UNIT \# 02 SCALAR AND VECTOR PRODUCT

Scalar product or dot product:

If $\overrightarrow{\boldsymbol{a}}$ and $\overrightarrow{\boldsymbol{b}}$ be the two vectors. Then the scalar or dot product of two vector is define as

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta
$$

Where $\boldsymbol{\theta}$ is angle between $\overrightarrow{\boldsymbol{a}}$ and $\overrightarrow{\boldsymbol{b}}$.

Characteristics:

(i) If $\overrightarrow{\boldsymbol{a}}=\mathrm{a}_{1} \mathbf{i}+\mathrm{a}_{2} \mathbf{j}+\mathrm{a}_{3} \mathbf{k} \quad$ \& $\quad \overrightarrow{\boldsymbol{b}}=\mathrm{b}_{1} \mathbf{i}+\mathrm{b}_{2} \mathbf{j}+\mathrm{b}_{3} \mathbf{k}$

Then

$$
\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{b}}=\left(a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}\right) \cdot\left(b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}\right)=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

(ii) If $\overrightarrow{\boldsymbol{a}}$ and $\overrightarrow{\boldsymbol{b}}$ are perpendicular $\left(\boldsymbol{\theta}=\mathbf{9 0}^{\boldsymbol{0}}\right)$ vectors then

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=0 \\
& \vec{a} \cdot \vec{b}=\mathbf{a} \mathbf{b} \\
& \vec{a} \cdot \vec{b}=-\mathbf{a b}
\end{aligned}
$$

(iii) If $\overrightarrow{\boldsymbol{a}}$ and $\overrightarrow{\boldsymbol{b}}$ are parallel $\left(\boldsymbol{\theta}=\mathbf{0}^{\mathbf{0}}\right)$ vectors then
(iv) If $\overrightarrow{\boldsymbol{a}}$ and $\overrightarrow{\boldsymbol{b}}$ are anti parallel $\left(\boldsymbol{\theta}=\mathbf{1 8 0}^{\boldsymbol{0}}\right)$ vectors then
(v) Dot product is commutative

$$
\vec{a}, \vec{b}=\vec{b} \cdot \vec{a}
$$

(vi) Dot product of two same vector is

$$
\vec{a} \cdot \vec{a}=|\vec{a}|^{2}
$$

(vii) Distributive property of dot product over addition or subtraction.

$$
\begin{aligned}
& \vec{a} \cdot(\vec{b} \pm \vec{c})=\vec{a} \cdot \vec{b} \pm \vec{a} \cdot \vec{c} \\
& (\vec{a} \pm \vec{b}) \cdot \vec{c}=\vec{a} \cdot \vec{c} \pm \vec{b} \cdot \vec{c}
\end{aligned}
$$

Left distributive law
Right distributive law
(viii) Scalar multiplication in dot product:

$$
(\lambda \overrightarrow{\boldsymbol{a}}) \cdot \overrightarrow{\boldsymbol{b}}=\lambda(\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{b}}) \quad \text { or } \quad \overrightarrow{\boldsymbol{a}} \cdot(\lambda \overrightarrow{\boldsymbol{b}})=\lambda(\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{b}})
$$

(ix) Relation between $\hat{\boldsymbol{\imath}}, \hat{\jmath}, \widehat{\boldsymbol{k}}$ unit vectors in dot product

$\hat{\imath} . \hat{\imath}=1$	$:$	$\hat{\imath} . \hat{\jmath}=0$
$\hat{\jmath} \cdot \hat{\jmath}=1$	$:$	$\hat{\jmath} . \hat{k}=0$
$\hat{k} . \hat{k}=1$	$:$	$\hat{k} . \hat{\imath}=0$

(x) Work done by a force:

Let \vec{F} be a force, which applied on a particle and displaces it through a displacement \vec{r}. then work done is define as

$$
\mathrm{W}=\vec{F} \cdot \vec{r}
$$

(xi) Projection of one vector along another vector:

If $\overrightarrow{\boldsymbol{a}}$ and $\overrightarrow{\boldsymbol{b}}$ be the two vector. Then
Projection of $\overrightarrow{\boldsymbol{a}}$ along $\overrightarrow{\boldsymbol{b}}=\overrightarrow{\boldsymbol{a}} \cdot \widehat{\boldsymbol{b}}=\frac{\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{b}}}{|\overrightarrow{\boldsymbol{b}}|}$
Projection of $\overrightarrow{\boldsymbol{b}}$ along $\overrightarrow{\boldsymbol{a}}=\overrightarrow{\boldsymbol{b}} \cdot \widehat{\boldsymbol{a}}=\frac{\overrightarrow{\boldsymbol{b}} \cdot \overrightarrow{\boldsymbol{a}}}{|\overrightarrow{\boldsymbol{a}}|}$

Theorem:03:If \vec{a} and \vec{b} be the two non-zero vectors are perpendicular if and only if $\vec{a} \cdot \vec{b}=0$.

Proof: If \vec{a} and \vec{b} are perpendicular vectors. then we have to prove $\vec{a}, \vec{b}=0$
We know that

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=\mathrm{ab} \cos \theta \\
& \vec{a} \cdot \vec{b}=\mathrm{ab} \cos \left(90^{\circ}\right) \\
& \vec{a} \cdot \vec{b}=\mathrm{ab}(0) \\
& \vec{a} \cdot \vec{b}=0
\end{aligned}
$$

Conversely suppose that

$$
\vec{a} \cdot \vec{b}=0
$$

Then we have to prove \vec{a} and \vec{b} are perpendicular vectors. It means ($\theta=90^{\circ}$)
Now takes

$$
\stackrel{\rightharpoonup}{a} \cdot \vec{b}=0
$$

Here $\mathrm{ab} \neq 0$ then $\cos \theta=0$

$$
\begin{aligned}
\cos \theta & =0 \\
\theta & =\cos ^{-1}(0) \\
\theta & =90^{\circ}
\end{aligned}
$$

Hence proved.
Example \#01 :Determine the magnitude of the vector $\vec{a}=\mathbf{4 i}+\mathbf{3 j}+12 k$ and also find the a unit vector in the direction of $\overrightarrow{\boldsymbol{a}}$.

Solution: Given vector $\vec{a}=4 i+3 j+12 k$
Magnitude:

$$
|\vec{a}|=\sqrt{(4)^{2}+(3)^{2}+(12)^{2}}=\sqrt{16+9+144}=\sqrt{169}
$$

$$
\Rightarrow
$$

$$
|\vec{a}|=13
$$

Unit vector:

$$
\begin{aligned}
& \hat{a}=\frac{\vec{a}}{a} \\
& \hat{a}=\frac{4 i+3 j+12 k}{13} \quad \Rightarrow \quad \hat{a}=\frac{4}{13} i+\frac{3}{13} j+\frac{12}{13} k
\end{aligned}
$$

Example\#02: If the angle between two vectors whose magnitudes are 14 and 7 is 60^{0}. Find their scalar product.

Solution: Let $\overrightarrow{\boldsymbol{a}}$ and $\overrightarrow{\boldsymbol{b}}$ be the two vectors
Given $\quad|\vec{a}|=14 ; \quad|\vec{b}|=7 \quad$ and $\quad \theta=60^{\circ} \quad$ Scalar product $=$?
As $\quad \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta=14.7 \cos 60^{\circ}=98 \cdot \frac{1}{2} \quad \Rightarrow \quad \vec{a} \cdot \vec{b}=49$

Example\#03: Find a unit vector which makes an angle of 45^{0} with $\vec{a}[2,2,-1]$ and an angle of 60^{0} with $\vec{b}[0,1,-1]$.

Solution: Let \hat{u} be the required unit vector.

$$
\hat{u}=x i+y j+z k
$$

$$
|\hat{u}|^{2}=x^{2}+y^{2}+z^{2} \quad \Rightarrow \quad x^{2}+y^{2}+z^{2}=1
$$

$|\hat{u}|^{2}=1$
Given $\quad \vec{a}=[2,2,-1]=2 i+2 j-k \quad$ and $\quad \vec{b}=[0,1,-1]=0 i+j-k$
$\underline{\underline{1}}^{\text {st }}$ condition: The unit vector \hat{u} makes an angle 45° with \vec{a}.
Then

$$
\vec{a} \cdot \hat{u}=|\vec{a}||\hat{u}| \cos \theta\rangle>\quad \theta=45^{\circ}
$$

$$
(2 i+2 j-k) \cdot(x i+y j+z k)=\sqrt{(2)^{2}+(2)^{2}+(-1)^{2}} \cdot 1 \cdot \cos 45^{0}
$$

$|\hat{u}|=1$

Then

$$
\vec{b} \cdot \hat{u}=|\vec{b}||\hat{u}| \cos \theta \quad \theta=60^{\circ}
$$

$$
(0 i+j-k) \cdot(x i+y j+z k)=\sqrt{(0)^{2}+(1)^{2}+(-1)^{2}} \cdot 1 \cdot \cos 60^{\circ} \quad \therefore|\hat{u}|=1
$$

$$
\begin{equation*}
0 x+y-z=\sqrt{0+1+1} \cdot \frac{1}{2}=\sqrt{2} \cdot \frac{1}{2} \Rightarrow y-z=\frac{1}{\sqrt{2}} \tag{iii}
\end{equation*}
$$

Subtracting equation (i) and (ii): $\rightarrow \quad(2 x+2 y-z)-(y-z)=\frac{3}{\sqrt{2}}-\frac{1}{\sqrt{2}}$

$$
\begin{align*}
2 x+2 y-z-y+z & =\frac{3-1}{\sqrt{2}}=\frac{2}{\sqrt{2}} \\
2 x+y & =\sqrt{2} \Rightarrow y=\sqrt{2}-2 x- \tag{iv}
\end{align*}
$$

Using Equation (iv) in (ii) $\rightarrow \sqrt{2}-2 x-Z=\frac{1}{\sqrt{2}} \Rightarrow \sqrt{2}-2 x-\frac{1}{\sqrt{2}}=z$

$$
\begin{equation*}
\Rightarrow \sqrt{2}-\frac{1}{\sqrt{2}}-2 x=\mathrm{z} \Rightarrow \quad \frac{2-1}{\sqrt{2}}-2 x=z \quad \Rightarrow \quad z=\frac{1}{\sqrt{2}}-2 x- \tag{v}
\end{equation*}
$$

$$
\begin{align*}
& 2 x+2 y-z=\sqrt{4+4+1} \cdot \frac{1}{\sqrt{2}}=\sqrt{9} \cdot \frac{1}{\sqrt{2}} \\
& 2 x+2 y-z=\frac{3}{\sqrt{2}} \tag{ii}
\end{align*}
$$

Using equation (iv) and (v) in (i)

$$
\begin{aligned}
& x^{2}+[\sqrt{2}-2 x]^{2}+\left[\frac{1}{\sqrt{2}}-2 x\right]^{2}=1 \\
& x^{2}+(\sqrt{2})^{2}+(2 x)^{2}-2(\sqrt{2})(2 x)+\left(\frac{1}{\sqrt{2}}\right)^{2}+(2 x)^{2}-2\left(\frac{1}{\sqrt{2}}\right)(2 x)=1 \\
& x^{2}+2+4 x^{2}-4 \sqrt{2} x+\frac{1}{2}+4 x^{2}-2 \sqrt{2} x-1=0 \\
& 9 x^{2}-6 \sqrt{2} x+1+\frac{1}{2}=0 \\
& 9 x^{2}-6 \sqrt{2} x+\frac{3}{2}=0 \\
& 6 x^{2}-4 \sqrt{2} x+1=0 \quad \text { \{Multiplying equation by } \frac{2}{3} \text { \} }
\end{aligned}
$$

By using quadratic formula

$$
\begin{aligned}
& \qquad x=\frac{-(-4 \sqrt{2}) \pm \sqrt{(4 \sqrt{2})^{2}-4(6)(1)}}{2 \times 6}=\frac{4 \sqrt{2} \pm \sqrt{32-24}}{12}=\frac{4 \sqrt{2} \pm \sqrt{8}}{12} \Rightarrow x=\frac{4 \sqrt{2}-2 \sqrt{2}}{12}=\frac{2 \sqrt{2}}{12}=\frac{\sqrt{2}}{2 \times 3}=\frac{1}{3 \sqrt{2}} \\
& x=\frac{4 \sqrt{2}+2 \sqrt{2}}{12}=\frac{6 \sqrt{2}}{12}=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}} \\
& x=\frac{1}{\sqrt{2}} \\
& \text { Put in (iv) and (v) } \\
& \\
& y=\sqrt{2}-2\left(\frac{1}{\sqrt{2}}\right) \\
& y=\sqrt{2}-\sqrt{2}=0 \\
& y=0
\end{aligned}
$$

and

$$
\begin{aligned}
& Z=\frac{1}{\sqrt{2}}-2\left(\frac{1}{\sqrt{2}}\right) \\
& Z=\frac{1}{\sqrt{2}}-\frac{2}{\sqrt{2}} \\
& Z=\frac{1-2}{\sqrt{2}}=\frac{-1}{\sqrt{2}} \\
& Z=\frac{-1}{\sqrt{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{z}=\sqrt{2}-2\left(\frac{1}{3 \sqrt{2}}\right) \\
& \mathrm{z}=\frac{1}{\sqrt{2}}-\frac{2}{3 \sqrt{2}} \\
& \mathrm{z}=\frac{3-2}{3 \sqrt{2}}=\frac{1}{3 \sqrt{2}} \\
& \mathrm{z}=\frac{1}{3 \sqrt{2}}
\end{aligned}
$$

Using values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in required unit vector represented by equ.(A)

$$
\widehat{u}=\frac{1}{\sqrt{2}} i+0 j-\frac{1}{\sqrt{2}} k \quad \text { OR } \quad \hat{u}=\frac{1}{3 \sqrt{2}} i+\frac{2 \sqrt{2}}{3} j+\frac{1}{3 \sqrt{2}} k
$$

Example\#05:For what value of λ, the vector $2 i-j+2 k$ and $3 i+2 \lambda j$ are perpendicular?

Solution: Let

$$
\vec{a}=2 i-j+2 k \quad \text { and } \quad \vec{b}=3 i+2 \lambda j
$$

According to given condition $\overrightarrow{\boldsymbol{a}} \perp \overrightarrow{\boldsymbol{b}}$ then

$$
\begin{aligned}
\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{b}} & =\mathbf{0} \\
(2 i-j+2 k) \cdot(3 i+2 \lambda j+0 k) & =0 \\
(2)(3)+(-1)(2 \lambda)+(2)(0) & =0 \\
6-2 \lambda+0 & =0 \\
2 \lambda & =6 \\
\lambda & =6 / 2 \\
\lambda & =3
\end{aligned}
$$

Example\#06: Find the cosine of the angle between the vectors a and b where $\vec{a}=\boldsymbol{i}+\mathbf{2 j} \boldsymbol{j} \boldsymbol{k}$ and $\vec{b}=-i+j-2 k$.

Solution : Given

$$
\vec{a}=i+2 j-k \quad \text { and } \quad \vec{b}=-i+j-2 k .
$$

As

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta
$$

Therefore ,

$$
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$

$\cos \theta=\frac{(i+2 j-k) \cdot(-i+j-2 k)}{\left(\sqrt{(1)^{2}+(2)^{2}+(-1)^{2}}\right)\left(\sqrt{(1)^{2}+(1)^{2}+(-2)^{2}}\right)}$
$\cos \theta=\frac{(1)(-1)+(2)(1)+(-1)(-2)}{(\sqrt{1+4+1})(\sqrt{1+1+4})}$
$\cos \theta=\frac{-1+2+2}{(\sqrt{6})(\sqrt{6})}=\frac{3}{6}$
$\Rightarrow \cos \theta=\frac{1}{2}$

Example\#07: If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$. show that $\overrightarrow{\boldsymbol{a}}$ and $\overrightarrow{\boldsymbol{b}}$ are perpendicular.

Solution: Given

$$
\begin{equation*}
|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}| \tag{i}
\end{equation*}
$$

We have to prove

$$
\vec{a} \perp \vec{b} \text { it means }
$$

$$
\vec{a} \cdot \vec{b}=0
$$

Squaring equation (i)

$$
\begin{gathered}
|\vec{a}+\vec{b}|^{2}=|\vec{a}-\vec{b}|^{2} \\
(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=(\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b}) \\
\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}=\vec{a} \cdot \vec{a}-\vec{a} \cdot \vec{b}-\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b} \\
|\vec{a}|^{2}+2 \vec{a} \cdot \vec{b}+|\vec{b}|^{2}=|\vec{a}|^{2}-2 \vec{a} \cdot \vec{b}+|\vec{b}|^{2} \\
|\vec{a}|^{2}+2 \vec{a} \cdot \vec{b}+|\vec{b}|^{2}-|\vec{a}|^{2}+2 \vec{a} \cdot \vec{b}-|\vec{b}|^{2}=0 \\
4 \vec{a} \cdot \vec{b}=0 \\
\Rightarrow \quad \vec{a} \cdot \vec{b}=0
\end{gathered} ~ \begin{aligned}
& \vec{a} \perp \vec{b}
\end{aligned}
$$

Example\#08: If $\vec{a}=3 i-j-4 k ; \vec{b}=-2 i+4 j-3 k$ and $\vec{c}=i+2 j-k$.

Find the projection of $(\vec{a}+2 \vec{b})$ along \vec{c}.

Solution: Given $\quad \vec{a}=3 i-j-4 k ; \vec{b}=-2 i+4 j-3 k$ and $\vec{c}=i+2 j-k$

$$
\text { Let } \vec{u}=\vec{a}+2 \vec{b} \quad \text { Projection of } \vec{u} \text { along } \vec{c}=\text { ? }
$$

Now

$$
\begin{aligned}
\vec{u} & =\vec{a}+2 \vec{b}=(3 i-) j-4 k)+2(-2 i+4 j-3 k) \\
& =3 i-\vec{j}-4 k-4 i+8 j-6 k \\
\vec{u} & =-i+7 j-10 k
\end{aligned}
$$

Projection of \vec{u} along $\vec{c}=\vec{u} \cdot \hat{c}$
Projection of \vec{u} along $\vec{c}=\frac{\vec{u} \cdot \vec{c}}{|\vec{c}|}=\frac{(-i+7 j-10 k) \cdot(i+2 j-k)}{\sqrt{(-1)^{2}+(2)^{2}+(-1)^{2}}}=\frac{(-1)(1)+(7)(2)+(-10)(-1)}{\sqrt{1+4+1}}$

$$
=\frac{-1+14+10}{\sqrt{6}}=\frac{23}{\sqrt{6}}
$$

Exercise\#2.1

Q\#01: If $\vec{a}=3 i+j-k ; \vec{b}=2 i-j+2 k$ and $\vec{c}=5 i+3 k$. Find
(i) $(2 \vec{a}+\vec{b}) \cdot \vec{c}$

Solution

$$
\therefore 2 \vec{a}+\vec{b}=2(3 i+j-k)+(2 i-j+2 k)=6 i+2 j-2 k+2 i-j+2 k=8 i+j+0 k
$$

Now

$$
\begin{aligned}
& (2 \vec{a}+\vec{b}) \cdot \vec{c}=(8 i+j+0 k) \cdot(5 i+0 j+3 k)=(8)(5)+(1)(0)+(0)(3)=40+0+0=40 \\
& \quad \text { (ii) }(\overrightarrow{\boldsymbol{a}}-\mathbf{2} \overrightarrow{\boldsymbol{c}}) \cdot(\overrightarrow{\boldsymbol{b}}+\overrightarrow{\boldsymbol{c}})
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \therefore \vec{a}-2 \vec{c}=(3 i+j-k)-2(5 i+3 k)=3 i+j-k-10 i-6 k=-7 i+j-7 k \\
& \therefore \vec{b}+\vec{c}=2 i-j+2 k+5 i+3 k=7 i-j+5 k
\end{aligned}
$$

Now

$$
\begin{aligned}
(\vec{a}-2 \vec{c}) \cdot(\vec{b}+\vec{c}) & =(-7 i+j-7 k) \cdot(7 i-j+5 k) \\
& =(-7)(7)+(1)(-1)+(-7)(5) \\
& =-49-1-35 \\
(\vec{a}-2 \vec{c}) \cdot(\vec{b}+\vec{c}) & =-85
\end{aligned}
$$

Q\#02: Find x, so that $\vec{a}=2 i+4 j-7 k$ and $\vec{b}=2 i+6 j+x k$ are perpendicular?
Solution: Given

$$
\vec{a}=2 i+4 \vec{j}-7 k \text { and } \vec{b}=2 i+6 j+x k
$$

According to given condition $\overrightarrow{\boldsymbol{a}} \perp \overrightarrow{\boldsymbol{b}}$ then $\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{b}}=\mathbf{0}$

$$
\begin{aligned}
(2 i+4 j-7 k) \cdot(2 i+6 j+x k) & =0 \\
(2)(2)+(4)(6)+(-7)(x) & =0 \\
4+24-7 x & =0 \\
28 & =7 x \\
x & =28 / 7 \\
x & =3
\end{aligned}
$$

Q\#03: Find m, for which the angle between $\vec{a}=m i+j-k \& \vec{b}=\boldsymbol{i}+m j-k$ is $\frac{\pi}{3}$?
Solution: Given $\quad \vec{a}=m i+j-k$ and $\vec{b}=i+m j-k$
According to given condition that $\theta=\frac{\pi}{3}$ between $\vec{a} \& \vec{b}$ then

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta \\
&(m i+j-k) \cdot(i+m j-k)=\sqrt{(m)^{2}+(1)^{2}+(-1)^{2}} \sqrt{(1)^{2}+(m)^{2}+(-1)^{2}} \cos \frac{\pi}{3} \\
&(m)(1)+(1)(m)+\quad(-1)(-1)=\sqrt{1+m^{2}+1} \sqrt{1+m^{2}+1}\left(\frac{1}{2}\right) \\
& m+m+1=\left(\sqrt{m^{2}+2}\right)^{2} \cdot\left(\frac{1}{2}\right) \\
& 2(2 m+1)=\left(m^{2}+2\right) \\
& 4 m+2=m^{2}+2 \\
& m^{2}-4 m=0 \\
& m(m-4)=0 \\
& \mathrm{~m}=0 \quad \text { or } \quad m-4=0 \Rightarrow \mathrm{~m}=4
\end{aligned}
$$

Q\#04: If $\vec{a}=2 i+j-3 k \& \vec{b}=i-2 j+k$, find a vector whose magnitude is 5 and perpendicular to both $\overrightarrow{\boldsymbol{a}} \& \overrightarrow{\boldsymbol{b}}$.

