrm{r}^{2}(7)-\mathrm{r}^{2}(0)\right] \\
& \boldsymbol{I}=\frac{1}{2}\left[|\overrightarrow{\mathrm{r}}(7)|^{2}-|\overrightarrow{\mathrm{r}}(0)|^{2}\right]-------(i) \tag{i}
\end{align*}
$$

Given that

$$
\overrightarrow{\mathrm{r}}(0)=5 \hat{\imath}-3 \hat{\jmath}+2 \hat{\mathrm{k}}
$$

$$
\& \quad \overrightarrow{\mathrm{r}}(7)=\hat{\imath}+8 \hat{\jmath}+9 \hat{\mathrm{k}} .
$$

Then

$$
\begin{array}{lll}
|\vec{r}(0)|^{2}=(5)^{2}+(-3)^{2}+(2)^{2} & \& & |\vec{r}(7)|^{2}=(1)^{2}+(8)^{2}+(9)^{2} \\
|\vec{r}(0)|^{2}=25+9+4 & \& & |\vec{r}(7)|^{2}=1+64+81 \\
|\vec{r}(0)|^{2}=38 & \& & |\vec{r}(7)|^{2}=146
\end{array}
$$

Using values in equation (i)

$$
I=\frac{1}{2}\left[|\vec{r}(3)|^{2}-|\vec{r}(2)|^{2}\right]=\frac{1}{2}[146-38]=\frac{1}{2}[108]=54
$$

Hence

$$
\int_{2}^{3} \overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{dr}}{\mathrm{dt}} \mathrm{dt}=54
$$

Q\#16: Example\#05:If $\overrightarrow{\mathrm{r}}=5 \mathrm{t}^{2} \hat{\imath}+\mathrm{t} \hat{\jmath}-\mathrm{t}^{3} \hat{\mathrm{k}}$. Prove that $\int_{1}^{2}\left(\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}\right) \mathrm{dt}=-14 \hat{\imath}+75 \hat{\jmath}-15 \hat{\mathrm{k}}$
Solution: Given vector $\quad \vec{r}=5 t^{2} \hat{\imath}+t \hat{\jmath}-t^{3} \hat{k}$ Then $\frac{d \vec{r}}{d t}=10 t \hat{\imath}+1 \hat{\jmath}-3 t^{2} \hat{k} \& \frac{d^{2} \vec{r}}{d t^{2}}=10 \hat{\imath}+0 \hat{\jmath}-6 t \hat{k}$
Now $\quad \vec{r} \times \frac{d^{2} \vec{r}}{d t^{2}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 5 t^{2} & t & -t^{3} \\ 10 & 0 & -6 t\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}t^{t} & -t^{3} \\ 0 & -6 t\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}5 t^{2} & -t^{3} \\ 10 & -6 t\end{array}\right|+\hat{k}\left|\begin{array}{cc}5 t^{2} & t \\ 10 & 0\end{array}\right|$

$$
=\left[-6 t^{2} \rightarrow 0\right] \hat{\imath}-\left[-30 t^{3}+10 t^{3}\right] \hat{\jmath}+[0-10 t] \hat{k}=-6 t^{2} \hat{\imath}-\left[-20 t^{3}\right] \hat{\jmath}+[-10 t] \hat{k}
$$

$$
\vec{r} \times \frac{d^{2} \vec{r}}{{d t^{2}}^{2}}=-6 t^{2} \hat{\imath}+20 t^{3} \hat{\jmath}-10 t \hat{k}
$$

On Integrating $\int\left(\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}\right) \mathrm{dt}=\int\left[-6 \mathrm{t}^{2} \hat{\mathrm{\imath}}+20 \mathrm{t}^{3} \hat{\jmath}-10 \mathrm{t} \hat{\mathrm{k}}\right] \mathrm{dt}=\hat{\mathrm{c}}\left[-6 \int \mathrm{t}^{2} \mathrm{dt}\right]+\hat{\jmath}\left[20 \int \mathrm{t}^{3} \mathrm{dt}\right]+\hat{\mathrm{k}}\left[-10 \int \mathrm{t} \mathrm{dt}\right]$

$$
\int\left(\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}\right) \mathrm{dt}=\hat{\mathrm{\imath}}\left[-6\left(\frac{\mathrm{t}^{3}}{3}\right)\right]+\hat{\jmath}\left[20\left(\frac{\mathrm{t}^{4}}{4}\right)\right]+\hat{\mathrm{k}}\left[-10\left(\frac{\mathrm{t}^{2}}{2}\right)\right]=\hat{\mathrm{r}}\left[-2 \mathrm{t}^{3}\right]+\hat{\mathrm{\jmath}}\left[5 \mathrm{t}^{4}\right]+\hat{\mathrm{k}}\left[-5 \mathrm{t}^{2}\right]
$$