Solution: Given $\vec{a}=2 i+j-3 k \quad \& \quad \vec{b}=i-2 j+k$

$$
\begin{aligned}
& \text { Let } \vec{u}=x i+y j+z k------------(\mathrm{A}) \\
& |\vec{u}|=\sqrt{x^{2}+y^{2}+z^{2}} \quad \Longrightarrow \quad x^{2}+y^{2}+z^{2}=|\vec{u}|^{2} \\
& x^{2}+y^{2}+z^{2}=5^{2} \\
& x^{2}+y^{2}+z^{2}=25 \\
& \text { Given }|\vec{u}|=5
\end{aligned}
$$

1st condition: $\vec{u} \perp \vec{a}$ then $\vec{u} \cdot \vec{a}=0$
$(x i+y j+z k) \cdot(2 i+j-3 k)=0$

$$
\begin{align*}
(x)(2)+(y)(1)+(z)(-3) & =0 \\
2 x+y-3 z & =0 \tag{ii}
\end{align*}
$$

2st condition: $\vec{u} \perp \vec{b}$ then $\vec{u} \cdot \vec{b}=0$

$$
\begin{align*}
(x i+y j+z k) \cdot(i-2 j+k) & =0 \\
(x)(1)+(y)(-2)+(z)(1) & =0 \\
x-2 y+z & =0 \tag{iii}
\end{align*}
$$

Multiplying equation (iii) by 3 and add in equation (ii)

$$
\begin{aligned}
3 x-6 y+3 z & =0 \\
2 x+y-3 z & =0 \\
\hline 5 x-5 y= & 0 \\
5(x-y) & =0 \\
x-y & =0 \Rightarrow y=x-------(i v)
\end{aligned}
$$

Multiplying equation (ii)by 2 and add in equation (iii)

$$
\begin{aligned}
4 x+2 y-6 z & =0 \\
x-2 y+z & =0 \\
5 x-5 z & =0 \\
5(x-z) & =0 \\
x-z & =0 \Rightarrow z=x------(v)
\end{aligned}
$$

using equ. (iv) and (v) in equ. (i)

$$
\begin{gathered}
x^{2}+x^{2}+x^{2}=25 \\
3 x^{2}=25 \\
x^{2}=\frac{25}{3} \\
\mathrm{x}= \pm \sqrt{\frac{25}{3}} \text { or } \mathrm{x}= \pm \frac{5}{\sqrt{3}}
\end{gathered}
$$

$u s i n g$ value of x in equ. (iv) and (v)

$$
\mathrm{y}= \pm \frac{5}{\sqrt{3}} \quad \mathrm{z}= \pm \frac{5}{\sqrt{3}}
$$

Putting values of x, y and z in (A)

$$
\vec{u}= \pm \frac{5}{\sqrt{3}},(l+j+k)
$$

Q\#05: If the angle between two vectors whose magnitudes are 12 and 4 is 60^{0}. Find their scalar product.

Solution: Let \vec{a} and \vec{b} be the two vectors
Given $\quad|\vec{a}|=12 ; \quad|\vec{b}|=4$ and $\quad \theta=60^{\circ}$
As

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =|\vec{a}||\vec{b}| \cos \theta \\
& =(12)(4) \cos 60^{\circ} \\
& =48 \cdot \frac{1}{2} \\
\vec{a} \cdot \vec{b} & =24
\end{aligned}
$$

Q\#06: Show that $\widehat{a}=\frac{2 i-2 j+k}{3}, \widehat{b}=\frac{i+2 j+2 k}{3}$ and $\hat{c}=\frac{2 i+j-2 k}{3}$ are mutually orthogonal unit vectors.
Solution: Given $\hat{a}=\frac{2 i-2 j+k}{3}, \hat{b}=\frac{i+2 j+2 k}{3}$ and $\hat{c}=\frac{2 i+j-2 k}{3}$
For mutually orthogonal condition, we have to prove

$$
\begin{gathered}
\hat{a} \cdot \hat{b}=\hat{b} \cdot \hat{c}=\hat{c} \cdot \hat{a}=0 \\
\hat{a} \cdot \hat{b}=\left(\frac{2 i-2 j+k}{3}\right) \cdot\left(\frac{i+2 j+2 k}{3}\right)=\frac{(2 i-2 j+k) \cdot(i+2 j+2 k)}{9}=\frac{(2)(1)+(-2)(2)+(1)(2)}{9}=\frac{2-4+2}{9}=\frac{0}{9} \Rightarrow \hat{a} \cdot \hat{b}=0 \\
\hat{b} \cdot \hat{c}=\left(\frac{i+2 j+2 k}{3}\right) \cdot\left(\frac{2 i+j-2 k}{3}\right)=\frac{(i+2 j+2 k) \cdot(2 i+j-2 k)}{9}=\frac{(1)(2)+(2)(1)+(2)(-2)}{9}=\frac{2+2-4}{9}=\frac{0}{9} \Rightarrow \hat{b} \cdot \hat{c}=0 \\
\hat{c} \cdot \hat{a}=\left(\frac{2 i+j-2 k}{3}\right) \cdot\left(\frac{2 i-2 j+k}{3}\right)=\frac{(2 i+j-2 k) \cdot(2 i-2 j+k)}{9}=\frac{(2)(2)+(1)(-2)+(-2)(1)}{9}=\frac{4-2-2}{9}=\frac{0}{9} \Rightarrow \hat{a} \cdot \hat{b}=0
\end{gathered}
$$

Hence proved that \hat{a}, \hat{b} and \hat{c} are mutually orthogonal unit vectors.
Q\#07: Find the cosine of the angle between $\vec{a}=2 i-8 j+3 k$ and $\vec{b}=4 j+3 k$.
Solution: Given $\quad \vec{a}=2 i-8 j+3 k \quad$ and $\quad \overrightarrow{b_{A}}=2 j+4 k$.
As

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta \text { therefore } \\
& \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} \\
& \cos \theta=\frac{(2 i-8 j+3 k) \cdot(0 i+4 j+3 k)}{\left(\sqrt{\left.(2)^{2}+(-8)^{2}+(3)^{2}\right)\left(\sqrt{(0)^{2}+(4)^{2}+(3)^{2}}\right)}\right.} \\
& \cos \theta=\frac{(2)(0)+(-8)(4)+(3)(3)}{(\sqrt{4+64+9})(\sqrt{0+16+9})} \\
& \cos \theta=\frac{0-32+9}{(\sqrt{77})(\sqrt{25})} \\
& \cos \theta=\frac{-23}{5 \sqrt{77}}
\end{aligned}
$$

Q\#08: (i) If $\vec{a}=2 i-3 j+4 k$ and $\vec{b}=2 j+4 k$, find the component of \vec{a} along \vec{b} and \vec{b} along $\overrightarrow{\boldsymbol{a}}$.

Solution: Given $\vec{a}=2 i-3 j+4 k$ and $\vec{b}=2 j+4 k$
Now
Component of \vec{a} along $\vec{b}=\vec{a} \cdot \widehat{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}=\frac{(2 i-3 j+4 k) \cdot(0 i+2 j+4 k)}{\left(\sqrt{(0)^{2}+(2)^{2}+(4)^{2}}\right)}=\frac{(2)(0)+(-3)(2)+(4)(4)}{(\sqrt{0+4+16})}=\frac{0-6+16}{(\sqrt{20})}=\frac{10}{2 \sqrt{5}}$

Component of \vec{b} along $\vec{a}=\vec{b} \cdot \widehat{a}=\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|}=\frac{(0 i+2 j+4 k) \cdot(2 i-3 j+4 k)}{\left(\sqrt{(2)^{2}+(-3)^{2}+(4)^{2}}\right)}=\frac{(0)(2)+(2)(-3)+(4)(4)}{(\sqrt{4+9+16})}=\frac{0-6+16}{(\sqrt{29})}=\frac{10}{\sqrt{29}}$

Q\#08: (ii) If $\vec{a}=3 i-j-4 k ; \vec{b}=-2 i+4 j-3 k$ and $\vec{c}=\boldsymbol{i}+2 j-k$ find the projection of $2 \vec{a}+3 \vec{b}-\vec{c}$ along $\vec{a}+\vec{b}$.

Solution: Given $\vec{a}=3 i-j-4 k ; \vec{b}=-2 i+4 j-3 k$ and $\vec{c}=i+2 j-k$
Let

$$
\begin{aligned}
\vec{u} & =2 \vec{a}+3 \vec{b}-\vec{c}=2(3 i-j-4 k)+3(-2 i+4 j-3 k)-(i+2 j-k) \\
& =6 i-2 j-8 k-6 i+12 j-9 k-i-2 j+k \\
\vec{u} & =-i+8 j-16 k
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{v} & =\vec{a}+\vec{b}=(3 i-j-4 k)+(-2 i+4 j-3 k) \\
& =3 i-j-4 k-2 i+4 j-3 k
\end{aligned}
$$

$$
\vec{v}=i+3 j-7 k
$$

Projection of \vec{u} along $\vec{v}=\vec{u} \cdot \hat{v}=\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|}=\frac{(-i+8 j-16 k) \cdot(i+3 j-7 k)}{\left(\sqrt{(1)^{2}+(3)^{2}+(-7)^{2}}\right)}=\frac{(-1)(\mathbf{1})+(8)(3)+(-16)(-7)}{(\sqrt{1+9+49})}$
$=\frac{-1+24+112}{(\sqrt{59})}=\frac{135}{\sqrt{59}}$
Q\#09: Show that the vectors $\vec{a}=3 i-2 j+k ; \vec{b}=i-3 j+5 k$ and $\vec{c}=2 i+j-4 k$ form a right angle triangle.

Solution: Given

$$
\vec{a}=3 i-2 j+k ; \vec{b}=i-3 j+5 k \text { and } \vec{c}=2 i+j-4 k
$$

For right angle triangle, we have to prove

$$
\vec{a} \cdot \vec{b}=0 \text { or } \vec{b} \cdot \vec{c}=0 \quad \text { or } \overrightarrow{\mathrm{c}} \cdot \vec{a}=0
$$

$$
\begin{aligned}
\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{b}} & =(3 i-2 j+k) \cdot(i-3 j+5 k) \\
& =(3)(1)+(-2)(-3)+(1)(5)=3+6+5=14
\end{aligned}
$$

$$
\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{b}} \neq 0
$$

$\overrightarrow{\boldsymbol{b}} \cdot \overrightarrow{\boldsymbol{c}}=(i-3 j+5 k) \cdot(2 i+j-4 k)=(1)(2)+(-3)(1)+(5)(-4)=2-3-20=-21$
$\overrightarrow{\boldsymbol{b}} \cdot \overrightarrow{\boldsymbol{c}} \neq 0$

$$
\overrightarrow{\boldsymbol{c}} \cdot \overrightarrow{\boldsymbol{a}}=(2 i+j-4 k) \cdot(3 i-2 j+k)=(2)(3)+(1)(-2)+(-4)(1)=6-2-4
$$

$$
\overrightarrow{\boldsymbol{c}} \cdot \vec{a}=0
$$

So $\overrightarrow{\boldsymbol{c}} \perp \overrightarrow{\boldsymbol{a}}$
Hence proved that the given vectors form right angle triangle .

Q\#10: The vectors $\vec{a}=2 i-j+k ; \vec{b}=-i+3 j+5 k$ represent two sides of $\triangle A B C$. Find its $3^{\text {rd }}$ sides and also the angles of this triangle.

Solution:

$$
\text { Given } \vec{a}=2 i-j+k \quad \& \quad \vec{b}=-i+3 j+5 k
$$

Let \vec{c} be resultant of \vec{a} and \vec{b} in $\triangle A B C$. Then

$$
\begin{aligned}
\vec{c} & =\vec{a}+\vec{b}=(2 i-j+k)+(-i+3 j+5 k)=2 i-j+k-i+3 j+5 k \\
\vec{c} & =i+2 j+6 k
\end{aligned}
$$

Now $|\vec{a}|=\sqrt{(2)^{2}+(-1)^{2}+(1)^{2}}=\sqrt{4+1+1}=\sqrt{6}$

$$
\begin{aligned}
|\vec{b}| & =\sqrt{(-1)^{2}+(3)^{2}+(5)^{2}}=\sqrt{1+9+25}=\sqrt{35} \\
|\vec{c}| & =\sqrt{(1)^{2}+(2)^{2}+(6)^{2}}=\sqrt{1+4+36}=\sqrt{41}
\end{aligned}
$$

Let α, β and γ be the angle of $\triangle A B C$ as shown in figure.

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =|\vec{a}||\vec{b}| \cos \gamma \\
\cos \gamma & =\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} \\
\cos \gamma & =\frac{(2 i-j+k) \cdot(-i+3 j+5 k)}{(\sqrt{6})(\sqrt{35})}=\frac{(2)(-1)+(-1)(3)+(1)(5)}{\sqrt{6 \times 35}}=\frac{-2-3+5}{\sqrt{210}}=\frac{0}{\sqrt{210}} \\
\cos \gamma & =0 \\
\gamma & =\cos ^{-1}(0) \\
\vec{b} \cdot \vec{c} & =|\vec{b}||\vec{c}| \cos \alpha \\
\cos \alpha & =\frac{\vec{b} \cdot \vec{c}}{|\vec{b}||\vec{c}|} \\
\cos \alpha & =\frac{(-i+3 j+5 k) \cdot(i+2 j+6 k)}{(\sqrt{35})(\sqrt{41})}=\frac{(-1)(1)+(3)(2)+(5)(6)}{\sqrt{35 \times 41}}=\frac{-1+6+30}{\sqrt{1435}}=\frac{35}{\sqrt{1435}}
\end{aligned}
$$

$$
\begin{aligned}
\cos \alpha & =0.923 \\
\alpha & =\cos ^{-1}(0.923) \quad \Rightarrow \alpha=22.49^{\circ}
\end{aligned}
$$

We know that

$$
\begin{aligned}
& \alpha+\beta+\gamma=180^{\circ} \\
& \beta=180-\alpha-\gamma \\
& \beta=180^{\circ}-90^{\circ}-22.49^{0} \\
& \beta=67.51
\end{aligned}
$$

Q\#11: The vectors $\vec{a}=3 i+6 j-2 k \quad \& \quad \vec{b}=4 i-j+3 k r e p r e s e n t ~ t w o ~ s i d e s ~ o f ~ \triangle A B C . ~$
Find its $3^{\text {rd }}$ sides and also the angles of this triangle.
Solution: Given $\vec{a}=3 i+6 j-2 k \quad \& \quad \vec{b}=4 i-j+3 k$
Let \vec{c} be resultant of \vec{a} and \vec{b} in $\triangle A B C$. Then

$$
\begin{aligned}
\vec{c} & =\vec{a}+\vec{b} \\
\vec{c} & =(3 i+6 j-2 k)+(4 i-j+3 k) \\
\vec{c} & =3 i+6 j-2 k+4 i-j+3 k \\
\vec{c} & =7 i+5 j+k
\end{aligned}
$$

Now

$$
\begin{aligned}
& |\vec{a}|=\sqrt{(3)^{2}+(6)^{2}+(-2)^{2}}=\sqrt{9+36+4}=\sqrt{49}=7 \\
& |\vec{b}|=\sqrt{(4)^{2}+(-1)^{2}+(3)^{2}}=\sqrt{16+1+9}=\sqrt{26} \\
& |\vec{c}|=\sqrt{(7)^{2}+(5)^{2}+(1)^{2}}=\sqrt{49+25+1}=\sqrt{75}
\end{aligned}
$$

Let α, β and γ be the angle of $\triangle A B C$ as shown in figure.

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \gamma
$$

$$
\cos \gamma=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$

$$
\cos \gamma=\frac{(3 i+6 j-2 k) \cdot(4 i-j+3 k)}{(\sqrt{49})(\sqrt{26})}=\frac{(3)(4)+(6)(-1)+(-2)(3)}{\sqrt{49 \times 26}}=\frac{12-6-6}{\sqrt{1274}}=\frac{0}{\sqrt{1274}}
$$

$$
\cos \gamma=0
$$

$$
\gamma=\cos ^{-1}(0) \quad \Rightarrow \quad \gamma=90^{\circ}
$$

$$
\vec{b} \cdot \vec{c}=|\vec{b}||\vec{c}| \cos \alpha
$$

$$
\cos \alpha=\frac{\vec{b} \cdot \vec{c}}{|\vec{b}||\vec{c}|}
$$

$$
\cos \alpha=\frac{(4 i-j+3 k) \cdot(7 i+5 j+k)}{(\sqrt{26})(\sqrt{75})}=\frac{(4)(7)+(-1)(5)+(3)(1)}{\sqrt{35 \times 75}}=\frac{28-5+3}{\sqrt{2625}}=\frac{26}{\sqrt{2625}}
$$

$$
\cos \alpha=0.588
$$

$$
\alpha=\cos ^{-1}(0.588) \quad \Longrightarrow \quad \alpha=54^{0}
$$

We know that

$$
\begin{aligned}
& \alpha+\beta+\gamma=180^{\circ} \\
& \beta=180-\alpha-\gamma \\
& \beta=180^{\circ}-90^{\circ}-54^{0} \\
& \beta=36
\end{aligned}
$$

Q\#12: Find two unit vectors which makes an angle of 60^{0} with vectors $i-j$ and $i-k$.

Solution : Let \hat{u} be the required unit vector .

$$
\begin{gather*}
\hat{u}=x i+y j+z k \text {-----------------(A) } \tag{A}\\
|\hat{u}|^{2}=x^{2}+y^{2}+z^{2} \quad \Rightarrow x^{2}+y^{2}+z^{2}=1-----------------(\mathrm{i}) \quad \therefore \quad|\hat{u}|^{2}=1 \tag{i}
\end{gather*}
$$

$$
\vec{a}=i-j \quad \text { and } \quad \vec{b}=i-k
$$

$\boldsymbol{1}^{\text {st }}$ condition: The unit vector \hat{u} makes an angle 60° with \vec{a}.
Then

$$
\begin{array}{rlr}
\vec{a} \cdot \hat{u}=|\vec{a}||\hat{u}| \cos \theta & \theta=60^{\circ} \tag{ii}\\
(i-j+0 k) \cdot(x i+y j+z k) & =\sqrt{(1)^{2}+(-1)^{2}+(0)^{2}} & (1) \cos 60^{\circ} \\
\text { 1. } x-1 \cdot y-0 \cdot z & =\sqrt{1+1+0} \cdot \frac{1}{2}=\sqrt{2} \cdot \frac{1}{2} \\
x-y & =\frac{1}{\sqrt{2}} \Rightarrow y=x-\frac{1}{\sqrt{2}}
\end{array}
$$

Given $\quad \vec{a}=i-j \quad$ and $\quad \vec{b}=i-k$

$$
\therefore \quad|\hat{u}|=1
$$

$2^{\text {nd }}$ condition: The unit vector \hat{u} makes an angle 60° with \vec{b}.
Then

$$
\vec{b} \cdot \hat{u}=|\vec{b}||\hat{u}| \cos \theta
$$

$$
\begin{gather*}
(i+0 j-k) \cdot(x i+y j+z k)=\sqrt{(0)^{2}+(1)^{2}+(-1)^{2}}(1) \cdot \cos 60^{0} \quad \therefore \quad|\hat{u}|=1 \\
1 \cdot x+0 \cdot y-1 \cdot z=\sqrt{0+1+1} \cdot \frac{1}{2}=\sqrt{2} \cdot \frac{1}{2} \\
x-z=\frac{1}{\sqrt{2}} \Rightarrow z=x-\frac{1}{\sqrt{2}} \cdots-\cdots \cdots \cdots-\cdots-\cdots-\cdots-\cdots(i i i) \tag{iii}
\end{gather*}
$$

Using equation (ii) and (iii) in (i)

$$
\begin{aligned}
& \qquad x^{2}+\left[x-\frac{1}{\sqrt{2}}\right]^{2}+\left[x-\frac{1}{\sqrt{2}}\right]^{2}=1 \\
& x^{2}+x^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}-2 x \frac{1}{\sqrt{2}}+x^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}-2 x \frac{1}{\sqrt{2}}=1 \\
& 3 x^{2}-\sqrt{2} x+\frac{1}{2}-\sqrt{2} x+\frac{1}{2}=1 \Rightarrow 3 x^{2}-2 \sqrt{2} x+1=1 \Rightarrow 3 x^{2}-2 \sqrt{2} x=0 \Rightarrow x(3 x-2 \sqrt{2})=0 \\
& x=0, \\
& \text { Put in (ii) and (iii) } \\
& y=0-\frac{1}{\sqrt{2}} \Rightarrow y=-\frac{1}{\sqrt{2}} \\
& z=0-\frac{1}{\sqrt{2}} \Rightarrow z=\frac{-1}{\sqrt{2}}
\end{aligned} \quad \begin{aligned}
y=\frac{2 \sqrt{2}}{3}-\frac{1}{\sqrt{2}}=\frac{4-3}{3 \sqrt{2}} \\
z=\frac{2 \sqrt{2}}{3}-\frac{1}{\sqrt{2}}=\frac{4-3}{3 \sqrt{2}} \quad \Rightarrow \quad x=\frac{2 \sqrt{2}}{3}
\end{aligned}
$$

Using values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in required unit vector represented by equ.(A)

$$
\hat{u}=0 i-\frac{1}{\sqrt{2}} j-\frac{1}{\sqrt{2}} k \quad \text { OR } \quad \hat{u}=\frac{2 \sqrt{2}}{3} i+\frac{1}{3 \sqrt{2}} j+\frac{1}{3 \sqrt{2}} k
$$

Q\#13: Find the projection of vector $2 \boldsymbol{i}-2 \boldsymbol{j}+6 \boldsymbol{k}$ 0n the vector $\boldsymbol{i}+2 \boldsymbol{j}+\mathbf{2 k}$.

Solution: Let $\quad \vec{a}=2 i-2 j+6 k \quad$ and $\vec{b}=i+2 j+2 k$
Then
Projection of \vec{a} along $\vec{b}=\vec{a} . \hat{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}=\frac{(2 i-2 j+6 k) \cdot(i+2 j+2 k)}{\left(\sqrt{(1)^{2}+(2)^{2}+(2)^{2}}\right)}=\frac{(2)(1)+(-2)(2)+(6)(2)}{(\sqrt{1+4+4})}=\frac{2-4+12}{(\sqrt{9})}=\frac{10}{3}$
Q\#14: Find the projection of vector $4 i-3 j+k$ on the line passing through the points $(2,3,-1)$ and $(-2,-4,1)$.

Solution: Let $\vec{a}=4 i-3 j+k \quad$ and
Given points $A(2,3,-1) ; B(-2,-4,1)$
Let $\vec{b}=\overrightarrow{A B}=B(-2,-4,1)-A(2,3,-1)=(-2-2) i+(-4-3) j+(1+1) k$

$$
\vec{b}=-4 i-7 j+2 k
$$

Then
Projection of \vec{a} along $\vec{b}=\vec{a} \cdot \hat{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}=\frac{(4 i-3 j+k) \cdot(-4 i-7 j+2 k)}{\left(\sqrt{(-4)^{2}+(-7)^{2}+(2)^{2}}\right)}=\frac{(4)(-4)+(-3)(-7)+(1)(2)}{(\sqrt{16+49+4})}$
$=\frac{-16+21+2}{(\sqrt{69})}=\frac{7}{\sqrt{69}}$
Q\#15: (i) Verify that the scalar product is distributive with respect to the addition of vectors when $\vec{a}=2 i-3 j+4 k ; \vec{b}=i-j+2 k$ and $\vec{c}=3 i+2 j+k$.
Solution: Given vectors $\quad \vec{a}=2 i-3 j+4 k ; \vec{b}=i-j+2 k \quad$ and $\vec{c}=3 i+2 j+k$
We have to prove , scalar product is distributive with respect to the addition.

$$
\vec{a} \cdot(\vec{b}+\vec{a})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}
$$

L.H.S $=\vec{a} \cdot(\vec{b}+\vec{c})=(2 i-3 j+4 k) \cdot(i-j+2 k+3 i+2 j+k)$

$$
\begin{align*}
& =(2 i-3 j+4 k) \cdot(4 i+j+3 k) \\
& =(2)(4)+(-3)(1)+(4)(3)=8-3+12 \\
& =17 \tag{i}
\end{align*}
$$

$$
\begin{align*}
\text { R.H.S }=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c} & =(2 i-3 j+4 k) \cdot(i-j+2 k)+(2 i-3 j+4 k) \cdot(3 i+2 j+k) \\
& =[(2)(1)+(-3)(-1)+(4)(2)]+[(2)(3)+(-3)(2)+(4)(1)] \\
& =[2+3+8]+[6-6+4]=2+3+8+0+4 \\
& =17----------------(i i) \tag{ii}
\end{align*}
$$

Hence Verified from (i) and (ii),
That the scalar product is distributive with respect to the addition for vector \vec{a}, \vec{b} and \vec{c}.

Q\#15:(ii) If $\overrightarrow{\mathbf{u}}$ is a vector such that $\overrightarrow{\mathbf{u}} \cdot \boldsymbol{i}=\overrightarrow{\mathbf{u}} \cdot \boldsymbol{j}=\overrightarrow{\mathbf{u}} \cdot \boldsymbol{k}=\mathbf{0}$, then find $\overrightarrow{\mathbf{u}}$.

Solution: let $\overrightarrow{\mathrm{u}}=x i+y j+z k$
Given condition: $\quad \overrightarrow{\mathrm{u}} \cdot i=\overrightarrow{\mathrm{u}} \cdot j=\overrightarrow{\mathrm{u}} \cdot k=0$

$$
\begin{array}{cc}
\overrightarrow{\mathrm{u}} \cdot i=0 \Rightarrow(x i+y j+z k) \cdot i=0 \Rightarrow & x=0 \\
\overrightarrow{\mathrm{u}} \cdot j=0 \Rightarrow(x i+y j+z k) \cdot j=0 \Rightarrow & y=0 \\
\overrightarrow{\mathrm{u}} \cdot k=0 \Rightarrow(x i+y j+z k) \cdot k=0 \Rightarrow & z=0
\end{array}
$$

Using value of x, y and z in (i)

$$
\overrightarrow{\mathrm{u}}=0 i+0 j+0 k
$$

Q\#16: (i) Under what condition does the relation $(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})^{2}=|\vec{a}|^{2}|\vec{b}|^{2} \quad$ Hold for vector $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$.

Solution: By using definition of scalar product

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta
$$

Squaring equation on both sides

$$
\begin{gathered}
(\vec{a} \cdot \vec{b})=(|\vec{a}||\vec{b}| \cos \theta)^{2} \\
(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}})^{2}=|\vec{a}|^{2}|\vec{b}|^{2} \cos ^{2} \theta
\end{gathered}
$$

This condition hold when

$$
\cos ^{2} \theta=1 \Rightarrow \cos \theta= \pm 1
$$

$\cos \theta=1 \Rightarrow \theta=\cos ^{-1}(1) \Rightarrow \quad \theta=0^{\circ}$ and $\cos \theta=-1 \Rightarrow \theta=\cos ^{-1}(-1) \Rightarrow \theta=180^{\circ}$
Q\#16: (ii) If $\vec{a}=i+2 j-3 k$ and $\vec{b}=3 i+j+2 k$ then show that $\vec{a}+\vec{b}$ is perpendicular to $\vec{a}-\vec{b}$.

Solution: Given $\vec{a}=i+2 j-3 k$ and $\vec{b}=3 i+j+2 k$
We have to prove $(\vec{a}+\vec{b}) \perp(\vec{a}-\vec{b}) \quad$ For this $\quad(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=0$
$\vec{a}+\vec{b}=(i+2 j-3 k)+(3 i+j+2 k)=i+2 j-3 k+3 i+j+2 k=4 i+3 j-k$
$\vec{a}-\vec{b}=(i+2 j-3 k)-(3 i+j+2 k)=i+2 j-3 k-3 i-j-2 k=-2 i+j-5 k$
Taking L.H.S of (i) $\quad(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=(4 i+3 j-k) \cdot(-2 i+j-5 k)$

$$
\begin{aligned}
& =(4)(-2)+(3)(1)+(-1)(-5) \\
& =-8+3+5
\end{aligned}
$$

$$
(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=0
$$

Hence proved

$$
(\vec{a}+\vec{b}) \perp(\vec{a}-\vec{b})
$$

Q\#17: Example\#04: The resultant of two vectors $\overrightarrow{\boldsymbol{a}}$ and $\overrightarrow{\boldsymbol{b}}$ is perpendicular to $\overrightarrow{\boldsymbol{a}}$.
If $|\vec{b}|=\sqrt{2}|a|$ Show that the resultant of $2 \vec{a}$ and \vec{b} is perpendicular vector \vec{b}.
Solution: Given sum of \vec{a} and \vec{b} is perpendicular to $\vec{a} . \quad(\vec{a}+\vec{b}) \perp \vec{a}$
Then

$$
\begin{align*}
& (\vec{a}+\vec{b}) \cdot \vec{a}=0 \\
& \vec{a} \cdot \vec{a}+\vec{b} \cdot \vec{a}=0 \\
& |\vec{a}|^{2}+\vec{a} \cdot \vec{b}=0 \quad \quad \therefore \vec{a} \cdot \vec{a}=|\vec{a}|^{2} \quad \& \quad \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a} \\
& \qquad \vec{a} \cdot \vec{b}=-|\vec{a}|^{2} \tag{i}\\
& \text { And } \quad|\vec{b}|=\sqrt{2}|a|
\end{align*}
$$

Squaring both sides

$$
\begin{equation*}
|\vec{b}|^{2}=2|\vec{a}|^{2} \tag{ii}
\end{equation*}
$$

\qquad
Now we have to prove, resultant of $2 \vec{a}$ and \vec{b} is perpendicular vector \vec{b}
Then

$$
(2 \vec{a}+\vec{b}) \cdot \vec{b}=0
$$

Now

$$
\begin{aligned}
(2 \vec{a}+\vec{b}) \cdot \vec{b} & =2 \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{b} \\
& =2(\vec{a} \cdot \vec{b})+|\vec{b}|^{2} \\
& =2\left(-|\vec{a}|^{2}\right)+2|\vec{a}|^{2} \\
& =-2|\vec{a}|^{2}+2|\vec{a}|^{2}
\end{aligned} \text { From (i) \&(ii) }
$$

$$
(2 \vec{a}+\vec{b}) \cdot \vec{b}=0
$$

Hence proved that $(2 \vec{a}+\vec{b}) \perp \vec{b}$.
Q\#18: Prove that $\vec{a}=(\vec{a} \cdot i) i+(\vec{a} \cdot j) j+(\vec{a} \cdot k) k$.
Solution: Let $\vec{a}=a_{1} i+a_{2} j+a_{3} k$ \qquad
Taking dot product \vec{a} with, j and k unit vectors.

$$
\begin{array}{lll}
\vec{a} \cdot i=\left(a_{1} i+a_{2} j+a_{3} k\right) \cdot i & \Rightarrow & \vec{a} \cdot i=a_{1} \\
\vec{a} \cdot j=\left(a_{1} i+a_{2} j+a_{3} k\right) \cdot j & \Rightarrow & \vec{a} \cdot j=a_{2} \\
\vec{a} \cdot k=\left(a_{1} i+a_{2} j+a_{3} k\right) \cdot k & \Rightarrow & \vec{a} \cdot k=a_{3}
\end{array}
$$

Using value of a_{1}, a_{2} and a_{3} in equation (i)

$$
\vec{a}=(\vec{a} \cdot i) i+(\vec{a} \cdot j) j+(\vec{a} \cdot k) k
$$

Hence proved.

Q\#19: Find the acute angles which the line joining the points $(1,-3,2)$ and $(3,-5,1)$ makes

 with coordinates axis.
Solution:

Let line joining the points are $P(1,-3,2)$ and $Q(3,-5,1)$.
$\vec{r}=\overrightarrow{P Q}=Q(3,-5,1)-P(1,-3,2)$
$=(3-1) i+(-5+3) j+(1-2) k$
$\vec{r}=2 i-2 j-k$
$|\vec{r}|=\sqrt{(2)^{2}+(-2)^{2}+(-1)^{2}}=\sqrt{4+4+1}=\sqrt{9} \quad \Rightarrow|\vec{r}|=3$

Let \vec{r} vector makes the acute angles α, β and γ with $\mathrm{x}, \mathrm{y}, \mathrm{z}$-axis respectively.
Taking dot product of \vec{r} with i, j and k unit vetors.
$\vec{r}_{\cdot} \hat{\imath}=|\vec{r}||\hat{\imath}| \cos \alpha$ $\cos \alpha=\frac{\vec{r} \cdot \hat{\imath}}{|\vec{r}||\hat{\imath}|}=\frac{(2 i-2 j-k) \cdot \mathrm{i}}{(3) \cdot 1}=\frac{2+0+0}{3}=\frac{2}{3} \Rightarrow \alpha=\cos ^{-1}\left(\frac{2}{3}\right)$ $\Rightarrow \alpha=48.18^{\circ}$

Similarly

$$
\begin{array}{ll}
\cos \beta=\frac{\vec{r} \cdot \hat{\jmath}}{|\vec{r}||\hat{\jmath}|}=\frac{(2 i-2 j-k) \cdot \mathrm{j}}{(3) \cdot 1}=\frac{0-2+0}{3}=\frac{-2}{3} \Rightarrow \beta=\cos ^{-\gamma}\left(\frac{2}{3}\right) & \Rightarrow \beta=131.81^{\prime} \\
\cos \gamma=\frac{\vec{r} \cdot \hat{k}}{|\vec{r}||\hat{k}|}=\frac{(2 i-2 j-k) \cdot \mathrm{k}}{(3) \cdot 1}=\frac{0+0-1}{3}=\frac{-1}{3} \Rightarrow \gamma=\cos ^{-1}\left(\frac{2}{3}\right) & \Rightarrow \gamma=109.47^{0}
\end{array}
$$

Q\#20: Find the angles which the vector $\vec{a}=3 i-6 j+2 k$ makes with the coordinate axes.

Solution:

Let vector \vec{a} makes makes an angle α, β and γ with x , y and z -axes.
Given vector

$$
\begin{aligned}
& \vec{a}=3 i-6 j+2 k \\
&|\vec{a}|=\sqrt{(3)^{2}+(-6)^{2}+(2)^{2}}=\sqrt{9+36+4}=\sqrt{49} \\
& \Rightarrow|\vec{a}|=7
\end{aligned}
$$

Taking dot product of \vec{a} with i, j and k unit vetors.

$$
\vec{a} \cdot \hat{\imath}=|\vec{a}||\hat{\imath}| \cos \alpha
$$

$$
\cos \alpha=\frac{\vec{a} \cdot \hat{\imath}}{|\vec{a}||\hat{\imath}|}=\frac{(3 i-6 j+2 k) \cdot \mathrm{i}}{(7)(1)}=\frac{3+0+0}{7}=\frac{3}{7} \Rightarrow \alpha=\cos ^{-1}\left(\frac{3}{7}\right) \Rightarrow \alpha=64.62^{0}
$$

Similarly

$$
\begin{array}{lll}
\cos \beta=\frac{\vec{a} \cdot \hat{j}}{|\vec{a}||\hat{\jmath}|}=\frac{(3 i-6 j+2 k) \cdot \mathrm{j}}{(7)(1)}=\frac{0-6+0}{7}=\frac{-6}{7} \Rightarrow \beta=\cos ^{-1}\left(\frac{-6}{7}\right) \Rightarrow & \beta=149^{0} \\
\cos \gamma=\frac{\vec{a} \cdot \hat{k}}{|\vec{a}||\hat{k}|}=\frac{(3 i-6 j+2 k) \cdot \mathrm{k}}{(7)(1)}=\frac{0+0+2}{7}=\frac{2}{7} \Rightarrow \gamma=\cos ^{-1}\left(\frac{2}{7}\right) \Rightarrow & \gamma=73.39^{0}
\end{array}
$$

Q\#21:Prove that $\left|\overrightarrow{r_{1}} \cdot \overrightarrow{\boldsymbol{r}_{2}}\right| \leq\left|\overrightarrow{\boldsymbol{r}_{1}}\right|\left|\overrightarrow{\boldsymbol{r}_{2}}\right| \quad$ and State the condition for

(i) $\overrightarrow{r_{1}} \cdot \overrightarrow{r_{2}}=\left|\overrightarrow{r_{1}}\right|\left|\overrightarrow{r_{2}}\right|$
(ii) $\overrightarrow{r_{1}} \cdot \overrightarrow{\boldsymbol{r}_{2}}=-\left|\overrightarrow{r_{1}}\right|\left|\overrightarrow{r_{2}}\right|$

Solution: By using definition of dot product

$$
\overrightarrow{r_{1}} \cdot \overrightarrow{r_{2}}=\left|\overrightarrow{r_{1}}\right|\left|\overrightarrow{r_{2}}\right| \cos \theta
$$

If $\cos \theta=1$ then

$$
\begin{equation*}
\overrightarrow{r_{1}} \cdot \overrightarrow{r_{2}}=\left|\overrightarrow{r_{1}}\right|\left|\overrightarrow{r_{2}}\right| \tag{i}
\end{equation*}
$$

If $\cos \theta<1$ then

$$
\begin{equation*}
\overrightarrow{r_{1}} \cdot \overrightarrow{r_{2}}<\left|\overrightarrow{r_{1}}\right|\left|\overrightarrow{r_{2}}\right| \tag{ii}
\end{equation*}
$$

Combining (i) and (ii)

$$
\overrightarrow{r_{1}} \cdot \overrightarrow{r_{2}} \leq\left|\overrightarrow{r_{1}}\right|\left|\overrightarrow{r_{2}}\right|
$$

Taking modulus sign on both sides

$$
\left|\overrightarrow{r_{1}} \cdot \overrightarrow{r_{2}}\right| \leq\left|\overrightarrow{r_{1}}\right|\left|\overrightarrow{r_{2}}\right|
$$

Hence proved
(i) $\quad \overrightarrow{r_{1}} \cdot \overrightarrow{r_{2}}=\left|\overrightarrow{r_{1}}\right|\left|\overrightarrow{r_{2}}\right|$

This condition hold, if $\cos \theta=1$ or $\theta=0^{0}$
(ii) $\quad \overrightarrow{r_{1}} \cdot \overrightarrow{r_{2}}=-\left|\overrightarrow{r_{1}}\right|\left|\overrightarrow{r_{2}}\right|$

This condition hold, if $\cos \theta=-1$ or $\theta=180^{\circ}$
Q\#22:Use scalar product to prove that the triangle with vertices $\mathbf{A}(1,0,1), B(1,1,1)$ and $\mathbf{C}(1,1,0)$ is a right isosceles triangle.
Solution: Given vertices of $\triangle A B C$ are $\mathrm{A}(1,0,1), \mathrm{B}(1,1,1)$ and $\mathrm{C}(1,1,0)$
$\overrightarrow{A B}=p . v$ of $B-p . v$ of $A=B(1,1,1)-A(1,0,1)$
$=(1-1) \hat{\imath}+(1-0) \hat{\jmath}+(1-1) \hat{k}$

$$
\begin{equation*}
=0 \hat{\imath}+\hat{\jmath}+0 \hat{k}=\hat{\jmath} \text { Then }|\overrightarrow{A B}|=1 \tag{i}
\end{equation*}
$$

$\overrightarrow{B C}=p . v$ of $C-p . v$ of $B=C(1,1,0)-B(1,1,1)$
$=(1-1) \hat{\imath}+(1-1) \hat{\jmath}+(0-1) \hat{k}$
$=0 \hat{\imath}+0 \hat{\jmath}-\hat{k}=-\hat{k} \quad$ Then $|\overrightarrow{B C}|=1$
$\overrightarrow{C A}=p . v$ of $A-p . v$ of $C=B(1,0,1)-A(1,1,0)$
$=(1-1) \hat{\imath}+(0-1) \hat{\jmath}+(1-0) \hat{k}$

$=0 \hat{\imath}-\hat{\jmath}+\hat{k}=-\hat{\jmath}+\hat{k}$, Then $|\overrightarrow{C A}|=\sqrt{2}$
From (i), (ii) \& (iii) $\quad|\overrightarrow{A B}|^{2}+|\overrightarrow{B C}|^{2}=|\overrightarrow{C A}|^{2}$
Hence proved that the triangle is a right isosceles triangle.