Now $\int_{1}^{2}\left(\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d}^{2} \vec{r}}{\mathrm{dt}^{2}}\right) \mathrm{dt}=-2 \hat{\mathrm{r}}\left[\mathrm{t}^{3}\right]_{1}^{2}+5 \hat{\jmath}\left[\mathrm{t}^{4}\right]_{1}^{2}-5 \hat{\mathrm{k}}\left[\mathrm{t}^{2}\right]_{1}^{2}=-2 \hat{\mathrm{r}}\left[2^{3}-1^{3}\right]+5 \hat{\jmath}\left[2^{4}-1^{4}\right]-5 \hat{\mathrm{k}}\left[2^{2}-1^{2}\right]$

$$
=-2 \hat{\imath}[8-1]+5 \hat{\jmath}[16-1]-5 \hat{k}[4-1]=-2 \hat{\imath}[7]+5 \hat{\jmath}[15]-5 \hat{k}[3]
$$

$$
\int_{1}^{2}\left(\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}\right) \mathrm{dt}=-14 \hat{\mathrm{l}}+75 \hat{\jmath}-15 \hat{\mathrm{k}} \quad \text { Hence proved. }
$$

Q\#17: If $\overrightarrow{\mathrm{f}}=\hat{\imath}-3 \hat{\jmath}+2 \mathrm{t} \hat{\mathrm{k}} ; \overrightarrow{\mathrm{g}}=\mathrm{t} \hat{\imath}-2 \hat{\jmath}+2 \hat{\mathrm{k}} \& \overrightarrow{\mathrm{~h}}=3 \hat{\imath}+\mathrm{t} \hat{\jmath}-\hat{\mathrm{k}}$. Prove that $\int_{1}^{2} \overrightarrow{\mathrm{f}} \cdot(\mathrm{g} \times \overrightarrow{\mathrm{h}}) \mathrm{dt}=1$
Solution: Given vectors $\overrightarrow{\mathrm{f}}=\hat{\imath}-3 \hat{\jmath}+2 \mathrm{t} \hat{\mathrm{k}} \quad: \overrightarrow{\mathrm{g}}=\mathrm{t} \hat{\imath}-2 \hat{\jmath}+2 \hat{\mathrm{k}} \quad \& \overrightarrow{\mathrm{~h}}=3 \hat{\imath}+\mathrm{t} \hat{\jmath}-\hat{\mathrm{k}}$
Then $\quad \overrightarrow{\mathrm{f}} .(\overrightarrow{\mathrm{g}} \times \overrightarrow{\mathrm{h}})=\left|\begin{array}{ccc}1 & -3 & 2 \mathrm{t} \\ \mathrm{t} & -2 & 2 \\ 3 & \mathrm{t} & -1\end{array}\right|=\mathrm{t}\left|\begin{array}{cc}-2 & 2 \\ \mathrm{t} & -1\end{array}\right|-(-3)\left|\begin{array}{cc}\mathrm{t} & 2 \\ 3 & -1\end{array}\right|+2 \mathrm{t}\left|\begin{array}{cc}\mathrm{t} & -2 \\ 3 & \mathrm{t}\end{array}\right|$

$$
\begin{aligned}
& =1[(-2)(-1)-(\mathrm{t})(2)]+3[(\mathrm{t})(-1)-(3)(2)]+2 \mathrm{t}[\mathrm{t})(\mathrm{t})-(3)(-2)] \\
& =1[2-2 \mathrm{t}]+3[-\mathrm{t}-6]+2 \mathrm{t}\left[\mathrm{t}^{2}+6\right]=2-2 \mathrm{t}-3 \mathrm{t}-18+2 \mathrm{t}^{3}+12 \mathrm{t}
\end{aligned}
$$

$$
\overrightarrow{\mathrm{f}} \cdot(\overrightarrow{\mathrm{~g}} \times \overrightarrow{\mathrm{h}})=2 \mathrm{t}^{3}+7 \mathrm{t}-17
$$

Now

$$
\begin{aligned}
& \left.\boldsymbol{I}=\int_{1}^{2} \overrightarrow{\mathrm{f}} \cdot(\overrightarrow{\mathrm{~g}} \times \overrightarrow{\mathrm{h}}) \mathrm{dt}=\int_{1}^{2}\left[2 \mathrm{t}^{3}+7 \mathrm{t}-17\right] \mathrm{dt}=\left[2\left(\frac{\mathrm{t}^{4}}{4}\right)+7\left(\frac{\mathrm{t}^{2}}{2}\right)-17 \mathrm{t}\right]_{1}^{2}=\int \frac{\mathrm{t}^{4}}{2}+\frac{7 \mathrm{t}^{2}}{2}-17 \mathrm{t}\right]_{1}^{2} \\
& \boldsymbol{I}=\left[\frac{\mathrm{t}^{4}+7 \mathrm{t}^{2}-34 \mathrm{t}}{2}\right]_{1}^{2}=\left[\frac{2^{4}+7(2)^{2}-34(2)}{2}-\frac{1^{4}+7(1)^{2}-34(1)}{2}\right]=\left[\frac{16+28-68}{2}-\frac{1+7-34}{2}\right] \\
& \boldsymbol{I}=\left[\frac{-24}{2}-\frac{-26}{2}\right]=\left[\frac{-24}{2}+\frac{26}{2}\right]=\left[\frac{-24+26}{2}\right]=\frac{2}{2}=\boldsymbol{I}
\end{aligned}
$$

Hence proved that

$$
\int_{1}^{2} \overrightarrow{\mathrm{f}} \cdot(\overrightarrow{\mathrm{~g}} \times \overrightarrow{\mathrm{h}}) \mathrm{dt}=1
$$

Q\# 18: Evaluate $\int_{1}^{7} \overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} \mathrm{dt} \quad$ if $\overrightarrow{\mathrm{r}}(1)=5 \hat{\imath}-3 \hat{\jmath}+2 \hat{\mathrm{k}} \quad$ \& $\quad \overrightarrow{\mathrm{r}}(7)=\hat{\imath}+8 \hat{\jmath}+9 \hat{\mathrm{k}}$.
Solution: We know that $\overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=\mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}} \quad$ Then

$$
\begin{align*}
& \boldsymbol{I}=\int_{1}^{7} \overrightarrow{\mathrm{r}} \cdot \frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} \mathrm{dt}=\int_{1}^{7} \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}} \mathrm{dt}=\int_{1}^{7} \mathrm{r} d \mathrm{dr}=\left|\frac{\mathrm{r}^{2}}{2}\right|_{1}^{7}=\frac{1}{2}\left[\mathrm{r}^{2}\right]_{1}^{7}=\frac{1}{2}\left[\mathrm{r}^{2}(7)-\mathrm{r}^{2}(1)\right] \\
& \boldsymbol{I}=\frac{1}{2}\left[|\overrightarrow{\mathrm{r}}(7)|^{2}-|\overrightarrow{\mathrm{r}}(0)|^{2}\right]--(i) \tag{i}
\end{align*}
$$

Given that

$$
\vec{r}(1)=5 \hat{\imath}-3 \hat{\jmath}+2 \hat{k}
$$

$$
\boldsymbol{\&} \quad \overrightarrow{\mathrm{r}}(7)=\hat{\imath}+8 \hat{\jmath}+9 \hat{\mathrm{k}} .
$$

$$
\begin{aligned}
& |\overrightarrow{\mathrm{r}}(1)|^{2}=(5)^{2}+(-3)^{2}+(2)^{2} \\
& |\overrightarrow{\mathrm{r}}(1)|^{2}=25+9+4 \\
& |\overrightarrow{\mathrm{r}}(1)|^{2}=38
\end{aligned}
$$

Then

$$
\& \quad|\vec{r}(7)|^{2}=1+64+81
$$

$$
\& \quad|\vec{r}(7)|^{2}=146
$$

Using values in equation (i)

$$
I=\frac{1}{2}\left[|\vec{r}(7)|^{2}-|\vec{r}(1)|^{2}\right]=\frac{1}{2}[146-38]=\frac{1}{2}[108]=54
$$