Q\#23:The \vec{a} vector of length 5 makes an angle of 30^{0} with the z-axis, its vector projection on xyplane makes an angle 45° with x-axis.the vector projection of a $2^{\text {nd }}$ vector \vec{b} on the z-axis has length 4. The vector projection of \vec{b} on xy-plane has length 6 and makes an angle of $120^{\boldsymbol{0}}$ with x-axis.
(a) Write the component of $\vec{a}+\vec{b}$
(b) Determine the angles that the vector $\vec{a}+\vec{b}$ makes with the coordinate axis.

Solution: $\vec{a} \& \vec{b}$ be the two vectors.
Given that $|\vec{a}|=5$ makes angle $\varphi=30^{\circ}$ with z-axis. Then

$$
\boldsymbol{a}_{z}=|\vec{a}| \cos \varphi=5 \cos 30^{\circ}=\frac{5 \sqrt{3}}{2} \quad \text { and } \quad \theta=45^{\circ}
$$

Projection of \vec{a} on xy-plane $=|\vec{a}| \sin \varphi=5 \cos 30^{\circ}=\frac{5}{2}$

$$
\begin{aligned}
& \boldsymbol{a}_{\boldsymbol{x}}=(|\vec{a}| \sin \varphi) \cos \theta=\frac{5}{2} \cos 45^{\circ}=\frac{5}{2 \sqrt{2}} \\
& \boldsymbol{a}_{\boldsymbol{y}}=(|\vec{a}| \sin \varphi) \sin \theta=\frac{5}{2} \sin 45^{0}=\frac{5}{2 \sqrt{2}}
\end{aligned}
$$

Projection of \vec{b} on $z-$ axis $=|\vec{b}| \cos \varphi$
Projection of \vec{b} on $x y-$ plane $=|\vec{a}| \sin \varphi=6$

$$
\begin{aligned}
\mathrm{b}_{\mathrm{z}} & =|\vec{b}| \cos \varphi=4 \\
\mathrm{~b}_{\mathrm{x}} & =(|\vec{b}| \sin \varphi) \cos \theta=6 \cos 120^{\circ}=6\left(\frac{-1}{2}\right)=-3 \quad \& \quad \theta=120^{\circ} \\
\mathrm{b}_{\mathrm{y}} & =(|\vec{b}| \sin \varphi) \sin \theta=6 \sin 120^{\circ}=6\left(\frac{\sqrt{3}}{2}\right)=3 \sqrt{3}
\end{aligned}
$$

(i) Let $\vec{R}=\vec{a}+\vec{b}$

Components of \vec{R} are

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{x}}=\mathrm{a}_{\mathrm{x}}+\mathrm{b}_{\mathrm{x}}=\frac{5}{2 \sqrt{2}}-3=\frac{5-6 \sqrt{2}}{2 \sqrt{2}}=-1.23 \\
& \mathrm{R}_{\mathrm{y}}=\mathrm{a}_{\mathrm{y}}+\mathrm{b}_{\mathrm{y}}=\frac{5}{2 \sqrt{2}}-3 \sqrt{3}=\frac{5-6 \sqrt{6}}{2 \sqrt{2}}=-3.43 \\
& \mathrm{R}_{\mathrm{z}}=\mathrm{a}_{\mathrm{z}}+\mathrm{b}_{\mathrm{z}}=\frac{5 \sqrt{3}}{2}-4 \quad=\frac{5 \sqrt{3}-8}{2}=0.33
\end{aligned}
$$

Now

$$
\begin{aligned}
& |\vec{R}|=\sqrt{(\mathrm{Rx})^{2}+(\mathrm{Ry})^{2}+(\mathrm{Rz})^{2}}=\sqrt{(-1.23)^{2}+(-3.43)^{2}+(0.33)^{2}} \\
& |\vec{R}|=\sqrt{1.5129+11.7649+0.1089}=\sqrt{13.3867} \\
& |\vec{R}|=3.66
\end{aligned}
$$

(ii) Let $\vec{R}=\vec{a}+\vec{b}$ makes angle α, β and γ with coordinate axis.

By using direction cosines

$$
\begin{aligned}
& \cos \alpha=\frac{R_{x}}{|\vec{R}|}=\frac{-1.23}{3.66} \Rightarrow \alpha=\cos ^{-1}\left(\frac{-1.23}{3.66}\right) \Rightarrow \alpha=90.20^{\circ} \\
& \cos \beta=\frac{R_{y}}{|\vec{R}|}=\frac{-3.43}{3.66} \Rightarrow \beta=\cos -1\left(\frac{-3.43}{3.66}\right) \Rightarrow \beta=159.60^{\circ} \\
& \cos \gamma=\frac{R_{y}}{|\vec{R}|}=\frac{0.33}{3.66} \Rightarrow \gamma=\cos -1\left(\frac{0.33}{3.66}\right) \quad \Rightarrow \gamma=850^{\circ}
\end{aligned}
$$

Q\#24: Prove that the sum of the squares of the diagonals of any parallelogram is equal to the

 sum of squares of it sides.Solution: Consider a parallelogram as shown in figure Let O be the origin. hen $\overrightarrow{O A}=\vec{a}$ and $\overrightarrow{O B}=\vec{b}$

Here $\overrightarrow{A B}$ and $\overrightarrow{O C}$ are the diagonal of parallelogram.

$$
\begin{aligned}
& \overrightarrow{A B}=\vec{b}-\vec{a} \\
& \overrightarrow{O C}=\vec{a}+\vec{b}
\end{aligned}
$$

We have to prove

$$
|\overrightarrow{A B}|^{2}+|\overrightarrow{O C}|^{2}=|\overrightarrow{O A}|^{2}+|\overrightarrow{B C}|^{2}+|\overrightarrow{O B}|^{2}+|\overrightarrow{A C}|^{2}
$$

In this case $\quad|\overrightarrow{O A}|=|B C|$ and $|\overrightarrow{O B}|=|\overrightarrow{A C}|$

$$
\begin{align*}
& |\overrightarrow{A B}|^{2}+|\overrightarrow{O C}|^{2}=|\overrightarrow{O A}|^{2}+|\overrightarrow{O A}|^{2}+|\overrightarrow{O B}|^{2}+|\overrightarrow{O B}|^{2} \\
& |\overrightarrow{A B}|^{2}+|\overrightarrow{O C}|^{2}=2|\overrightarrow{O A}|^{2}+2|\overrightarrow{O B}|^{2} \\
& |\overrightarrow{A B}|^{2}+|\overrightarrow{O C}|^{2}=2\left(\left.| | \overrightarrow{O A}\right|^{2}+|\overrightarrow{O B}|^{2}\right) \cdots-\cdots-\cdots \tag{i}
\end{align*}
$$

Now taking L.H.S of (i)

$$
\begin{aligned}
|\overrightarrow{A B}|^{2}+|\overrightarrow{O C}|^{2} & =|\vec{b}-\vec{a}|^{2}+|\vec{a}+\vec{b}|^{2}=(\vec{b}-\vec{a}) \cdot(\vec{b}-\vec{a})+(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b}) \\
& =\vec{b} \cdot \vec{b}-\vec{b} \cdot \vec{a}-\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b} \\
& =|\vec{b}|^{2}-2 \vec{a} \cdot \vec{b}+|\vec{a}|^{2}+|\vec{a}|^{2}+2 \vec{a} \cdot \vec{b}+|\vec{b}|^{2} \\
& =2|\vec{a}|^{2}+2|\vec{b}|^{2} \\
& =2\left(|\vec{a}|^{2}+|\vec{b}|^{2}\right) \\
|\overrightarrow{A B}|^{2}+|\overrightarrow{O C}|^{2} & =2\left(|\overrightarrow{O A}|^{2}+|\overrightarrow{O B}|^{2}\right)
\end{aligned}
$$

Hence proved.

Q\#25: Show that the median through the vertex of an isosceles triangle is perpendicular to the base.

Solution: Consider an isosceles triangle OACB. Let O be the origin.

$$
\overrightarrow{O A}=\vec{a} ; \overrightarrow{O B}=\vec{b} ; \overrightarrow{O C}=\vec{a}+\vec{b} \text { and } \overrightarrow{A B}=\vec{b}-\vec{a}
$$

We have to prove $\overrightarrow{O C} \perp \overrightarrow{A B} \Longrightarrow \overrightarrow{O C} \cdot \overrightarrow{A B}=0$
Now $\quad \overrightarrow{O C} \cdot \overrightarrow{A B}=(\vec{a}+\vec{b}) \cdot(\vec{b}-\vec{a})$

$$
=\vec{a} \cdot \vec{b}-\vec{a} \cdot \vec{a}+\vec{b} \cdot \vec{b}-\vec{b} \cdot \vec{a}
$$

$$
=|\vec{b}|^{2}-|\vec{a}|^{2} \quad \text { In isosceles triangle }|\vec{a}|=|\vec{b}|
$$

$$
=|\vec{a}|^{2}-|\vec{a}|^{2}=0
$$

Hence

$$
\overrightarrow{O C} \cdot \overrightarrow{A B}=0
$$

$$
\text { Hence proved } \quad \overrightarrow{O C} \perp \overrightarrow{A B}
$$

Q\#26: Prove that in any triangle the median to the hypotenuse is equal to one-half the hypotenuse.

Solution: Let $\triangle A B C$ and O be the origin. Then $\overrightarrow{O A}=\vec{a} ; \overrightarrow{O B}=\vec{b}$ and $\overrightarrow{A B}=\vec{b}-\vec{a}$
Let M be the midpoint of hypotenuse AB . Then $\overrightarrow{O M}=\frac{\vec{a}+\vec{b}}{2}$
In this case : $\quad \overrightarrow{O A} \perp \overrightarrow{O B} \Rightarrow \quad \vec{a} \cdot \vec{b}=0------(i)$
We have to prove $\quad|\overrightarrow{O M}|=\frac{1}{2}|\overrightarrow{A B}|$
Now $|\overrightarrow{A B}|^{2}=|\vec{b}-\vec{a}|^{2}=(\vec{b}-\vec{a}) \cdot(\vec{b}-\vec{a})=\vec{b} \cdot \vec{b}-\vec{b} \cdot \vec{a}-\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{a}$

$$
=|\vec{b}|^{2}+|\vec{a}|^{2}-2 \vec{a} \cdot \vec{b}
$$

$$
=|\vec{a}|^{2}+|\vec{b}|^{2}-2(0)
$$

\therefore From (i)

$$
\begin{equation*}
|\overrightarrow{A B}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2} \tag{ii}
\end{equation*}
$$

Now

$$
\begin{align*}
& |\overrightarrow{O M}|^{2}=\left|\frac{\vec{a}+\vec{b}}{2}\right|^{2}=\frac{(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})}{4}= \\
& |\overrightarrow{O M}|^{2}=\frac{|\vec{a}|^{2}+|\vec{b}|^{2}}{4}=\frac{|\overrightarrow{A B}|^{2}}{4} \tag{ii}\\
& |\overrightarrow{O M}|^{2}=\left(\frac{|\overrightarrow{A B}|}{2}\right)^{2}
\end{align*}
$$

$$
\frac{\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}}{4}=\frac{|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}}{4}=\frac{|\vec{a}|^{2}+|\vec{b}|^{2}+2(0)}{4}
$$

Taking square- root on both sides

$$
|\overrightarrow{O M}|=\frac{1}{2}|\overrightarrow{A B}| \quad \text { Hence proved. }
$$

Q\#27: Show that the line joining consecutive mid-point of the sides of any square form a square.

Solution :Let OACB be a square whose position vectors are
$\overrightarrow{O A}=\vec{a} ; \overrightarrow{O B}=\vec{b} ; \overrightarrow{O C}=\vec{a}+\vec{b}$
Let $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H be the mid points of sides of its square as shown in figure whose position vector are

$$
\overrightarrow{O E}=\frac{\vec{b}}{2} ; \overrightarrow{O F}=\frac{2 \vec{b}+\vec{a}}{2} ; \overrightarrow{O G}=\frac{2 \vec{a}+\vec{b}}{2} ; \overrightarrow{O H}=\frac{\vec{a}}{2}
$$

From figure $\overrightarrow{O A} \perp \overrightarrow{O B} \quad \Rightarrow \quad \vec{a} \cdot \vec{b}=0$
And

$$
\begin{equation*}
|\vec{a}|=|\vec{b}| \tag{i}
\end{equation*}
$$

We have to prove $|\overrightarrow{H G}|=|\overrightarrow{G F}|=|\overrightarrow{F E}|=|\overrightarrow{E H}|$ and $\overrightarrow{H G} \perp \overrightarrow{H E}$

$$
\begin{aligned}
& \therefore \overrightarrow{H G}=\overrightarrow{O G}-\overrightarrow{O H}=\frac{2 \vec{a}+\vec{b}}{2}-\frac{\vec{a}}{2}=\frac{2 \vec{a}+\vec{b}-\vec{a}}{2}=\frac{\vec{a}+\vec{b}}{2} \\
&|\overrightarrow{H G}|^{2}=\left|\frac{\vec{a}+\vec{b}}{2}\right|^{2}=\frac{(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})}{4}=\frac{\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}}{4}=\frac{|\vec{b}|^{2}+|\vec{a}|^{2}+2 \vec{a} \cdot \vec{b}}{4}=\frac{|\vec{a}|^{2}+|\vec{a}|^{2}+2(0)}{4}=\frac{2|\vec{a}|^{2}}{4}=\frac{|\vec{a}|^{2}}{2} \therefore \text { From(i)\&(ii) } \\
&|\overrightarrow{H G}|=\frac{|\vec{a}|}{\sqrt{2}}
\end{aligned}
$$

$$
\therefore \overrightarrow{G F}=\overrightarrow{O F}-\overrightarrow{O G}=\frac{2 \vec{b}+\vec{a}}{2}-\frac{2 \vec{a}+\vec{b}}{2}=\frac{2 \vec{b}+\vec{a}-2 \vec{a}-\vec{b}}{2}=\frac{\vec{b}-\vec{a}}{2}
$$

$$
|\overrightarrow{G F}|^{2}=\left|\frac{\vec{b}-\vec{a}}{2}\right|^{2}=\frac{(\vec{b}-\vec{a}) \cdot(\vec{b}-\vec{a})}{4}=\frac{\vec{b} \cdot \vec{b}+\vec{b} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{a}}{4}=\frac{|\vec{b}|^{2}+|\vec{a}|^{2}-2 \vec{a} \cdot \vec{b}}{4}=\frac{|\vec{a}|^{2}+|\vec{a}|^{2}-2(0)}{4}=\frac{2|\vec{a}|^{2}}{4}=\frac{|\vec{a}|^{2}}{2} \therefore \text { From(i)\&(ii) }
$$

$$
|\overrightarrow{G F}|=\frac{|\vec{a}|}{\sqrt{2}}
$$

$$
\therefore \overrightarrow{F E}=\overrightarrow{O E}-\overrightarrow{O F}=\frac{\vec{b}}{2}-\frac{2 \vec{b}+\vec{a}}{2}-\frac{\vec{b}-2 \vec{b}-\vec{a}}{2}=\frac{-\vec{b}-\vec{a}}{2}=\frac{-(\vec{a}+\vec{b})}{2}
$$

$$
|\overrightarrow{F E}|^{2}=\left|\frac{-(\vec{a}+\vec{b})}{2}\right|^{2}=\frac{(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})}{4}=\frac{\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}}{4}=\frac{|\vec{b}|^{2}+|\vec{a}|^{2}+2 \vec{a} \cdot \vec{b}}{4}=\frac{|\vec{a}|^{2}+|\vec{a}|^{2}+2(0)}{4}=\frac{2|\vec{a}|^{2}}{4}=\frac{|\vec{a}|^{2}}{2} \therefore \text { From(i)\&(ii) }
$$

$$
|\overrightarrow{F E}|=\frac{|\vec{a}|}{\sqrt{2}}-(\mathrm{v})
$$

$$
\therefore \overrightarrow{E H}=\overrightarrow{O H}-\overrightarrow{O E}=\frac{\vec{a}}{2}-\frac{\vec{b}}{2}=\frac{\vec{a}-\vec{b}}{2}
$$

$$
|\overrightarrow{E H}|^{2}=\left|\frac{\vec{a}-\vec{b}}{2}\right|^{2}=\frac{(\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b})}{4}=\frac{\vec{a} \cdot \vec{a}-\vec{a} \cdot \vec{b}-\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}}{4}=\frac{|\vec{a}|^{2}+|\vec{b}|^{2}-2 \vec{a} \cdot \vec{b}}{4}=\frac{|\vec{a}|^{2}+|\vec{a}|^{2}+2(0)}{4}=\frac{2|\vec{a}|^{2}}{4}=\frac{|\vec{a}|^{2}}{2} \therefore \text { From(i)\&(ii) }
$$

$$
\begin{equation*}
|\overrightarrow{E H}|=\frac{|\vec{a}|}{\sqrt{2}}- \tag{vi}
\end{equation*}
$$

Now $\quad \overrightarrow{H G} \cdot \overrightarrow{E H}=\left(\frac{\vec{a}+\vec{b}}{2}\right) \cdot\left(\frac{\vec{a}-\vec{b}}{2}\right)=\frac{|\vec{a}|^{2}-|\vec{b}|^{2}}{4}=\frac{|\vec{a}|^{2}-|\vec{a}|^{2}}{4}=\frac{0}{4}$
\therefore From (ii)
$\overrightarrow{H G} \cdot \overrightarrow{E H}=0$
This shows that $\quad \overrightarrow{H G} \perp \overrightarrow{E H}$.
Hence proved.

Q\#28: Derive a formula for distance between two points in space.

Solution:

Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ be the two points in the space and O be the origin. Let Position vectors.
$\overrightarrow{O P}=\mathrm{x}_{1} \hat{\imath}+\mathrm{y}_{1} \hat{\jmath}+\mathrm{z}_{1} \hat{k} \quad$ and $\overrightarrow{O Q}=\mathrm{x}_{2} \hat{\imath}+\mathrm{y}_{2} \hat{\jmath}+\mathrm{z}_{2} \hat{k}$ then

$$
\begin{aligned}
\overrightarrow{P Q} & =\overrightarrow{O Q}-\overrightarrow{O P} \\
& =\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) \hat{\imath}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) \hat{\jmath}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right) \hat{k}
\end{aligned}
$$

Now

Distance from P to $\mathrm{Q}=|\overrightarrow{P Q}|=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}}$
Q\#29: (i) Show that the sum of the squares of the diagonals of any quadrilateral is equal two twice the sum of the squares of the line segments joining the mid points of the opposite sides.

Solution: Let OACB be a quadrilateral whose position vectors are $\overrightarrow{O A}=\vec{a} ; \overrightarrow{O B}=\vec{b}$
$\overrightarrow{O C}$ and $\overrightarrow{A B}$ be diagonals of quadrilateral. As shown in the figure.

$$
\overrightarrow{O C}=\vec{a}+\vec{b} \text { and } \overrightarrow{A B}=\vec{b}-\vec{a}
$$

Let E,F,G and H be the mid points of sides of its quadrilateral as shown in figure whose position vector are

$$
\overrightarrow{O E}=\frac{\vec{b}}{2} ; \overrightarrow{O F}=\frac{2 \vec{b}+\vec{a}}{2} ; \overrightarrow{O G}=\frac{2 \vec{a}+\vec{b}}{2} ; \overrightarrow{O H}=\frac{\vec{a}}{2}
$$

We have to prove $|\overrightarrow{A B}|^{2}+|\overrightarrow{O C}|^{2}=2\left(|\overrightarrow{G E}|^{2}+|\overrightarrow{F H}|^{2}\right)$
$\therefore \overrightarrow{F H}=\overrightarrow{O H}-\overrightarrow{O F}=\frac{\vec{a}}{2}-\frac{2 \vec{b}+\vec{a}}{2}=\frac{\vec{a}-2 \vec{b}-\vec{a}}{2}=-\frac{2 \vec{b}}{2}=-\vec{b} \quad \Rightarrow \quad|\overrightarrow{F H}|^{2}=|\vec{b}|^{2}$
$\therefore \overrightarrow{G E}=\overrightarrow{O E}-\overrightarrow{O G}=\frac{\vec{b}}{2}-\frac{2 \vec{a}+\vec{b}}{2}=\frac{\vec{b}-2 \vec{a}-\vec{b}}{2}=-\frac{2 \vec{a}}{2}=-\vec{a} \quad \Rightarrow \quad|\overrightarrow{G E}|^{2}=|\vec{a}|^{2}$
Now

$$
\begin{align*}
|\overrightarrow{A B}|^{2}+|\overrightarrow{O C}|^{2} & =|\vec{b}-\vec{a}|^{2}+|\vec{a}+\vec{b}|^{2}=(\vec{b}-\vec{a}) \cdot(\vec{b}-\vec{a})+(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b}) \tag{ii}\\
& =\vec{b} \cdot \vec{b}-\vec{b} \cdot \vec{a}-\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b} \\
& =|\vec{b}|^{2}-2 \vec{a} \cdot \vec{b}+|\vec{a}|^{2}+|\vec{a}|^{2}+2 \vec{a} \cdot \vec{b}+|\vec{b}|^{2} \\
& =2|\vec{a}|^{2}+2|\vec{b}|^{2}=2\left(|\vec{a}|^{2}+|\vec{b}|^{2}\right) \\
|\overrightarrow{A B}|^{2}+|\overrightarrow{O C}|^{2} & =2\left(|\overrightarrow{G E}|^{2}+|\overrightarrow{F H}|^{2}\right) \quad \text { Hence proved. }
\end{align*}
$$

Q\#29: (ii)Prove that the altitudes of a triangle are concurrent .