Hence $\quad \int_{2}^{3} \vec{r} \cdot \frac{\mathrm{~d} \vec{r}}{\mathrm{dt}} \mathrm{dt}=\mathbf{5 4}$

Q\# 19: (i) Example\#04: Integrate the equation $\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}=-\mathrm{n}^{2} \overrightarrow{\mathrm{r}}$.
Solution : Given equation is

$$
\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}=-\mathrm{n}^{2} \overrightarrow{\mathrm{r}}
$$

Multiplying both sides of equation by ($\left.\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}\right)$:

$$
\left(\frac{d \vec{r}}{d t}\right) \frac{d^{2} \vec{r}}{d t^{2}}=-n^{2} \vec{r}\left(\frac{d \vec{r}}{d t}\right)
$$

On integrating both sides

$$
\int\left(\frac{\mathrm{d} \vec{r}}{\mathrm{dt}}\right)^{1}\left(\frac{\mathrm{~d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}\right) \mathrm{dt}=-\mathrm{n}^{2} \int \overrightarrow{\mathrm{r}}\left(\frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}\right) \mathrm{dt}
$$

\{Power rule of integration\}

$$
\frac{\left(\frac{\mathrm{dr}}{\mathrm{dt}}\right)^{1+1}}{1+1}=-\mathrm{n}^{2} \frac{\overrightarrow{\mathrm{r}}^{1+1}}{1+1}+A
$$

$$
\left.\frac{\left(\frac{\mathrm{dr}}{} \mathrm{~d}^{2}\right.}{\mathrm{dt}}\right)^{2}=-\mathrm{n}^{2} \frac{\overrightarrow{\mathrm{r}}^{2}}{2}+A
$$

Multiplying both sides by 2

$$
\left(\frac{d \vec{r}}{d t}\right)^{2}=-n^{2} \vec{r}^{2}+2 A
$$

$$
\left(\frac{\mathrm{d} \vec{r}}{\mathrm{dt}}\right)^{2}=-\mathrm{n}^{2} \overrightarrow{\mathrm{r}}^{2}+\mathrm{c}
$$

$$
\therefore 2 \mathrm{~A}=\mathrm{c}
$$

Q\# 19: (ii)If $\quad \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}=-\mu \overrightarrow{\mathrm{r}}$. then show that $\quad\left(\frac{\mathrm{dr}}{\mathrm{dt}}\right)^{2}=-\mu \overrightarrow{\mathrm{r}}^{2}+\mathrm{c} \quad$ where c is constant.
Solution : Given equation is

$$
\frac{d \overrightarrow{d r}}{d r}=-\mu \vec{r}
$$

Multiplying both sides of equation by $\left(\frac{d \vec{r}}{d t}\right)$:

On integrating both sides
\{Power rule of integration\}

Multiplying both sides by 2

$$
\begin{array}{ll}
\left(\frac{d \vec{r}}{d t}\right)^{2}=-\mu \vec{r}^{2}+2 A & \\
\left(\frac{d \vec{r}}{d t}\right)^{2}=-\mu \vec{r}^{2}+c & \therefore 2 A=c
\end{array}
$$

$$
\begin{aligned}
& \left(\frac{d \vec{r}}{d t}\right) \frac{d^{2} \vec{r}}{d t^{2}}=-\mu \vec{r}\left(\frac{d \vec{r}}{d t}\right) \\
& \int\left(\frac{d \vec{r}}{d t}\right)^{1}\left(\frac{d^{2} \vec{r}}{d^{2}}\right) d t=-\mu \int \vec{r}\left(\frac{d \vec{r}}{d t}\right) d t \\
& \frac{\left(\frac{d \vec{r}}{d t}\right)^{1+1}}{1+1}=-\mu \frac{\overrightarrow{\mathrm{r}}^{1+1}}{1+1}+A \\
& \frac{\left(\frac{\mathrm{~d} \vec{r}}{\mathrm{dt}}\right)^{2}}{2}=-\mu \frac{\overrightarrow{\mathrm{r}}^{2}}{2}+\boldsymbol{A}
\end{aligned}
$$

Q\#20: If $\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=6 \mathrm{t} \hat{\imath}-24 \mathrm{t}^{2} \hat{\jmath}+4 \sin \mathrm{t} \hat{\mathrm{k}}$. Find $\overrightarrow{\mathrm{r}}(\mathrm{t})$, when $\boldsymbol{t}=\mathbf{0}, \overrightarrow{\mathrm{r}}=2 \hat{\imath}+\hat{\jmath}$ and $\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=-\hat{\imath}-3 \hat{\mathrm{k}}$
Solution: Given equation $\quad \frac{d^{2} \vec{r}}{d^{2}}=6 t \hat{\imath}-24 t^{2} \hat{\jmath}+4 \sin t \hat{k}$

On integrating both sides

$$
\begin{align*}
\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} & =\int\left[6 \mathrm{t} \hat{\imath}-24 \mathrm{t}^{2} \hat{\jmath}+4 \sin \mathrm{t} \hat{\mathrm{k}}\right] \mathrm{dt} \\
& =\hat{\imath}\left[6 \int \mathrm{tdt}\right]+\hat{\jmath}\left[-24 \int \mathrm{t}^{2} \mathrm{dt}\right]+\hat{k}\left[4 \int \sin \mathrm{t} \mathrm{dt}\right] \\
& =\hat{\imath}\left[6\left(\frac{\mathrm{t}^{2}}{2}\right)\right]+\hat{\jmath}\left[-24\left(\frac{t^{3}}{3}\right)\right]+\hat{k}[4(-\cos \mathrm{t})]+\overrightarrow{\mathrm{A}} \\
& =\hat{\imath}\left[3 \mathrm{t}^{2}\right]+\hat{\jmath}\left[-8 \mathrm{t}^{3}\right]+\hat{k}[-4 \cos \mathrm{t}]+\overrightarrow{\mathrm{A}} \\
\frac{\mathrm{dr}}{\mathrm{dt}} & =3 \mathrm{t}^{2} \hat{\imath}-8 \mathrm{t}^{3} \hat{\jmath}-4 \cos \mathrm{t} \hat{\mathrm{k}}+\overrightarrow{\mathrm{A}}---------(i) \tag{i}
\end{align*}
$$

When $\boldsymbol{t}=0$ \& $\frac{\mathrm{d} \vec{r}}{\mathrm{dt}}=-\hat{\imath}-3 \hat{\mathrm{k}}$ then $3(0)^{2} \hat{\imath}-8(0)^{3} \hat{\jmath}-4 \cos (0) \hat{\mathrm{k}}+\overrightarrow{\mathrm{A}}=-\hat{\imath}-3 \hat{\mathrm{k}}$

$$
0 \hat{\imath}+0 \hat{\jmath}-4 \hat{k}+\vec{A}=-\hat{\imath}-3 \hat{k} \quad \Rightarrow \quad \vec{A}=-\hat{\imath}-3 \hat{k}+-4 \hat{k} \quad \Rightarrow \quad \vec{A}=-\hat{\imath}+\hat{k}
$$

Using in equation (i)

$$
\begin{aligned}
& \frac{d \vec{r}}{d t}=3 t^{2} \hat{\imath}-8 t^{3} \hat{\jmath}-4 \cos t \hat{k}+-\hat{\imath}+\hat{k} \\
& \frac{d \vec{r}}{d t}=\left(3 t^{2}-1\right) \hat{\imath}-8 t^{3} \hat{\jmath}+(\hat{1}-4 \cos t) \hat{k}
\end{aligned}
$$

On integrating both sides

$$
\begin{align*}
\overrightarrow{\mathrm{r}} & =\int\left[\left(3 \mathrm{t}^{2}-1\right) \hat{\imath}-8 \mathrm{t}^{3} \hat{\jmath}+(1-4 \cos \mathrm{t}) \hat{\mathrm{k}}\right] \mathrm{dt} \\
& =\hat{\mathrm{r}}\left[\int\left(3 \mathrm{t}^{2}-1\right) \mathrm{dt}\right]+\hat{\jmath}\left[-8 \int \mathrm{t}^{3} \mathrm{dt}\right]+\hat{\mathrm{k}}\left[\int(1-4 \cos \mathrm{t}) \mathrm{dt}\right] \\
& =\hat{\imath}\left[3\left(\frac{t^{3}}{3}\right)-\mathrm{t}\right]+\hat{\jmath}\left[-8\left(\frac{\mathrm{t}^{4}}{4}\right)\right]+\hat{\mathrm{k}}[(\mathrm{t}-4 \sin \mathrm{t})]+\overrightarrow{\mathrm{B}} \\
\overrightarrow{\mathrm{r}} & =\hat{\mathrm{r}}\left[\mathrm{t}^{3}-\mathrm{t}\right]+\hat{\jmath}\left[-2 \mathrm{t}^{4}\right]+\hat{\mathrm{k}}[\mathrm{t}-4 \sin \mathrm{t}]+\overrightarrow{\mathrm{A}} \\
\overrightarrow{\mathrm{r}} & =\left[\mathrm{t}^{3}-\mathrm{t}\right] \hat{\imath}-2 \mathrm{t}^{4} \hat{\jmath}+[\mathrm{t}-4 \sin \mathrm{t}] \hat{\mathrm{k}}+\overrightarrow{\mathrm{B}}-\cdots-\cdots-\cdots---(i i) \tag{ii}
\end{align*}
$$