Solution: Let $\overrightarrow{O A}=\vec{a} ; \overrightarrow{O B}=\vec{b}, \overrightarrow{O C}=\vec{c}$ be the position vectors of $\triangle A B C$.
Let O be concurrent point. $\overrightarrow{A D}, \overrightarrow{B E}$ and $\overrightarrow{C F}$ be the altitude of triangle .
From figure $\overrightarrow{O A} \| \overrightarrow{A D}$ then $\overrightarrow{A D}=\lambda \overrightarrow{O A}=\lambda \vec{a}$

$$
\begin{align*}
\overrightarrow{A D} \perp \overrightarrow{B C} & \text { then } \\
\overrightarrow{A D} \cdot \overrightarrow{B C} & =0 \\
\lambda \vec{a} \cdot(\vec{c}-\vec{b}) & =0 \\
\vec{a} \cdot(\vec{c}-\vec{b}) & =0 \\
\vec{a} \cdot \vec{c}-\vec{a} \cdot \vec{b} & =0 \\
\vec{a} \cdot \vec{b} & =\vec{a} \cdot \vec{c} \tag{i}
\end{align*}
$$

Again From figure $\overrightarrow{B E} \| \overrightarrow{O B}$ then $\overrightarrow{B E}=\lambda \overrightarrow{O B}=\uparrow$

$$
\begin{align*}
\overrightarrow{B E} \cdot \overrightarrow{C A} & =0 \\
\lambda \vec{b} \cdot(\vec{a}-\vec{c}) & =0 \\
\vec{b} \cdot(\vec{a}-\vec{c}) & =0 \\
\vec{b} \cdot \vec{a}-\vec{b} \cdot \vec{c} & =0 \\
\vec{a} \cdot \vec{b} & =\vec{b} \cdot \vec{c} \tag{ii}
\end{align*}
$$

Comparing (i) and (ii)

$$
\begin{array}{r}
\vec{a} \cdot \vec{c}=\vec{b} \cdot \\
\vec{a} \cdot \vec{c}-\vec{b} \cdot \vec{c}=0 \\
(\vec{a}-\vec{b}) \cdot \vec{c}=0 \\
\lambda \vec{c} \cdot(\vec{a}-\vec{b})=0 \\
\overrightarrow{C F} \cdot \overrightarrow{A B}=0
\end{array}
$$

This shows that $\overrightarrow{C F} \perp \overrightarrow{A B}$
here $\overrightarrow{C F}=\lambda \vec{c}=\lambda \overrightarrow{O C}$ then $\overrightarrow{C F} \| \overrightarrow{O C}$
Hence proved.

Q\#29: (iii) Example\#03: Prove that the diagonal of a rhombus intersect each other at right angle.

Solution: Consider a rhombus OACB. Suppose $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}$
Since sides of rhombus are equal, therefore $|\vec{a}|=|\vec{b}|-----(i)$
Let $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=\vec{b}-\vec{a}$

$$
\overrightarrow{O C}=\overrightarrow{O A}+\overrightarrow{A C}=\vec{a}+\vec{b} \text { are the diagonal of a rhombus. }
$$

We have to prove. $\overrightarrow{O C} \perp \overrightarrow{A B} \quad$ for this $\quad \overrightarrow{O C} \cdot \overrightarrow{A B}=0$
Now $\overrightarrow{O C} \cdot \overrightarrow{A B}=(\vec{a}+\vec{b}) \cdot(\vec{b}-\vec{a})$

$$
=(\vec{b}+\vec{a}) \cdot(\vec{b}-\vec{a})=\vec{b} \cdot \vec{b}-\vec{b} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{a}=|\vec{b}|^{2}-|\vec{a}|^{2}=|\vec{b}|^{2}-|\vec{b}|^{2} \quad \therefore \text { From (i) }
$$

$$
\overrightarrow{O C} \cdot \overrightarrow{A B}=0
$$ hence proved $\overrightarrow{O C} \perp \overrightarrow{A B}$

Q\#29: (iv) Example\#02:Prove that the right bisectors of the sides of a triangle are concurrent.
Solution: Consider a $\triangle A B C$ and O be the origin. L, M and N be the mid points of sides of triangle ABC after drawing the perpendicular bisectors of each side. If $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}$ and $\overrightarrow{O C}=\vec{c}$ Let $\overrightarrow{O M} \perp \overrightarrow{A C}$ and $\overrightarrow{O N} \perp \overrightarrow{A B}$ then we have to prove that $\overrightarrow{O L} \perp \overrightarrow{B C}$
$\overrightarrow{O M}=\frac{\vec{a}+\vec{c}}{2}, \overrightarrow{O N}=\frac{\vec{a}+\vec{b}}{2}$ and $\overrightarrow{O L}=\frac{\vec{b}+\vec{c}}{2}$
$\overrightarrow{A B}=\vec{b}-\vec{a} ; \overrightarrow{B C}=\vec{c}-\vec{b}$ and $\overrightarrow{A C}=\vec{c}-\vec{a}$
Now $\overrightarrow{O M} \perp \overrightarrow{A C}$
Then $\overrightarrow{O M} \cdot \overrightarrow{A C}=0 \Longrightarrow\left(\frac{\vec{a}+\vec{c}}{2}\right) \cdot(\vec{c}-\vec{a})=0 \Longrightarrow(\vec{c}+\vec{a}) \cdot(\vec{c}-\vec{a})=0$

$$
c^{2}-a^{2}=0-----(i)
$$

Now $\overrightarrow{O N} \perp \overrightarrow{A B}$

Then $\overrightarrow{O N} \cdot \overrightarrow{A B}=0 \Rightarrow\left(\frac{\vec{a}+\vec{b}}{2}\right) \cdot(\vec{b}-\vec{a})=0 \Rightarrow(\vec{b}+\vec{a}) \cdot(\vec{b}-\vec{a})=0$

$$
\begin{equation*}
b^{2}-a^{2}=0 \tag{ii}
\end{equation*}
$$

Subtracting (i) \& (ii)

$$
\begin{aligned}
\mathrm{c}^{2}-\mathrm{b}^{2} & =0 \\
(\vec{c}+\vec{b}) \cdot(\vec{c}-\vec{b}) & =0 \\
\left(\frac{\vec{b}+\vec{c}}{2}\right) \cdot(c-\vec{b}) & =0 \\
\overrightarrow{O L} \cdot \overrightarrow{B C} & =0
\end{aligned}
$$

This shows that $\overrightarrow{O L} \perp \overrightarrow{B C}$
Hence proved that the right bisectors of the sides of a triangle are concurrent.

Q\#29:(v) Example\#06:Prove that an angle inscribed in a semi-circle is a right angle.

Solution: Consider a semi-circle as shown in the figure.
Suppose $\overrightarrow{O A}=\vec{a} \quad, \overrightarrow{O B}=-\vec{a}$ and $\overrightarrow{O P}=\vec{b}$
Since $|\vec{a}|=|\vec{b}|=$ radius of a circle ------(i)
Let $\quad \overrightarrow{P A}=\overrightarrow{O A}-\overrightarrow{O P}=\vec{a}-\vec{b}$

$$
\overrightarrow{B P}=\overrightarrow{O P}-\overrightarrow{O B}=\vec{b}-(-\vec{a})=\vec{b}+\vec{a}
$$

Be the diagonal of a rhombus.
We have to prove. $\overrightarrow{B P} \perp \overrightarrow{P A} \quad$ for this $\quad \overrightarrow{B P} \cdot \overrightarrow{P A}=0$
Now $\quad \overrightarrow{B P} \cdot \overrightarrow{P A}=(\vec{b}+\vec{a}) \cdot(\vec{b}-\vec{a})=\vec{b} \cdot \vec{b}-\vec{b} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{a}=|\vec{b}|^{2}-|\vec{a}|^{2}$

$$
=|\vec{b}|^{2}-|\vec{b}|^{2}
$$

$\overrightarrow{B P} \cdot \overrightarrow{P A}=0 \quad$ Hence $\quad \overrightarrow{B P} \perp \overrightarrow{P A}$
Hence proved that an angle inscribed in a semi-circle is a right angle.

Q\#30: Prove that by using vectors

(i) $\quad a=b \cos \gamma+c \cos \beta$

Solution: Let $\triangle A B C$ and \vec{a}, \vec{b} and \vec{c} be the three vectors along sides of triangle AB, BC and CA respectively, taken one way round.

Then

$$
\begin{gathered}
\vec{a}+\vec{b}+\vec{c}=0 \\
\vec{a}=-\vec{b}-\vec{c} \\
\vec{a}=-(\vec{b}+\vec{c})
\end{gathered}
$$

Taking dot product with \vec{a} vector

$$
\begin{aligned}
& \vec{a} \cdot \vec{a}=-(\vec{b}+\vec{c}) \cdot \vec{a} \\
& |\vec{a}|^{2}=-\vec{b} \cdot \vec{a}-\vec{c} \cdot \vec{a} \\
& |\vec{a}|^{2}=-|\vec{b}||\vec{a}| \cos (\pi-\gamma)-|\vec{c}||\vec{a}| \cos (\pi-\beta)
\end{aligned}
$$

Dividing both sides by $|\vec{a}|$

$$
|\vec{a}|=|\vec{b}| \cos \gamma+|\vec{c}| \cos \beta
$$

(ii) $b=c \cos \alpha+a \cos \gamma$

Solution: Let $\triangle A B C$ and \vec{a}, \vec{b} and \vec{c} be the three vectors along sides of triangle AB, BC and CA respectively, taken one way round.

Then $\vec{a}+\vec{b}+\vec{c}=0$

$$
\begin{aligned}
\vec{b} & =-\vec{c}-\vec{a} \\
\vec{b} & =-(\vec{c}+\vec{a})
\end{aligned}
$$

Taking dot product with \vec{b} vector

$$
\begin{aligned}
\vec{b} \cdot \vec{b} & =-(\vec{c}+\vec{a}) \cdot \vec{b} \\
|\vec{b}|^{2} & =-\vec{c} \cdot \vec{b}-\vec{a} \cdot \vec{b} \\
|\vec{b}|^{2} & =-|\vec{c}||\vec{b}| \cos (\pi-\alpha)-|\vec{a}||\vec{b}| \cos (\pi-\gamma)
\end{aligned}
$$

Dividing both sides by $|\vec{b}|$

$$
|\vec{b}|=|\vec{c}| \cos \alpha+|\vec{a}| \cos \gamma
$$

(iii) $\boldsymbol{c}=a \cos \beta+b \cos \alpha$

Solution: Let $\triangle A B C$ and \vec{a}, \vec{b} and \vec{c} be the three vectors along sides of triangle AB, BC and CA respectively, taken one way round.

Then

$$
\begin{gathered}
\vec{a}+\vec{b}+\vec{c}=0 \\
\vec{c}=-\vec{a}-\vec{b} \\
\vec{c}=-(\vec{a}+\vec{b})
\end{gathered}
$$

Taking dot product with \vec{c} vector

$$
\begin{aligned}
& \vec{c} \cdot \vec{c}=-(\vec{a}+\vec{b}) \cdot \vec{c} \\
& |\vec{c}|^{2}=-\vec{a} \cdot \vec{c}-\vec{b} \cdot \vec{c} \\
& |\vec{c}|^{2}=-|\vec{a}||\vec{c}| \cos (\pi-\beta)-|\vec{b}||\vec{c}| \cos (\pi-\alpha)
\end{aligned}
$$

Dividing both sides by $|\vec{a}|$

$$
|\vec{c}|=|\vec{a}| \cos \beta+|\vec{b}| \cos \alpha
$$

(iv) $a^{2}=b^{2}+c^{2}-2 b c \cos \alpha$

Solution: Let $\triangle A B C$ and \vec{a}, \vec{b} and \vec{c} be the three vectors along sides of triangle AB, BC and CA respectively, taken one way round.

Then $\vec{a}+\vec{b}+\vec{c}=0$

$$
\begin{aligned}
\vec{a} & =-\vec{b}-\vec{c} \\
\vec{a} & =-(\vec{b}+\vec{c})
\end{aligned}
$$

Taking dot product with \vec{c} vector

$$
\begin{aligned}
& \vec{a} \cdot \vec{a}=[-(\vec{b}+\vec{c})] \cdot[-(\vec{b}+\vec{c})]=(\vec{b}+\vec{c}) \cdot(\vec{b}+\vec{c}) \\
& |\vec{a}|^{2}=\vec{b} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{b}+\vec{c} \cdot \vec{c} \\
& |\vec{a}|^{2}=|\vec{b}|^{2}+|\vec{c}|^{2}+2 \vec{b} \cdot \vec{c} \\
& |\vec{a}|^{2}=|\vec{b}|^{2}+|\vec{c}|^{2}+2|\vec{b}||\vec{c}| \cos (\pi-\alpha) \\
& |\vec{a}|^{2}=|\vec{b}|^{2}+|\vec{c}|^{2}-2|\vec{b}||\vec{c}| \cos \alpha
\end{aligned}
$$

(v) $b^{2}=a^{2}+c^{2}-2 a c \cos \beta$

Solution: Let $\triangle A B C$ and \vec{a}, \vec{b} and \vec{c} be the three vectors along sides of triangle AB, BC and CA respectively, taken one way round.

Then $\vec{a}+\vec{b}+\vec{c}=0$

$$
\begin{aligned}
\vec{b} & =-\vec{a}-\vec{c} \\
\vec{b} & =-(\vec{a}+\vec{c})
\end{aligned}
$$

Taking dot product with \vec{c} vector
$\vec{b} \cdot \vec{b}=[-(\vec{a}+\vec{c})] \cdot[-(\vec{a}+\vec{c})=(\vec{a}+\vec{c}) \cdot(\vec{a}+\vec{c})$
$|\vec{b}|^{2}=\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{c}+\vec{c} \cdot \vec{a}+\vec{c} \cdot \vec{c}$
$|\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{c}|^{2}+2 \vec{a} \cdot \vec{c}$

$|\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{c}|^{2}+2|\vec{a}||\vec{c}| \cos (\pi-\beta)$
$|\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{c}|^{2}-2|\vec{b}||\vec{c}| \cos \beta$
$(v i) c^{2}=a^{2}+b^{2}-2 a b \cos \gamma$
Solution: Let $\triangle A B C$ and \vec{a}, \vec{b} and \vec{c} be the three vectors along sides of triangle AB, BC and CA respectively, taken one way round.

Then $\vec{a}+\vec{b}+\vec{c}=0$

$$
\begin{aligned}
\vec{c} & =-\vec{a}-\vec{b} \\
\vec{c} & =-(\vec{a}+\vec{b})
\end{aligned}
$$

Taking dot product with \vec{c} vector

$$
\begin{aligned}
& \vec{c} \cdot \vec{c}=[-(\vec{a}+\vec{b})] \cdot[-(\vec{a}+\vec{b})]=(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b}) \\
& |\vec{c}|^{2}=\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b} \\
& |\vec{c}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b} \\
& |\vec{c}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+2|\vec{a}||\vec{b}| \cos (\pi-\gamma) \\
& |\vec{a}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}||\vec{b}| \cos \gamma
\end{aligned}
$$

(vii) $\quad \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \gamma$

Solution: Let $\hat{a}=\mathrm{OA}$ and $\hat{b}=O B$ be the two unit vectors makes angles α and β makes with x -axis. From figure:

$$
\begin{aligned}
\hat{a} & =\widehat{O A}=|\hat{a}| \cos \alpha \quad \hat{\imath}+|\hat{a}| \sin \alpha \hat{\jmath} \\
& =\cos \alpha \hat{\imath}+\sin \alpha \hat{\jmath} \\
\hat{b} & =\widehat{O B}=|\hat{b}| \cos \beta \quad \hat{\imath}+|\hat{b}| \sin \beta \hat{\jmath} \\
& =\cos \beta \quad \hat{\imath}+\sin \beta \hat{\jmath}
\end{aligned}
$$

Taking dot product of \hat{a} with \hat{b} unit vectors.

$$
\hat{a} \cdot \hat{b}=(\cos \alpha \hat{\imath}+\sin \alpha \hat{\jmath}) \cdot(\cos \beta \quad \hat{\imath}
$$

$$
+\sin \beta \hat{\jmath})
$$

$$
\begin{aligned}
& |\hat{a}||\hat{b}| \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \gamma \\
& \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \gamma
\end{aligned}
$$

(viii) $\quad \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \gamma$

Solution: Let $\hat{a}=\mathrm{OA}$ and $\hat{b}=O B$ be the two unit vector makes angles α and β makes with x -axis.

From figure:

$$
\begin{aligned}
\hat{a} & =\mathrm{OA}=|\hat{a}| \cos \alpha \quad \hat{\imath}+|\hat{a}| \sin \alpha \hat{\jmath} \\
& =\cos \alpha \hat{\imath}+\sin \alpha \hat{\jmath} \\
\hat{b} & =\mathrm{OB}=|\hat{b}| \cos \beta \quad \hat{\imath}-|\hat{b}| \sin \beta \hat{\jmath} \\
& =\cos \beta \hat{\imath}-\sin \beta \hat{\jmath}
\end{aligned}
$$

Taking dot product of \hat{a} with \hat{b} unit vectors.

$\hat{a} \cdot \hat{b}=(\cos \alpha \hat{\imath}+\sin \alpha \hat{\jmath}) .(\cos \beta \hat{\imath}-\sin \beta \hat{\jmath})$

$$
\begin{aligned}
|\hat{a}||\hat{b}| \quad \cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \gamma \\
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \gamma
\end{aligned}
$$

Hence proved.
Q\#31:Proved that $\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{a}|}$ is equally inclined with \vec{a} and \vec{b}.
Solution: Let $\quad \vec{u}=\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}$
And α be the angle between \vec{a} and \vec{b}
$1^{\text {st } . ~} \vec{u}$ is inclined at \vec{a} vector.

$$
\therefore|\hat{a}|=|\hat{b}|=1
$$

Q\# 32: The resultant of two vectors \vec{a} and \vec{b} is perpendicular to \vec{a}. Show that the resultant of $25 \vec{a}$ and \vec{b} is perpendicular vector \vec{b} if $|\vec{b}|=5|\vec{a}|$.

Solution: Given \quad Resultant of \vec{a} and \vec{b} is perpendicular to $\vec{a} . \quad(\vec{a}+\vec{b}) \perp \vec{a}$
Then

$$
\begin{align*}
& (\vec{a}+\vec{b}) \cdot \vec{a}=0 \\
& \vec{a} \cdot \vec{a}+\vec{b} \cdot \vec{a}=0 \\
& |\vec{a}|^{2}+\vec{a} \cdot \vec{b}=0 \quad \therefore \vec{a} \cdot \vec{a}=|\vec{a}|^{2} \quad \& \quad \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a} \\
& \vec{a} \cdot \vec{b}=-|\vec{a}|^{2} \tag{i}
\end{align*}
$$

And

$$
|\vec{b}|=5|\vec{a}| \quad \text { or } \quad|\vec{b}|^{2}=25|\vec{a}|^{2}
$$

\qquad
Now we have to prove $25 \vec{a}+\vec{b}$ is perpendicular vector \vec{b}. $(25 \vec{a}+\vec{b}) \perp \vec{b}$
Then

$$
(25 \vec{a}+\vec{b}) \cdot \vec{b}=0
$$

Taking L.H.S $(25 \vec{a}+\vec{b}) \cdot \vec{b}=25 \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{b}=25(\vec{a} \cdot \vec{b})+|\vec{b}|^{2}$

$$
\begin{aligned}
& =25\left(-|\vec{a}|^{2}\right)+25|\vec{a}|^{2} \quad \therefore \text { From }(i) \&(i i) \\
& =-25|\vec{a}|^{2}+25|\vec{a}|^{2}
\end{aligned}
$$

$$
(2 \vec{a}+\vec{b}) \cdot \vec{b}=0
$$

Hence proved $(25 \vec{a}+\vec{b}) \perp \vec{b}$

Q\#33: Find a unit vector parallel to the $x y$-plane and perpendicular to a vector $4 \hat{\boldsymbol{\imath}}-\mathbf{3} \hat{\boldsymbol{\jmath}}+\widehat{\boldsymbol{k}}$.