When $t=0 \quad \& \quad \vec{r}=2 \hat{\imath}+\hat{\jmath}$ then $\left[(0)^{3}-(0)\right] \hat{\imath}-2(0)^{4} \hat{\jmath}+[(0)-4 \sin (0)] \hat{k}+\vec{B}=2 \hat{\imath}+\hat{\jmath}$

$$
\Rightarrow 0 \hat{\imath}+0 \hat{\jmath}+0 \hat{\mathrm{k}}+\overrightarrow{\mathrm{B}}=2 \hat{\imath}+\hat{\jmath} \quad \Rightarrow \overrightarrow{\mathrm{B}}=2 \hat{\imath}+\hat{\jmath}
$$

Using in equation (ii)

$$
\begin{aligned}
& \vec{r}=\left[t^{3}-t\right] \hat{\imath}-2 t^{4} \hat{\jmath}+[t-4 \sin t] \hat{k}+2 \hat{\imath}+\hat{\jmath} \\
& \vec{r}=\left[t^{3}-t+2\right] \hat{\imath}\left(1-2 t^{4}\right) \hat{\jmath}+[t-4 \sin t]
\end{aligned}
$$

Q\#2I: If $\overrightarrow{\mathrm{a}}=\mathrm{t} \hat{\imath}-3 \hat{\jmath}+2 \mathrm{t} \hat{\mathrm{k}} \quad: \overrightarrow{\mathrm{b}}=\hat{\imath}-2 \hat{\jmath}+2 \hat{\mathrm{k}} \quad$ \& $\overrightarrow{\mathrm{c}}=3 \hat{\imath}+\mathrm{t} \hat{\jmath}-\hat{\mathrm{k}}$. Find $\int_{1}^{2} \overrightarrow{\mathrm{f}} \times(\overrightarrow{\mathrm{g}} \times \overrightarrow{\mathrm{h}}) \mathrm{dt}$

Solution: Given vectors

$$
\vec{a}=t \hat{\imath}-3 \hat{\jmath}+2 t \hat{k} \quad: \vec{b}=\hat{\imath}-2 \hat{\jmath}+2 \hat{k} \quad \& \quad \vec{c}=3 \hat{\imath}+t \hat{\jmath}-\hat{k}
$$

$$
\begin{aligned}
\vec{a} \times(\vec{b} \times \vec{c}) & =(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c} \\
& =[(t \hat{\imath}-3 \hat{\jmath}+2 t \hat{k}) \cdot(3 \hat{\imath}+t \hat{\jmath}-\hat{k})] \vec{b}-[(t \hat{\imath}-3 \hat{\jmath}+2 t \hat{k}) \cdot(\hat{\imath}-2 \hat{\jmath}+2 \hat{k})] \vec{c} \\
& =\{3 t-3 t-2 t\} \vec{b}-\{t+6+4 t\} \vec{c} \\
& =(-2 t)(\hat{\imath}-2 \hat{\jmath}+2 \hat{k})-(6+5 t)(3 \hat{\imath}+t \hat{\jmath}-\hat{k}) \\
& =(-2 t) \hat{\imath}+(4 t) \hat{\jmath}+(-4 t) \hat{k}-3(6+5 t) \hat{\imath}-t(6+5 t) \hat{\jmath}+(6+5 t) \hat{k} \\
& =(-2 t-18-15 t) \hat{\imath}+\left(4 t-6 t-5 t^{2}\right) \hat{\jmath}+(-4 t+6+5 t) \hat{k} \\
& =(-17 t-18) \hat{\imath}+\left(-5 t^{2}-2 t\right) \hat{\jmath}+(t+6) \hat{k}
\end{aligned}
$$