Solution: Let \hat{u} be a required parallel to the xy-plane.

$$
\begin{gather*}
\hat{u}=x \hat{\imath}+y \hat{\jmath} \\
|\hat{u}|=\sqrt{x^{2}+y^{2}} \text { or }|\hat{u}|^{2}=x^{2}+y^{2} \\
x^{2}+y^{2}=1 \tag{ii}
\end{gather*}
$$

Let $\overrightarrow{\boldsymbol{v}}=4 \hat{\imath}-3 \hat{\jmath}+\hat{k}$
According to given condition. $\quad \hat{u} \perp \vec{v} \quad \hat{u} \cdot \vec{v}=0$

$$
\begin{align*}
(x \hat{\imath}+y \hat{\jmath}) \cdot(4 \hat{\imath}-3 \hat{\jmath}+\hat{k}) & =0 \\
4 x-3 y & =0 \\
4 x & =3 y \\
\mathrm{x} & =\frac{3}{4} y- \tag{iii}
\end{align*}
$$

Using equation (iii) in (ii)

$$
\left(\frac{3}{4} y\right)^{2}+y^{2}=1
$$

Multiplying by 16

$$
\begin{aligned}
\frac{9}{16} y^{2}+y^{2} & =1 \\
9 y^{2}+16 y^{2} & =16 \\
25 y^{2} & =16 \\
y^{2} & =\frac{16}{25} \\
y & = \pm \frac{4}{5}
\end{aligned}
$$

Taking square-root on both sides
Using value of y in equation (iii)

$$
\begin{aligned}
& x=\frac{3}{4}\left(\pm \frac{4}{5}\right) \\
& x= \pm \frac{3}{5}
\end{aligned}
$$

Using value of $x \& y$ in (i)

$$
\hat{u}=\frac{3}{5} \hat{\imath}+\frac{4}{5} \hat{\jmath} \quad \text { or } \quad \hat{u}=-\frac{3}{5} \hat{\imath}-\frac{4}{5} \hat{\jmath}
$$

Q\#34: Example \#09: (i) Find a work done by the force $\vec{F}=4 i-3 j+2 k$ on moving particle from $(3,2,-1)$ to $B(2,-1,4)$.

Solution: Given $\vec{F}=4 i-3 j+2 k$ and displacement \vec{r} from $\mathrm{A}(3,2,-1)$ to $\mathrm{B}(2,-1,4)$ is

$$
\begin{aligned}
\vec{r} & =\overrightarrow{A B}=P . v^{\prime} s \text { of } B-P . v^{\prime} \text { s of } A=B(2,-1,4)-A(3,2,-1) \\
& =(2-3) i+(-1-2) j+(4+1) k \\
\vec{r} & =-i-3 j+5 k
\end{aligned}
$$

We know that

$$
\begin{aligned}
\mathrm{W}= & \vec{F} \cdot \vec{r}=(4 i-3 j+2 k) \cdot(-i-3 j+5 k) \\
& =(4)(-1)+(-3)(-3)+(2)(5) \\
& =-4+9+1
\end{aligned}
$$

$W=15$ joule
Q\#35:(ii) A particle is displaced from point $A(2,-3,1)$ to $B(4,2,1)$ under the action of constant forces $\overrightarrow{\boldsymbol{F}_{1}}=\mathbf{1 2} \hat{\boldsymbol{\imath}}-\mathbf{5} \hat{\jmath}+6 \widehat{\boldsymbol{k}} ; \overrightarrow{\boldsymbol{F}_{2}}=\hat{\boldsymbol{\imath}}+\mathbf{2} \hat{\boldsymbol{\jmath}}-\mathbf{2} \widehat{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{F}_{3}}=\mathbf{2} \hat{\boldsymbol{\imath}}+8 \hat{\jmath}+\widehat{\boldsymbol{k}}$. Find the work done by the forces on the particle.
Solution: Given $\overrightarrow{F_{1}}=12 \hat{\imath}-5 \hat{\jmath}+6 \hat{k} ; \overrightarrow{F_{2}}=\hat{\imath}+2 \hat{\jmath}-2 \hat{k}$ and $\overrightarrow{F_{3}}=2 \hat{\imath}+8 \hat{\jmath}+\hat{k}$
Let F be the resultant of these forces then

$$
\begin{aligned}
\vec{F} & =\overrightarrow{F_{1}}+\overrightarrow{F_{2}}+\overrightarrow{F_{3}} \\
& =12 \hat{\imath}-5 \hat{\jmath}+6 \hat{k}+\hat{\imath}+2 \hat{\jmath}-2 \hat{k}+2 \hat{\imath}+8 \hat{\jmath}+\hat{k} \\
\vec{F}=15 \hat{\imath} & +5 \hat{\jmath}+5 \hat{k}
\end{aligned}
$$

And displacement \vec{r} from $\mathrm{A}(2,-3,1)$ to $\mathrm{B}(4,2,1)$ is

$$
\begin{aligned}
\vec{r} & =\overrightarrow{A B}=\text { P.v's of } \mathrm{B}-\mathrm{P} . \mathrm{v} \text { 's of } \mathrm{A}=\mathrm{B}(4,2,1)-\mathrm{A}(2,-3,1) \\
& =(4-2) \hat{\imath}+(2+3) \hat{\jmath}+(1-1) \hat{k} \\
\vec{r} & =2 \hat{\imath}+5 \hat{\jmath}+0 \hat{k}
\end{aligned}
$$

We know that

$$
\begin{aligned}
\mathrm{W} & =\vec{F} \cdot \vec{r}=(15 \hat{\imath}+5 \hat{\jmath}+5 \hat{k}) \cdot(2 \hat{\imath}+5 \hat{\jmath}+0 \hat{k}) \\
& =(15)(2)+(5)(5)+(5)(0) \\
& =30+25+0 \\
\mathrm{~W} & =55 \text { joule }
\end{aligned}
$$

Vector Product Or Cross Product:

If $\overrightarrow{\boldsymbol{a}}$ and $\overrightarrow{\boldsymbol{b}}$ be the two vectors. Then the vector or cross product of two
vector is define as

$$
\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{b}}=|\vec{a}||\overrightarrow{\boldsymbol{b}}| \sin \theta \hat{n}
$$

Where $\boldsymbol{\theta}$ is the angle between $\overrightarrow{\boldsymbol{a}}$ and $\overrightarrow{\boldsymbol{b}}$ and \hat{n} is a unit vector which is perpendicular to both vectors $\overrightarrow{\boldsymbol{a}}$ and $\overrightarrow{\boldsymbol{b}} .\{\vec{a} \times \vec{b}$ is also perpendicular vector of \vec{a} and \vec{b}.\}

Formula:

$\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \quad \hat{n}$

Taking magnitude on both sides

$$
\begin{align*}
& |\vec{a} \times \vec{b}|=||\vec{a}|| \vec{b}|\sin \theta \quad \hat{n}| \\
& |\vec{a} \times \vec{b}|=||\vec{a}|| \vec{b}|\sin \theta| \cdot|\hat{n}| \\
& |\vec{a} \times \vec{b}|=||\vec{a}|| \vec{b}|\sin \theta| \\
& |\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta \tag{ii}\\
& \sin \theta=\frac{|\vec{a} \times \overrightarrow{\mathrm{b}}|}{|\overrightarrow{\mathrm{a}}||\vec{b}|}
\end{align*}
$$

From (i)

$$
\begin{gather*}
\hat{n}=\frac{\vec{a} \times \vec{b}}{|\vec{a}||\vec{b}| \sin \theta} \\
\hat{n}=\frac{\vec{a} \times \overrightarrow{\boldsymbol{b}}}{|\vec{a} \times \vec{b}|} \tag{ii}
\end{gather*}
$$

Characteristics:

(i) If $\overrightarrow{\boldsymbol{a}}=\mathrm{a}_{1} \mathbf{i}+\mathrm{a}_{2} \mathbf{j}+\mathrm{a}_{3} \mathbf{k}$

$$
\overrightarrow{\boldsymbol{b}}=\mathrm{b}_{1} \mathbf{i}+\mathrm{b}_{2} \mathbf{j}+\mathrm{b}_{3} \mathbf{k}
$$

Then $\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{b}}=\left(\mathrm{a}_{1} \mathbf{i}+\mathrm{a}_{2} \mathbf{j}+\mathrm{a}_{3} \mathbf{k}\right) \times\left(\mathrm{b}_{1} \mathbf{i}+\mathrm{b}_{2} \mathbf{j}+\mathrm{b}_{3} \mathbf{k}\right)$

$$
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
i & j & k \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

(ii) If $\overrightarrow{\boldsymbol{a}}$ and $\overrightarrow{\boldsymbol{b}}$ are parallel 0 anti parallel vectors $\left(\boldsymbol{\theta}=\mathbf{0}^{\mathbf{0}}\right.$ or $\left.180^{\circ}\right)$ then $\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{b}}=\mathbf{0}$
(iii) Cross product is non-commutative:

$$
\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a} \quad \text { but } \quad \vec{a} \times \vec{b}=-\vec{b} \times \vec{a}
$$

(iv) Cross product of two same vectors is zero.

$$
\vec{a} \times \vec{a}=0
$$

(v) Area of parallelogram :

If \vec{a} and \vec{b} be the two sides of parallelogram. Then
Area of parallelogram $=|\vec{a} \times \vec{b}|$
If $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ be the two diagonals of a parallelogram. Then
Area of parallelogram $=\frac{1}{2}|(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|$
(vi) Area of triangle:

Area of triangle $=\frac{1}{2}$ (Area of parallelogram $)=\frac{1}{2}|\vec{a} \times \vec{b}|$

(vii) Three collinear vectors:

If \vec{a}, \vec{b} and \vec{c} be the three vectors. these are said to be collinear if

$$
\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=0
$$

(viii) Distributive property of cross product over addition or subtraction.

$$
\begin{aligned}
& \vec{a} \times(\vec{b} \pm \vec{c})=(\vec{a} \times \vec{b}) \pm(\vec{a} \times \vec{c}) \\
& (\vec{a} \pm \vec{b}) \times \vec{c}=(\vec{a} \times \vec{c}) \pm(\vec{b} \times \vec{c})
\end{aligned}
$$

Left distributive law
Right distributive law

(ix) Scalar multiplication in cross product:

$$
(\lambda \overrightarrow{\boldsymbol{a}}) \times \overrightarrow{\boldsymbol{b}}=\lambda(\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{b}}) \quad \text { or } \quad \overrightarrow{\boldsymbol{a}} \times(\lambda \overrightarrow{\boldsymbol{b}})=\lambda(\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{b}})
$$

(x) Relation between î, $\hat{\jmath}, \widehat{k}$ unit vectors in cross product.

$$
\begin{array}{lllcc}
\hat{\imath} \times \hat{\imath}=0 & : & \hat{\imath} \times \hat{\jmath}=\hat{k} & \text { and } & \hat{\jmath} \times \hat{\imath}=-\hat{k} \\
\hat{\jmath} \times \hat{\jmath}=0 & : & \hat{\jmath} \times \hat{k}=\hat{\imath} & \text { and } & \hat{k} \times \hat{\jmath}=-\hat{\imath} \\
\hat{k} \times \hat{k}=0 & : & \hat{k} \times \hat{\imath}=\hat{\jmath} & \text { and } & \hat{\imath} \times \hat{k}=-\hat{\jmath}
\end{array}
$$

Note :For this we can use a cyclic process as shown in figure.

(xi) Moment of a force :

If \vec{r} be the position vector of P from O and \vec{F} is the force acting at P . then moment of force \vec{M} is define as

$$
\vec{M}=\vec{r} \times \vec{F}
$$

Example\#01: For vectors $\overrightarrow{\boldsymbol{a}}=\mathbf{5} \hat{\boldsymbol{\imath}}-3 \hat{\boldsymbol{\jmath}}+4 \widehat{\boldsymbol{k}} \quad \& \overrightarrow{\boldsymbol{b}}=0 \hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}-\widehat{\boldsymbol{k}}$ determine
(i) $\vec{a} \times \vec{b}$ (ii) Sine of the angle between $\vec{a} \& \vec{b}$.

Solution: Given $\quad \vec{a}=5 \hat{\imath}-3 \hat{\jmath}+4 \hat{k} \quad \& \vec{b}=0 \hat{\imath}+\hat{\jmath}-\hat{k}$
(i) $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 5 & -3 & 4 \\ 0 & 1 & -1\end{array}\right|$

$$
\begin{aligned}
& =\hat{\imath}\left|\begin{array}{cc}
-3 & 4 \\
1 & -1
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
5 & 4 \\
0 & -1
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
5 & -3 \\
0 & 1
\end{array}\right| \\
& =\hat{\imath}(3-4)-\hat{\jmath}(-5-0)+\hat{k}(5-0) \\
& =-\hat{\imath}+5 \hat{\jmath}+5 \hat{k}
\end{aligned}
$$

(ii) Since $|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta$

$$
\begin{aligned}
& \sin \theta=\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}=\frac{\sqrt{(-1)^{2}+(5)^{2}+(5)^{2}}}{\sqrt{(5)^{2}+(-3)^{2}+(4)^{2}} \sqrt{(0)^{2}+(1)^{2}+(-1)^{2}}}=\frac{\sqrt{1+25+25}}{\sqrt{25+9+16} \sqrt{0+1+1}}=\frac{\sqrt{51}}{\sqrt{50} \sqrt{2}}=\frac{\sqrt{51}}{\sqrt{100}} \\
& \sin \theta=\frac{\sqrt{51}}{10}
\end{aligned}
$$

Example \#02:Find a vector perpendicular to both line $A B \& C D$. where $A(0,-1,3), B(2,0,4)$ $C(2,-1,4)$ and $D(3,3,2)$ are given points.
Solution: Here $\mathrm{A}(0,-1,3), B(2,0,4), C(2,-1,4)$ and $D(3,3,2)$ are given points.
Now $\quad \overrightarrow{A B}=$ p.v's of $\mathrm{B}-\mathrm{p} . \mathrm{v}^{\prime} \mathrm{s}$ of $\mathrm{A}=B(2,0,4)-A(0,-1,3)$

$$
\begin{aligned}
& =(2-0) \hat{\imath}+(0+1) \hat{\jmath}+(4-3) \hat{k} \\
& =2 \hat{\imath}+\hat{\jmath}+\hat{k} \\
\overrightarrow{C D} & =\text { p.v's of } \mathrm{D}-\mathrm{p} \cdot \mathrm{v} \text { 's of } \mathrm{C}=D(3,3,2)-A(2,-1,4) \\
& =(3-2) \hat{\imath}+(3+1) \hat{\jmath}+(2-4) \hat{k}
\end{aligned}
$$

$$
=\hat{\imath}+4 \hat{\jmath}-2 \hat{k}
$$

We know that perpendicular vector of $\overrightarrow{A B}$ and $\overrightarrow{C D}$ is

$$
\begin{aligned}
\overrightarrow{A B} \times \overrightarrow{C D} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
2 & 1 & 1 \\
1 & 4 & -2
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
2 & 1 \\
1 & -2
\end{array}\right|+\hat{k}\left|\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right| \\
& =\hat{\imath}(-2-4)-\hat{\jmath}(-4-1)+\hat{k}(8-1) \\
& =-6 \hat{\imath}+5 \hat{\jmath}+7 \hat{k}
\end{aligned}
$$

Example\#03: Find a unit vector perpendicular to $\overrightarrow{\boldsymbol{a}}=\hat{\imath}+\hat{\boldsymbol{\jmath}} \quad \& \vec{b}=3 \hat{\imath}+2 \hat{\jmath}+\widehat{\boldsymbol{k}}$.

Solution: Let \hat{n} be the unit vector perpendicular to $\vec{a}=\hat{\imath}+\hat{\jmath} \quad \& \vec{b}=3 \hat{\imath}+2 \hat{\jmath}+\hat{k}$ vectors.
Then $\quad \hat{n}=\frac{\vec{a} \times \vec{b}}{|\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{b}}|}$

$$
\begin{align*}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & 1 & 0 \\
3 & 2 & 1
\end{array}\right|=\hat{\imath}\left|\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right|-\hat{\jmath}\left|\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right|+\hat{k}\left|\begin{array}{ll}
1 & 1 \\
3 & 2
\end{array}\right| \tag{i}\\
& =\hat{\imath}(1-0)-\hat{\jmath}(1-0)+\hat{k}(2-3) \\
& =\hat{\imath}-\hat{\jmath}-\hat{k} \\
|\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{b}}| & =\sqrt{(1)^{2}+(-1)^{2}+(-1)^{2}}=\sqrt{1+1+1}=\sqrt{3}
\end{align*}
$$

From (i) $\quad \hat{n}=\frac{\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{b}}}{|\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{b}}|}=\frac{\hat{\imath}-\hat{\jmath}-\hat{k}}{\sqrt{3}}$

$$
\hat{n}=\frac{1}{\sqrt{3}} \hat{\imath}-\frac{1}{\sqrt{3}} \hat{\jmath}-\frac{1}{\sqrt{3}} \hat{k}
$$

Example\#04: Find the area of parallelogram with adjacent sides $\overrightarrow{\boldsymbol{a}}=\hat{\boldsymbol{\imath}}-\hat{\boldsymbol{\jmath}}+\widehat{\boldsymbol{k}} \& \overrightarrow{\boldsymbol{b}}=2 \hat{\boldsymbol{\jmath}}-\mathbf{3} \widehat{\boldsymbol{k}}$.
Solution :Given sides $\vec{a}=\hat{\imath}-\hat{\jmath}+\hat{k} \quad \& \quad \vec{b}=2 \hat{\jmath}-3 \hat{k}$.
we know that Area of parallelogram $=|\vec{a} \times \vec{b}|$

$$
\begin{align*}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & -1 & 1 \\
0 & 2 & -3
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
-1 & 1 \\
2 & -3
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
1 & 1 \\
0 & -3
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right| \tag{i}\\
& =\hat{\imath}(3-2)-\hat{\jmath}(-3-0)+\hat{k}(2-0) \\
& =\hat{\imath}+3 \hat{\jmath}+2 \hat{k}
\end{align*}
$$

From (i)
Area of parallelogram $=|\vec{a} \times \vec{b}|$

$$
\begin{aligned}
& =\sqrt{(1)^{2}+(3)^{2}+(2)^{2}}=\sqrt{1+9+4} \\
& =\sqrt{14} \text { sq. units }
\end{aligned}
$$

Example\#05:Find the area of parallelogram determined by the side $2 \hat{\boldsymbol{\imath}}+\hat{\boldsymbol{j}}+5 \widehat{\boldsymbol{k}} \&$ Diagonal
 $\hat{\boldsymbol{\imath}}-\mathbf{3} \hat{\boldsymbol{\jmath}}+\widehat{\boldsymbol{k}}$.

Solution: consider a parallelogram ABCDA.
Given side $\overrightarrow{A B}=2 \hat{\imath}+\hat{\jmath}+5 \hat{k} \quad \& \quad$ diagonal $\overrightarrow{A C}=\hat{\imath}-3 \hat{\jmath}+\hat{k}$.
By using head to tail rule

$$
\begin{aligned}
& \overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C} \\
& \overrightarrow{B C}=\overrightarrow{A C}-\overrightarrow{A B}=(\hat{\imath}-3 \hat{\jmath}+\hat{k})-(2 \hat{\imath}+\hat{\jmath}+5 \hat{k})=\hat{\imath}-3 \hat{\jmath}+\hat{k}-2 \hat{\imath}-\hat{\jmath}-5 \hat{k} \\
& \overrightarrow{B C}=-\hat{\imath}-4 \hat{\jmath}-4 \hat{k}
\end{aligned}
$$

For \quad Area of parallelogram $=|\overrightarrow{A B} \times \overrightarrow{B C}|$

$$
\begin{align*}
\overrightarrow{A B} \times \overrightarrow{B C} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
2 & 1 & 5 \\
-1 & -4 & -4
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
1 & 5 \\
-4 & -4
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
2 & 5 \\
-4
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
2 & 1 \\
-1 & -4
\end{array}\right| \tag{i}\\
& =\hat{\imath}(-4+20)-\hat{\jmath}(-8+5)+\hat{k}(-8+1) \\
& =16 \hat{\imath}+3 \hat{\jmath}-7 \hat{k}
\end{align*}
$$

From (i) Area of parallelogram $=|\overrightarrow{A B} \times \overrightarrow{B C}|=\sqrt{(16)^{2}+(3)^{2}+(-7)^{2}}=\sqrt{256+9+49}$

$$
=\sqrt{314} \text { sq. units }
$$

Example\#06 : Find the area of triangle ABC with adjacent sides $\overrightarrow{\boldsymbol{a}}=\widehat{\mathbf{3 \imath}}+2 \hat{\boldsymbol{\jmath}} \boldsymbol{\&} \overrightarrow{\boldsymbol{b}}=2 \hat{\boldsymbol{\jmath}}-4 \widehat{\boldsymbol{k}}$.
Solution: Given sides $\vec{a}=\widehat{3 l}+2 \hat{\jmath} \& \vec{b}=2 \hat{\jmath}-4 \hat{k} \quad$ of $\Delta \mathrm{ABC}$.
We know that Area of triangle $=\frac{1}{2}($ Area of parallelogram $)=\frac{1}{2}|\vec{a} \times \vec{b}|$

$$
\begin{align*}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
3 & 2 & 0 \\
0 & 2 & -4
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
2 & 0 \\
2 & -4
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
3 & 0 \\
0 & -4
\end{array}\right|+\hat{k}\left|\begin{array}{ll}
3 & 2 \\
0 & 2
\end{array}\right| \tag{i}\\
& =\hat{\imath}(-8-0)-\hat{\jmath}(-12-0)+\hat{k}(6-0) \\
& =-8 \hat{\imath}+12 \hat{\jmath}+6 \hat{k}
\end{align*}
$$

From (i)

$$
\begin{aligned}
\text { Area of triangle } & =\frac{1}{2}|\vec{a} \times \vec{b}| \\
& =\frac{1}{2}\left(\sqrt{(-8)^{2}+(12)^{2}+(6)^{2}}\right)=\frac{1}{2}(\sqrt{64+144+36})=\frac{1}{2}(\sqrt{244}) \\
& =\frac{1}{2}(2 \sqrt{61}) \\
& =\sqrt{61} \text { sq. units }
\end{aligned}
$$

Exercise \#2.2

Q\#01: Compute the following cross- product.

(i)

$$
\begin{aligned}
& \hat{\boldsymbol{\imath}} \times(\mathbf{2} \hat{\boldsymbol{\jmath}}+\mathbf{3} \widehat{\boldsymbol{k}}) \\
= & \hat{\imath} \times 2 \hat{\jmath}+\hat{\imath} \times 3 \hat{k} \\
= & \mathbf{2}(\hat{\imath} \times \hat{\jmath})+3(\hat{\imath} \times \hat{k}) \\
= & \mathbf{2} \hat{k}+3(-\hat{\jmath}) \\
= & \mathbf{2} \hat{k}-3 \hat{\jmath}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& (\mathbf{2} \hat{\imath}-\mathbf{5} \widehat{\boldsymbol{k}}) \times \hat{\boldsymbol{\jmath}} \\
= & 2 \hat{\imath} \times \hat{\jmath}-5 \hat{k} \times \hat{\jmath} \\
= & 2(\hat{\imath} \times \hat{\jmath})-5(\hat{k} \times \hat{\jmath}) \\
= & 2 \hat{k}-5(-\hat{\imath}) \\
= & 2 \hat{k}+5 \hat{\imath}
\end{aligned}
$$

(iii) $(2 \hat{\imath}-3 \hat{\jmath}+5 \widehat{k}) \times(6 \hat{\imath}+2 \hat{\jmath}-3 \widehat{k})$

$$
\begin{aligned}
(2 \hat{\imath}-3 \hat{\jmath}+5 \hat{k}) \times(6 \hat{\imath}+2 \hat{\jmath}-3 \hat{k}) & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
2 & -3 & 5 \\
6 & 2 & -3
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
-3 & 5 \\
2 & -3
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
2 & 5 \\
6 & -3
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
2 & -3 \\
6 & 2
\end{array}\right| \\
& =\hat{\imath}(9-10)-\hat{\jmath}(-6-30)+\hat{k}(4+18) \\
& =\hat{\imath}(-1)-\hat{\jmath}(-36)+\hat{k}(22) \\
& =-\hat{\imath}+36 \hat{\jmath}+22 \hat{k}
\end{aligned}
$$

Q\#02: Prove that $\quad(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$
Solution: Taking L.H.S $=(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})$

$$
\begin{aligned}
& =\vec{a} \times(\vec{a}+\vec{b})-\vec{b} \times(\vec{a}+\vec{b}) \\
& =\vec{a} \times \vec{a}+\vec{a} \times \vec{b}-\vec{b} \times \vec{a}-\vec{b} \times \vec{b} \quad \therefore \vec{a} \times \vec{a}=0 \\
& =0+\vec{a} \times \vec{b}+\vec{a} \times \vec{b}+0 \quad \therefore \quad \vec{b} \times \vec{b}=0 \\
& =2(\vec{a} \times \vec{b})=\text { R.H.S } \quad \therefore-\vec{b} \times \vec{a}=\vec{a} \times \vec{b}
\end{aligned}
$$

Hence proved
L.H.S = R.H.S

Q\#03:If $\vec{a}=2 \hat{\imath}+5 \hat{\jmath}+3 \widehat{k} ; \vec{b}=3 \hat{\imath}+3 \hat{\jmath}+6 \widehat{k}$ and $\vec{c}=2 \hat{\imath}+7 \hat{\jmath}+4 \widehat{k}$.
Find $(\vec{a}-\vec{b}) \times(\vec{c}-\vec{a})$ and $|(\vec{a}-\vec{b}) \times(\vec{c}-\vec{a})|$.
Solution: Given $\vec{a}=2 \hat{\imath}+5 \hat{\jmath}+3 \hat{k} ; \vec{b}=3 \hat{\imath}+3 \hat{\jmath}+6 \hat{k}$ and $\vec{c}=2 \hat{\imath}+7 \hat{\jmath}+4 \hat{k}$

$$
\begin{aligned}
& \therefore \vec{a}-\vec{b}=2 \hat{\imath}+5 \hat{\jmath}+3 \hat{k}-3 \hat{\imath}-3 \hat{\jmath}-6 \hat{k}=-\hat{\imath}+2 \hat{\jmath}-3 \hat{k} \\
& \therefore \vec{c}-\vec{a}=2 \hat{\imath}+7 \hat{\jmath}+4 \hat{k}-2 \hat{\imath}-5 \hat{\jmath}-3 \hat{k}=0 \hat{\imath}+2 \hat{\jmath}+\hat{k}
\end{aligned}
$$

Now

$$
\begin{aligned}
(\vec{a}-\vec{b}) \times(\vec{c}-\vec{a}) & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
-1 & 2 & -3 \\
0 & 2 & 1
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
2 & -3 \\
2 & 1
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
-1 & -3 \\
0 & 1
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
-1 & 2 \\
0 & 2
\end{array}\right| \\
& =\hat{\imath}(2+6)-\hat{\jmath}(-1-0)+\hat{k}(2-0) \\
& =\hat{\imath}(8)-\hat{\jmath}(-1)+\hat{k}(2) \\
& =8 \hat{\imath}+1 \hat{\jmath}+2 \hat{k}
\end{aligned}
$$

And $\quad|(\vec{a}-\vec{b}) \times(\vec{c}-\vec{a})|=\sqrt{(8)^{2}+(1)^{2}+(2)^{2}}=\sqrt{64+1+4}=\sqrt{69}$
Q\#04: Prove that $(\vec{a}-\vec{b}) \cdot(\vec{a}+\vec{b})=|\vec{a}|^{2}-|\vec{b}|^{2}$
Solution: Taking L.H.S. $=(\vec{a}-\vec{b}) \cdot(\vec{a}+\vec{b})$

$$
\begin{aligned}
& =\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}-\vec{b} \cdot \vec{a}-\vec{b} \cdot \vec{b} \\
& =|\vec{a}|^{2}+\vec{a} \cdot \vec{b}-\vec{a} \cdot \vec{b}-|\vec{b}|^{2} \\
& =|\vec{a}|^{2}-|\vec{b}|^{2}=\text { R.H.S }
\end{aligned} \quad \therefore \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}
$$

Hence proved .
L.H.S = R.H.S

Q\#05: Find a unit vector perpendicular to $\overrightarrow{\boldsymbol{a}}=\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}+\widehat{\boldsymbol{k}} \quad \& \overrightarrow{\boldsymbol{b}}=\mathbf{2} \hat{\boldsymbol{\imath}}+\mathbf{3} \hat{\boldsymbol{\jmath}}-\widehat{\boldsymbol{k}}$.
Solution: let \hat{n} be the unityector perpendicular to $\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k} \& \vec{b}=2 \hat{\imath}+3 \hat{\jmath}-\hat{k}$ vectors.
Then $\quad \hat{n}=\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$

$$
\begin{align*}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & 1 & 1 \\
2 & 3 & -1
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
1 & 1 \\
2 & 3
\end{array}\right| \tag{i}\\
& =\hat{\imath}(-1-3)-\hat{\jmath}(-1-2)+\hat{k}(3-2)=\hat{\imath}(-4)-\hat{\jmath}(-3)-\hat{k}(1) \\
& =-4 \hat{\imath}+3 \hat{\jmath}-\hat{k} \\
|\vec{a} \times \vec{b}| & =\sqrt{(-4)^{2}+(3)^{2}+(-1)^{2}}=\sqrt{16+9+1}=\sqrt{26}
\end{align*}
$$

From (i) $\quad \hat{n}=\frac{\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{b}}}{|\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{b}}|}=\frac{-4 \hat{\imath}+3 \hat{\jmath}-\hat{k}}{\sqrt{26}} \quad$ or $\quad \hat{n}=\frac{-4}{\sqrt{26}} \hat{\imath}+\frac{3}{\sqrt{26}} \hat{\jmath}-\frac{1}{\sqrt{26}} \hat{k}$

Q\#06: (i) When $(\vec{a}+\vec{b})$ is perpendicular to $(\vec{a}-\vec{b})$? When are they parallel?
Solution: $1^{\text {st }}$ condition: $(\vec{a}+\vec{b}) \perp(\vec{a}-\vec{b})$

$$
\begin{aligned}
\qquad(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b}) & =0 \\
\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}-\vec{b} \cdot \vec{a}-\vec{b} \cdot \vec{b} & =0 \\
|\vec{a}|^{2}+\vec{a} \cdot \vec{b}-\vec{a} \cdot \vec{b}-|\vec{b}|^{2} & =0 \quad \therefore \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a} \\
|\vec{a}|^{2}-|\vec{b}|^{2} & =0 \\
|\vec{a}|^{2} & =|\vec{b}|^{2} \\
\text { Taking square-root on both sides } \quad|\vec{a}| & =|\vec{b}|
\end{aligned}
$$

When $|\vec{a}|=|\vec{b}|$ then $(\vec{a}+\vec{b})$ is perpendicular to $(\vec{a}-\vec{b})$.
$\mathbf{2}^{\text {nd }}$ condition: $(\vec{a}+\vec{b}) \|(\vec{a}-\vec{b})$

$$
(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})=0
$$

$$
\vec{a} \times(\vec{a}+\vec{b})-\vec{b} \times(\vec{a}+\vec{b})=0
$$

$$
\vec{a} \times \vec{a}+\vec{a} \times \vec{b}-\vec{b} \times \vec{a}-\vec{b} \times \vec{b}=0
$$

$$
\therefore \vec{a} \times \vec{a}=0 \quad \& \vec{b} \times \vec{b}=0
$$

$$
0+\vec{a} \times \vec{b}+\vec{a} \times \vec{b}+0=0
$$

$$
\therefore \quad-\vec{b} \times \vec{a}=\vec{a} \times \vec{b}
$$

$$
\begin{aligned}
2(\vec{a} \times \vec{b} & =0 \\
\vec{a} \times \vec{b} & =0
\end{aligned}
$$

When $\vec{a} \times \vec{b}=0$ then $(\vec{a}+\vec{b})$ is parallel to $(\vec{a}-\vec{b})$
Q\#06: (ii) If $\vec{a}=\hat{\imath}+2 \hat{\jmath}-3 \widehat{k} \& \vec{b}=3 \hat{\imath}-\hat{\jmath}+2 \widehat{k}$. Then prove that $(\vec{a}+\vec{b})$ and $\vec{a} \times \vec{b}$ are perpendicular.

Solution: Given $\vec{a}=\hat{\imath}+2 \hat{\jmath}-3 \hat{k} \quad \& \vec{b}=3 \hat{\imath}-\hat{\jmath}+2 \hat{k}$
We have to prove $(\vec{a}+\vec{b}) \perp \vec{a} \times \vec{b}$
Now

$$
(\vec{a}+\vec{b})=\hat{\imath}+2 \hat{\jmath}-3 \hat{k}+3 \hat{\imath}-\hat{\jmath}+2 \hat{k}=4 \hat{\imath}+\hat{\jmath}-\hat{k}
$$

$$
\begin{aligned}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & 2 & -3 \\
3 & -1 & 2
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
2 & -3 \\
-1 & 2
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
1 & -3 \\
3 & 2
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
1 & 2 \\
3 & -1
\end{array}\right| \\
& =\hat{\imath}(4-3)-\hat{\jmath}(2+9)+\hat{k}(-1-6)=\hat{\imath}(1)-\hat{\jmath}(11)+\hat{k}(-7) \\
& =\hat{\imath}-11 \hat{\jmath}-7 \hat{k}
\end{aligned}
$$

Now taking dot product

$$
\begin{aligned}
(\vec{a}+\vec{b}) \cdot(\vec{a} \times \vec{b}) & =(4 \hat{\imath}+\hat{\jmath}-\hat{k}) \cdot(\hat{\imath}-11 \hat{\jmath}-7 \hat{k}) \\
& =(4)(1)+(1)(-11)+(-1)(-7) \\
& =4-11+7 \\
(\vec{a}+\vec{b}) \cdot(\vec{a} \times \vec{b}) & =0
\end{aligned}
$$

Hence proved

$$
(\vec{a}+\vec{b}) \perp \vec{a} \times \vec{b}
$$

Q\#07: Show that $|\vec{a} \cdot \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2}-|\vec{a} \times \vec{b}|^{2}$

Solution. Given $|\vec{a} \cdot \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2}-|\vec{a} \times \vec{b}|^{2}$

$$
\begin{equation*}
|\vec{a} \cdot \vec{b}|^{2}+|\vec{a} \times \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2} \tag{i}
\end{equation*}
$$

Taking L.H.S of (i)

Hence proved

$$
|\vec{a} \cdot \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2}-|\vec{a} \times \vec{b}|^{2}
$$

Q\#08: Example\#07: prove that (i) $|\vec{a} \times \vec{b}|^{2}+|\vec{a} \cdot \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2}$
Solution: Taking L.H.S and by using definition of dot and cross product.

Hence proved

Q\#08: Example\#07: (ii) $|\vec{a} \cdot \vec{b}|^{2}-|\vec{a} \times \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2} \cos 2 \theta$
Solution: Taking L.H.S and by using definition of dot and cross product.

Q\#09: If \vec{a}^{\prime} and \vec{b}^{\prime} are vector components of vector \vec{a} and \vec{b} respectively on a plane perpendicular to a vector $\overrightarrow{\boldsymbol{c}}$. Then show that
(i) $\vec{a} \times \vec{c}=\vec{a}^{\prime} \times \vec{c}$ (ii) $(\vec{a}+\vec{b}) \times \vec{c}=\left(\vec{a}^{\prime}+\vec{b}^{\prime}\right) \times \vec{c}$

Solution: (i) Given condition: \vec{a}^{\prime} and $\vec{b}^{\prime} \perp \vec{c} \quad \therefore \theta=90^{\circ}$ Then $\sin 90^{0}=1$

$$
\begin{aligned}
& \vec{a}^{\prime} \times \vec{c}=\left|\vec { a } ^ { \prime } \left\|\vec { c } \left|\sin 90^{\circ} \hat{n}=\left|\vec{a}^{\prime} \| \vec{c}\right| \hat{n}\right.\right.\right. \\
& \vec{b}^{\prime} \times \vec{c}=\left|\vec{b}^{\prime}\right||\vec{c}| \sin 90^{\circ} \hat{n}=\left|\vec{b}^{\prime}\right||\vec{c}| \hat{n}
\end{aligned}
$$

We have to prove

$$
\vec{a} \times \vec{c}=\vec{a}^{\prime} \times \vec{c}
$$

Taking L.H.S

$$
\begin{aligned}
\vec{a} \times \vec{c} & =|\vec{a}||\vec{c}| \sin \theta \hat{m}^{\prime} \\
& =(|\vec{a}| \sin \theta)|\vec{c}| \widehat{n}^{\prime} \quad \therefore \vec{a}^{\prime} \text { is component of } \vec{a} \quad: \quad\left|\vec{a}^{\prime}\right|=|\vec{a}| \sin \theta \\
& =\left|\vec{a}^{\prime}\right||\vec{c}| \hat{n} \\
\vec{a} \times \vec{c} & =\vec{a}^{\prime} \times \vec{c}
\end{aligned}
$$

(ii)We have to prove $(\vec{a}+\vec{b}) \times \vec{c}=\left(\vec{a}^{\prime}+\vec{b}^{\prime}\right) \times \vec{c}$

Now $\quad(\vec{a}+\vec{b}) \times \vec{c}=\vec{a} \times \vec{c}+\vec{b} \times \vec{c}$

$$
\begin{aligned}
& =|\vec{a}||\vec{c}| \sin \theta \hat{n}+|\vec{b}||\vec{c}| \sin \theta \hat{n} \\
& =(|\vec{a}| \sin \theta)|\vec{c}| \hat{n}+(|\vec{b}| \sin \theta)|\vec{c}| \hat{n} \therefore \vec{a}^{\prime} \text { is component of } \vec{a}:|\vec{a} '|=|\vec{a}| \sin \theta \\
& =\left|\vec{a}^{\prime}\right||\vec{c}| \hat{n}+\left|\vec{a}^{\prime}\right||\vec{c}| \hat{n} \quad \therefore \vec{b}^{\prime} \text { is component of } \vec{b}:\left|\vec{b}{ }^{\prime}\right|=|\vec{b}| \sin \theta \\
& =\vec{a}^{\prime} \times \vec{c}+\vec{b}^{\prime} \times \vec{c}
\end{aligned}
$$

$$
(\vec{a}+\vec{b}) \times \vec{c}=\left(\vec{a}^{\prime}+\vec{b}^{\prime}\right) \times \vec{c} \quad \text { Hence proved }
$$

Q\#10: Show that (i) $(\vec{a}+\vec{b}) \times \vec{c}=\vec{a} \times \vec{c}+\vec{b} \times \vec{c}$
S0lution: Let $\overrightarrow{\boldsymbol{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k} \quad ; \quad \overrightarrow{\boldsymbol{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{k} \quad \& \quad \overrightarrow{\boldsymbol{c}}=\mathrm{c}_{1} \hat{\imath}+\mathrm{c}_{2} \hat{\jmath}+\mathrm{c}_{3} \hat{k}$

$$
\begin{aligned}
\therefore \vec{a}+\vec{b}=\mathrm{a}_{1} \hat{\imath} & +\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k}+\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{k}=\left(\mathrm{a}_{1}+\mathrm{b}_{1}\right) \hat{\imath}+\left(\mathrm{a}_{2}+\mathrm{b}_{2}\right) \hat{\jmath}+\left(\mathrm{a}_{3}+\mathrm{b}_{3}\right) \hat{k} \\
(\vec{a}+\vec{b}) \times \vec{c} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\mathrm{a}_{1}+\mathrm{b}_{1} & \mathrm{a}_{2}+\mathrm{b}_{2} & \mathrm{a}_{3}+\mathrm{b}_{3} \\
\mathrm{c}_{1} & \mathrm{c}_{2} & \mathrm{c}_{3}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
\mathrm{c}_{1} & \mathrm{c}_{2} & \mathrm{c}_{3}
\end{array}\right|+\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3} \\
\mathrm{c}_{1} & \mathrm{c}_{2} & \mathrm{c}_{3}
\end{array}\right| \quad \therefore \text { By using determinan }
\end{aligned}
$$

$$
(\vec{a}+\vec{b}) \times \vec{c}=\vec{a} \times \vec{c}+\vec{b} \times \vec{c}
$$

Hence proved
Q\#10: Show that (ii) $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$
SOlution:Let $\quad \overrightarrow{\boldsymbol{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k} \quad ; \quad \overrightarrow{\boldsymbol{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{k} \quad \& \quad \overrightarrow{\boldsymbol{c}}=\mathrm{c}_{1} \hat{\imath}+\mathrm{c}_{2} \hat{\jmath}+\mathrm{c}_{3} \hat{k}$
$\therefore \vec{b}+\vec{c}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{k}+\mathrm{c}_{1} \hat{\imath}+\mathrm{c}_{2} \hat{\jmath}+\mathrm{c}_{3} \hat{k}=\left(\mathrm{b}_{1}+\mathrm{c}_{1}\right) \hat{\imath}+\left(\mathrm{b}_{2}+\mathrm{c}_{2}\right) \hat{\jmath}+\left(\mathrm{b}_{3}+\mathrm{c}_{3}\right) \hat{k}$
$\vec{a} \times(\vec{b}+\vec{c})=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1}+\mathrm{c}_{1} & \mathrm{~b}_{2}+\mathrm{c}_{2} & \mathrm{~b}_{3}+\mathrm{c}_{3}\end{array}\right|$
$=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|+\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{c}_{1} & \mathrm{c}_{2} & \mathrm{c}_{3}\end{array}\right| \quad \therefore$ By using determinant property
$\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$
Hence proved
Q\#11: Show that $\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times \vec{c}+\vec{a})+) \vec{c} \times(\vec{a}+\vec{b})=0$
Solution: L.H.S $=\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})$

$$
\begin{aligned}
& =\vec{a} \times \vec{b}+\vec{a} \times \vec{c}+\vec{b} \times \vec{c}+\vec{b} \times \vec{a}+\vec{c} \times \vec{a}+\vec{c} \times \vec{b} \quad \therefore\left\{\begin{array}{r}
\vec{b} \times \vec{a}=-\vec{a} \times \vec{b} \\
\vec{c} \times \vec{a}=-\vec{a} \times \vec{c} \\
\vec{c} \times \vec{b}=-\vec{b} \times \vec{c}
\end{array}\right. \\
& =\vec{a} \times \vec{b}+\vec{a} \times \vec{c}+\vec{b} \times \vec{c}-\vec{a} \times \vec{b}-\vec{a} \times \vec{c}-\vec{b} \times \vec{c}
\end{aligned}
$$

Hence proved.