$\vec{a} \times(\vec{b} \times \vec{c})=-(17 t+18) \hat{\imath}-\left(5 t^{2}+2 t\right) \hat{\jmath}+(7 t+6) \hat{k}$
Now

$$
\begin{aligned}
I & =\int_{1}^{2} \overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}) \mathrm{dt}=\int_{1}^{2}\left[-(17 \mathrm{t}+18) \hat{\imath}-\left(5 \mathrm{t}^{2}+2 \mathrm{t}\right) \hat{\jmath}+(7 \mathrm{t}+6) \hat{\mathrm{k}}\right] \mathrm{dt} \\
& =\left[-\hat{\imath}\left[\int(17 \mathrm{t}+18) \mathrm{dt}\right]-\hat{\jmath}\left[\int\left(5 \mathrm{t}^{2}+2 \mathrm{t}\right) \mathrm{dt}\right]+\hat{\mathrm{k}}\left[\int(7 \mathrm{t}+6) \mathrm{dt}\right]\right] \\
& =-\hat{\imath}\left[17\left(\frac{\mathrm{t}^{2}}{2}\right)+18 \mathrm{t}\right]_{1}^{2}-\hat{\jmath}\left[5\left(\frac{\mathrm{t}^{3}}{3}\right)+2\left(\frac{\mathrm{t}^{2}}{2}\right)\right]_{1}^{2}+\hat{\mathrm{k}}\left[7\left(\frac{\mathrm{t}^{2}}{2}\right)+6 \mathrm{t}\right]{ }_{1}^{2} \\
& =-\hat{\mathrm{\imath}}\left[\left\{17\left(\frac{2^{2}}{2}\right)+18(2)\right\}-\left\{17\left(\frac{1^{2}}{2}\right)+18(1)\right\}\right]-\hat{\jmath}\left[\left\{5\left(\frac{2^{3}}{3}\right)+2\left(\frac{2^{2}}{2}\right)\right\}-\left\{5\left(\frac{1^{3}}{3}\right)+2\left(\frac{1^{2}}{2}\right)\right\}\right] \\
& -\hat{\mathrm{k}}\left[\left\{\left(\frac{2^{2}}{2}\right)+6(2)\right\}-\left\{\left(\frac{1^{2}}{2}\right)+6(1)\right\}\right] \\
& =-\hat{\imath}\left[34+36-\frac{17}{2}-18\right]-\hat{\jmath}\left[\frac{40}{3}+4-\frac{5}{3}-1\right]+\hat{\mathrm{k}}\left[2+12-\frac{7}{2}-6\right] \\
& =-\hat{\imath}\left[52-\frac{17}{2}\right]-\hat{\jmath}\left[\frac{40}{3}-\frac{5}{3}-3\right]+\left[8-\frac{1}{2}\right] \hat{\mathrm{k}} \\
& =-\hat{\mathrm{\imath}}\left[\frac{104-17}{2}\right]-\hat{\jmath}\left[\frac{40-5-9}{3}\right]+\left[\frac{16-1}{2}\right] \hat{\mathrm{k}} \\
& =-\hat{\imath}\left[\frac{87}{2}\right]-\hat{\jmath}\left[\frac{44}{3}\right]+\left[\frac{15}{2}\right] \hat{\mathrm{k}} \\
I & =-\frac{87}{2} \hat{\mathrm{\imath}}-\frac{44}{3} \hat{\jmath}+\frac{15}{2} \hat{\mathrm{k}}
\end{aligned}
$$

Q\#22: The acceleration of a particle at any time tis given by $\vec{a}=12 \cos 2 t \hat{\imath}-8 \sin 2 t \hat{\jmath}+6 t \hat{k}$. If velocity \vec{v}
\& Displacement \vec{r} are zero at $t=0$. then find \vec{v} \& \vec{r} at any time.
Solution: Given that $\quad \vec{a}=\frac{d \vec{v}}{d t}=12 \cos 2 t \hat{\imath}-8 \sin 2 t \hat{\jmath}+6 t \hat{k}$
On integrating both sides

$$
\begin{align*}
\overrightarrow{\mathrm{v}} & =\int[12 \cos 2 \mathrm{t} \hat{\imath}-8 \sin 2 \mathrm{t} \hat{\jmath}+6 \mathrm{t} \hat{\mathrm{k}}] \mathrm{dt} \\
& =\hat{\imath}\left[12 \int \cos 2 \mathrm{tdt}\right]+\hat{\jmath}\left[-8 \int \sin 2 \mathrm{tdt}\right]+\hat{\mathrm{k}}\left[6 \int \mathrm{t} \mathrm{dt}\right] \\
& =\hat{\imath}\left[12\left(\frac{\sin 2 \mathrm{t}}{2}\right)\right]+\hat{\jmath}\left[-8\left(\frac{-\cos 2 \mathrm{t}}{2}\right)\right]+\hat{\mathrm{k}}\left[6\left(\frac{\mathrm{t}^{2}}{2}\right)\right]+\overrightarrow{\mathrm{A}} \tag{i}
\end{align*}
$$

$\overrightarrow{\mathrm{v}}=\boldsymbol{\sigma} \sin 2 \mathrm{t} \hat{\imath}+4 \cos 2 \mathrm{t} \hat{\jmath}+3 \mathrm{t}^{2} \hat{\mathrm{k}}+\overrightarrow{\mathrm{A}}$
When $t=0$ \& $\vec{v}=0$ then

$$
\begin{aligned}
& 6 \sin 2(0) \hat{\imath}+4 \cos 2(0) \hat{\jmath}+3(0)^{2} \hat{k}+\vec{A}=0 \\
& 0 \hat{\imath}+4 \hat{\jmath}+0 \hat{k}+\vec{A}=0 \quad \Rightarrow \quad \vec{A}=-4 \hat{\jmath}
\end{aligned}
$$

Using in equation (i)

$$
\begin{aligned}
& \vec{v}=6 \sin 2 t \hat{\imath}+4 \cos 2 t \hat{\jmath}+3 t^{2} \hat{k}-4 \hat{\jmath} \\
& \vec{v}=\frac{d \vec{r}}{d t}=6 \sin 2 t \hat{\imath}+(4 \cos 2 t-4) \hat{\jmath}+3 t^{2} \hat{k}
\end{aligned}
$$

On integrating both sides

$$
\begin{aligned}
\overrightarrow{\mathrm{r}} & =\int\left[6 \sin 2 \mathrm{t} \hat{\imath}+(4 \cos 2 \mathrm{t}-4) \hat{\jmath}+3 \mathrm{t}^{2} \hat{\mathrm{k}}\right] \mathrm{dt} \\
& =\hat{\mathrm{r}}\left[6 \int \sin 2 \mathrm{t} \mathrm{dt}\right]+\hat{\jmath}\left[\int(4 \cos 2 \mathrm{t}-4) \mathrm{dt}\right]+\hat{\mathrm{k}}\left[3 \int \mathrm{t}^{2} \mathrm{dt}\right] \\
& =\hat{\imath}\left[6\left(\frac{-\cos 2 \mathrm{t}}{2}\right)\right]+\hat{\jmath}\left[4\left(\frac{\sin 2 \mathrm{t}}{2}\right)-4 \mathrm{t}\right]+3 \hat{k}\left[\frac{t^{3}}{3}\right]+\vec{B}
\end{aligned}
$$

$$
\begin{equation*}
\vec{r}=-3 \cos 2 t \hat{\imath}+[2 \sin 2 t-4 t] \hat{\jmath}+t^{3} \hat{k}+\vec{B}- \tag{ii}
\end{equation*}
$$

When $t=0 \& \vec{r}=0$ then $-3 \cos 2(0) \hat{\imath}+[2 \sin 2(0)-4(0)] \hat{\jmath}+(0)^{3} \hat{k}+\vec{B}=0$

$$
-3 \hat{\imath}+0 \hat{\jmath}+0 \hat{k}+\vec{B}=0 \Rightarrow \vec{B}=3 \hat{\imath}
$$

Using in equation (ii)

$$
\begin{aligned}
& \vec{r}=-3 \cos 2 t \hat{\imath}+[2 \sin 2 t-4 t] \hat{\jmath}+t^{3} \hat{k}+3 \hat{\imath} \\
& \vec{r}=3(1-\cos 2 t) \hat{\imath}+2(\sin 2 t-2 t) \hat{\jmath}+t^{3} \hat{k}
\end{aligned}
$$

The end of chapter \#3