Q\#12(i) If $\vec{b} \times \vec{c}=\vec{c} \times \vec{a}=\vec{a} \times \vec{b} \neq \mathbf{0}$ then Show that $\vec{a}+\vec{b}+\vec{c}=0$
Solution: Given $\vec{b} \times \vec{c}=\vec{c} \times \vec{a}=\vec{a} \times \vec{b} \neq 0$
We have to prove $\quad . \vec{a}+\vec{b}+\vec{c}=0$
Let $\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$

$$
\begin{array}{ll}
\vec{b} \times \vec{c}=\vec{c} \times \vec{a}-\vec{c} \times \vec{c} & \therefore \vec{c} \times \vec{c}=0 \\
\vec{b} \times \vec{c}=-\vec{a} \times \vec{c}-\vec{c} \times \vec{c} & \therefore \vec{c} \times \vec{a}=-\vec{a} \times \vec{c} \\
\vec{b} \times \vec{c}=(-\vec{a}-\vec{c}) \times \vec{c} &
\end{array}
$$

By using right cancellation property

$$
\begin{aligned}
& \vec{b}=-\vec{a}-\vec{c} \\
& \vec{a}+\vec{b}+\vec{c}=0 \quad \text { Hence proved. }
\end{aligned}
$$

Q\#12(ii) if $\vec{a}+\vec{b}+\vec{c}=\mathbf{0}$ then show that $\vec{b} \times \vec{c}=\vec{c} \times \vec{a}=\vec{a} \times \vec{b}$.
Solution: Given $\quad \vec{a}+\vec{b}+\vec{c}=0$
We have to prove $\vec{b} \times \vec{c}=\vec{c} \times \vec{a}=\vec{a} \times \vec{b}$
Let

$$
\vec{a}+\vec{b}+\vec{c}=0 \Rightarrow \vec{b} \neq-\vec{a}-\vec{c}
$$

Taking cross product with \vec{c}

$$
\begin{align*}
& \vec{b} \times \vec{c}=(-\vec{a}-\vec{c}) \times \\
& \vec{b} \times \vec{c}=-\vec{a} \times \vec{c}-\vec{c} \times \vec{c} \quad \therefore \vec{c} \times \vec{c}=0 \\
& \vec{b} \times \vec{c}=\vec{c} \times \vec{a}-0 \\
& \vec{b} \times \vec{c}=\vec{c} \times \vec{a} \tag{i}\\
& \text { Again Let } \vec{a}+\vec{b}+\vec{c}=0 \quad \Rightarrow \vec{b}=-\vec{a}-\vec{c}
\end{align*}
$$

Taking cross product with \vec{a}

$$
\begin{align*}
\vec{a} \times \vec{b}=\vec{a} \times(-\vec{a}-\vec{c}) & \\
\vec{a} \times \vec{b}=-\vec{a} \times \vec{a}-\vec{a} \times \vec{c} & \therefore \vec{c} \times \vec{c}=0 \\
\vec{a} \times \vec{b}=0+\vec{c} \times \vec{a} & \therefore-\vec{a} \times \vec{c}=\vec{c} \times \vec{a} \\
\vec{a} \times \vec{b}=\vec{c} \times \vec{a}-\cdots-------(i) &
\end{align*}
$$

Combining (i) \& (ii)

$$
\vec{b} \times \vec{c}=\vec{c} \times \vec{a}=\vec{a} \times \vec{b}
$$

Hence proved.

Q\#13: if (i) $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$ or (ii) $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$
Where \vec{a} is a non-zero arbitrary vector then show that in either case $\overrightarrow{\boldsymbol{b}}=\overrightarrow{\boldsymbol{c}}$.
(i) Solution: Given $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$

We have to prove $\vec{b}=\vec{c}$.
From (i)

$$
\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}
$$

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}-\vec{a} \cdot \vec{c}=0 \\
& \vec{a} \cdot(\vec{b}-\vec{c})=0
\end{aligned}
$$

\therefore Left distributive law of dot product
Here $\quad \vec{a} \neq o$ but $\vec{b}-\vec{c}=0$

$$
\begin{equation*}
\Rightarrow \vec{b}=\vec{c} \tag{i}
\end{equation*}
$$

(ii) Solution: Given $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$

We have to prove $\vec{b}=\vec{c}$.
From (i)

$$
\vec{a} \times \vec{b}=\vec{a} \times \vec{c}
$$

$$
\begin{aligned}
& \vec{a} \times \vec{b}-\vec{a} \times \vec{c}=0 \\
& \quad \vec{a} \times(\vec{b}-\vec{c})=0
\end{aligned}
$$

\therefore Left distributive law of cross product
Here $\vec{a} \neq 0 \quad$ but $\quad \vec{b}-\vec{c}=0$

$$
\Rightarrow \vec{b}=\vec{c}
$$

Q\#14: Show that the vector $\vec{a}=\hat{\imath}-2 \hat{\jmath}+3 \widehat{k} ; \vec{b}=2 \hat{\imath}+3 \hat{\jmath}-4 \widehat{k} \& \vec{c}=-7 \hat{\imath}+0 \hat{\jmath}+10 \widehat{k}$ are collinear.
Solution: Given

$$
\overrightarrow{\boldsymbol{a}}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k} \quad \overrightarrow{\boldsymbol{b}}=2 \hat{\imath}+3 \hat{\jmath}-4 \hat{k} \quad \& \overrightarrow{\boldsymbol{c}}=-7 \hat{\imath}+0 \hat{\jmath}+10 \hat{k}
$$

For collinear vectors, we have to prove.

$$
\begin{align*}
\therefore \vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & -2 & 3 \\
2 & 3 & -4
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
-2 & 3 \\
3 & -4
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
1 & 3 \\
2 & -4
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
1 & -2 \\
2 & 3
\end{array}\right| \\
& =\hat{\imath}(8-9)-\hat{\jmath}(-4-6)+\hat{k}(3+4)=\hat{\imath}(-1)-\hat{\jmath}(-10)+\hat{k}(7) \\
& =-\hat{\imath}+10 \hat{\jmath}+7 \hat{k}-\ldots--(\mathrm{i})
\end{align*}
$$

$$
\begin{align*}
\therefore \vec{b} \times \vec{c} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
2 & 3 & -4 \\
0 & -7 & 10
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
3 & -4 \\
-7 & 10
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
2 & -4 \\
0 & 10
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
2 & 3 \\
0 & -7
\end{array}\right| \\
& =\hat{\imath}(30-28)-\hat{\jmath}(20-0)+\hat{k}(-14-0)=\hat{\imath}(2)-\hat{\jmath}(20)+\hat{k}(-7) \\
& =2 \hat{\imath}-20 \hat{\jmath}-7 \hat{k}-\cdots---(\mathrm{ii}) \\
\therefore \vec{c} \times \vec{a} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
0 & -7 & 10 \\
1 & -2 & 3
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
-7 & 10 \\
-2 & 3
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
0 & 10 \\
1 & 3
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
0 & -7 \\
1 & -2
\end{array}\right| \\
& =\hat{\imath}(-21+20)-\hat{\jmath}(0-10)+\hat{k}(0+7)=\hat{\imath}(-1)-\hat{\jmath}(-10)+\hat{k}(7) \\
& =-\hat{\imath}+10 \hat{\jmath}+7 \hat{k}------(\text { (iii }) \tag{iii}
\end{align*}
$$

Adding (i), (ii) \& (iii)

$$
\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=0
$$

Hence proved that the given vectors are collinear.

Q\#15: Find a vector perpendicular to both line $A B \& C D$. Where $A(0,2,4), B(3,-1,2)$ $C(2,0,1)$ and $D(4,2,0)$ are given points.
Solution: Here $A(0,2,4), B(3,-1,2), C(2,0,1)$ and $D(4,2,0)$ are given points.
Now $\overrightarrow{A B}=$ p.v's of $\mathrm{B}-\mathrm{p} . \mathrm{v}^{\prime} \mathrm{s}$ of $\mathrm{A}=\hat{B}(3,-1,2)-A(0,2,4)$

$$
\begin{aligned}
& =(3-0) \hat{\imath}+(-1-2) \hat{\jmath}+(2-4) \hat{k} \\
& =3 \hat{\imath}-3 \hat{\jmath}-2 \hat{k}^{5}
\end{aligned}
$$

$$
\begin{aligned}
\overrightarrow{C D} & =\text { p.v's of } \mathrm{D}-\mathrm{p} \cdot \mathrm{y}^{\prime} \mathrm{s} \text { of } \mathrm{C}=D(4,2,0)-C(2,0,1) \\
& =(4-2) \hat{\imath}+(2-0) \hat{\jmath}+(0-1) \hat{k} \\
& =2 \hat{\imath}+2 \hat{\jmath}-\hat{k}
\end{aligned}
$$

We know that perpendicular vector of $\overrightarrow{A B}$ and $\overrightarrow{C D}$ is

$$
\begin{aligned}
\overrightarrow{A B} \times \overrightarrow{C D} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
3 & -3 & -2 \\
2 & 2 & -1
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
-3 & -2 \\
2 & -1
\end{array}\right|-\hat{\jmath}\left|\begin{array}{ll}
3 & -2 \\
2 & -1
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
3 & -3 \\
2 & 2
\end{array}\right| \\
& =\hat{\imath}(3+4)-\hat{\jmath}(-3+4)+\hat{k}(6+6) \\
& =7 \hat{\imath}-\hat{\jmath}+12 \hat{k}
\end{aligned}
$$

Q\#16: (i)Find the area of a triangle whose vertices are $\mathbf{A}(\mathbf{0 , 0 , 0}), \mathbf{B}(1,1,1) \& \mathbf{C}(\mathbf{0}, \mathbf{2}, \mathbf{3})$.

Solution: Consider a triangle ABC. Whose AB and AC are adjacent sides.

$$
\begin{aligned}
\overrightarrow{A B} & =\mathrm{p} \cdot \mathrm{v} \text { 's of } \mathrm{B}-\mathrm{p} \cdot \mathrm{v} \text { 's of } \mathrm{A}=B(1,1,1)-A(0,0,0) \\
& =(1-0) \hat{\imath}+(1-0) \hat{\jmath}+(1-0) \hat{k} \\
& =\hat{\imath}+\hat{\jmath}+\hat{k} \\
\overrightarrow{A C} & =\mathrm{p} \cdot \mathrm{v} \text { 's of } \mathrm{C}-\mathrm{p} \cdot \mathrm{v}^{\prime} \mathrm{s} \text { of } \mathrm{A}=C(0,2,3)-A(0,0,0) \\
& =(0-0) \hat{\imath}+(2-0) \hat{\jmath}+(3-0) \hat{k} \\
& =0 \hat{\imath}+2 \hat{\jmath}+3 \hat{k}
\end{aligned}
$$

We know that
Area of triangle $=\frac{1}{2}($ Area of parallelogram $)=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|--(i)$

$$
\begin{aligned}
\therefore \quad \overrightarrow{A B} \times \overrightarrow{A C} & =\left|\begin{array}{lll}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & 1 & 1 \\
0 & 2 & 3
\end{array}\right|=\hat{\imath}\left|\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right|-\hat{\jmath}\left|\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right|+\hat{k}\left|\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right| \\
& =\hat{\imath}(3-2)-\hat{\jmath}(3-0)+\hat{k}(2-0) \\
& =\hat{\imath}-3 \hat{\jmath}+2 \hat{k}
\end{aligned}
$$

From (i)

$$
\begin{aligned}
\text { Area of triangle } & =\frac{1}{2}|\vec{a} \times \vec{b}| \\
& =\frac{1}{2}\left(\sqrt{(1)^{2}+(-3)^{2}+(2)^{2}}\right)=\frac{1}{2}(\sqrt{1+9+4})
\end{aligned}
$$

sq.units.

Q\#16;(ii)Prove that $\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$

Solution: Let $\widehat{a}=\widehat{O A}$ and $\hat{b}=\widehat{O B}$ be the two unit vectors makes an angle α and β with x-axis.

From figure:

$$
\begin{aligned}
\hat{a} & =\widehat{O A}=|\hat{a}| \cos \alpha \quad \hat{\imath}+|\hat{a}| \sin \alpha \hat{\jmath} \\
& =\cos \alpha \hat{\imath}+\sin \alpha \hat{\jmath} \\
\widehat{b} & =\widehat{O B}=|\hat{b}| \cos \beta \quad \hat{\imath}+|\hat{b}| \sin \beta \hat{\jmath} \\
& =\cos \beta \hat{\imath}+\sin \beta \hat{\jmath}
\end{aligned}
$$

Taking cross product of \hat{b} with \hat{a} unit vectors.

$$
\hat{b} \times \hat{a}=(\cos \beta \hat{\imath}+\sin \beta \hat{\jmath}) \times(\cos \alpha \hat{\imath}+\sin \alpha \hat{\jmath})
$$

$$
=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\cos \beta & \sin \beta & 0 \\
\cos \alpha & \cos \alpha & 0
\end{array}\right|
$$

$$
|\hat{b}||\hat{a}| \sin (\alpha-\beta) \hat{k}=0 \hat{\imath}-\widehat{0} \jmath+\hat{k}\left|\begin{array}{ll}
\cos \beta & \sin \beta \\
\cos \alpha & \sin \alpha
\end{array}\right|
$$

$$
\sin (\alpha-\beta) \hat{k}=(\cos \beta \sin \alpha-\sin \alpha \sin \beta) \hat{k}
$$

$$
\therefore|\hat{b}|=|\hat{a}|=1
$$

$$
\sin (\alpha-\beta)=\cos \beta \sin \alpha-\sin \alpha \sin \beta \quad \text { Hence proved. }
$$

Q\#16: (iii)Prove that $\quad \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$

Solution: Let $\hat{a}=\mathrm{OA}$ and $\hat{b}=O B$ be the two unit vectors makes an angle α and β makes with x -axis. From figure:

$$
\begin{aligned}
\hat{a} & =\mathrm{OA}=|\hat{a}| \cos \alpha \hat{\imath}+|\hat{a}| \sin \alpha \hat{\jmath} \\
& =\cos \alpha \hat{\imath}+\sin \alpha \hat{\jmath} \\
\hat{b} & =\mathrm{OB}=|\hat{b}| \cos \beta \hat{\imath}-|\hat{b}| \sin \beta \hat{\jmath} \\
& =\cos \beta \hat{\imath}-\sin \beta \hat{\jmath}
\end{aligned}
$$

Taking cross product of \hat{b} with \hat{a} unit vectors.

$$
\left.\begin{array}{r}
\hat{b} \times \hat{a}=\left(\begin{array}{lll}
\cos \beta & \hat{\imath}- & \sin \beta \\
\beta
\end{array}\right) \times(\cos \alpha \\
\hat{\imath}+\sin \alpha \hat{\jmath}
\end{array}\right)
$$

$$
|\hat{b}||\hat{a}| \sin (\alpha+\beta) \hat{k}=0 \hat{\imath}-\widehat{0 \jmath}+\hat{k}\left|\begin{array}{cc}
\cos \beta & -\sin \beta \\
\cos \alpha & \sin \alpha
\end{array}\right|
$$

$$
\sin (\alpha+\beta) \hat{k}=(\cos \beta \sin \alpha+\sin \alpha \sin \beta) \hat{k}
$$

$$
\therefore|\hat{b}|=|\hat{a}|=1
$$

$$
\operatorname{Sin}(\alpha+\beta)=\cos \beta \sin \alpha+\sin \alpha \sin \beta \quad \text { Hence proved. }
$$

Q\#16: (iv) Prove that sin law of trigonometry by using vector .

Solution: Consider a $\triangle A B C$ as shown in the figure.

$$
\text { If } \overrightarrow{A B}=\vec{c} ; \overrightarrow{B C}=\vec{a} \text { and } \overrightarrow{A C}=\vec{b}
$$

We have to prove $\quad \frac{|\vec{a}|}{\sin \alpha}=\frac{|\vec{b}|}{\sin \beta}=\frac{|\vec{c}|}{\sin \gamma}$
We know that $\vec{a}+\vec{b}+\vec{c}=0$

$$
\begin{equation*}
\Rightarrow \quad \vec{a}=-\vec{b}-\vec{c} \tag{i}
\end{equation*}
$$

Taking cross product of (i) with \vec{b}

$$
\begin{aligned}
& \vec{a} \times \vec{b}=(-\vec{b}-\vec{c}) \times \vec{b} \\
& \vec{a} \times \vec{b}=-\vec{b} \times \vec{b}-\vec{c} \times \vec{b} \\
& \vec{a} \times \vec{b}=0-\vec{c} \times \vec{b} \\
& \vec{a} \times \vec{b}=\vec{b} \times \vec{c}
\end{aligned}
$$

Taking magnitude $\quad|\vec{a} \times \vec{b}|=|\vec{b} \times \vec{c}|$

$$
\begin{aligned}
|\vec{a}||\vec{b}| \sin \gamma & =|\vec{b}||\vec{c}| \sin \alpha \\
|\vec{a}| \sin \gamma & =|\vec{c}| \sin \alpha \\
\frac{|\vec{a}|}{\sin \alpha} & =\frac{|\vec{c}|}{\sin \gamma}
\end{aligned}
$$

Taking cross product of (i) with \vec{c}

$$
\begin{aligned}
& \vec{a} \times \vec{c}=(-\vec{b}-\vec{c}) \times \vec{c} \\
& \vec{a} \times \vec{c}=-\vec{b} \times \vec{c}-\vec{c} \times \vec{c} \\
& \vec{a} \times \vec{c}=-\vec{b} \times \vec{c}-0 \\
& \vec{a} \times \vec{c}=\vec{c} \times \vec{b} \\
& |\vec{a} \times \vec{c}|=|\vec{c} \times \vec{b}|
\end{aligned}
$$

Taking magnitude

$$
\begin{gather*}
|\vec{a}||\vec{c}| \sin \beta=|\vec{c}||\vec{b}| \sin \alpha \\
|\vec{a}| \sin \beta=|\vec{b}| \sin \alpha \\
\frac{|\vec{a}|}{\sin \alpha}=\frac{|\vec{b}|}{\sin \beta} \tag{ii}
\end{gather*}
$$

Combining (i) \&(ii)

$$
\frac{|\vec{a}|}{\sin \alpha}=\frac{|\vec{b}|}{\sin \beta}=\frac{|\vec{c}|}{\sin \gamma}
$$

This is called law of sine of trigonometry.

Q\#16:(v)If the diagonals of a given parallelogram are taken as its adjacent sides of a second parallelogram, then prove that the area of the second parallelogram is twice the area of given parallelogram.

Solution: Let $\vec{a} \& \vec{b}$ be the adjacent sides of a given parallelogram and $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ be the diagonal expression taken as the adjacent sides of second parallelogram.

We have prove.
(Area of parallelogram with diagonal as sides) $=2$ (Area of parallelogram with original sides)

$$
\begin{aligned}
&|(\overrightarrow{\boldsymbol{a}}-\overrightarrow{\boldsymbol{b}}) \times(\overrightarrow{\boldsymbol{a}}+\overrightarrow{\boldsymbol{b}})|=\mathbf{2}|\vec{a} \times \vec{b}| \\
& \text { L.H.S }=|(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})| \\
&=|\vec{a} \times(\vec{a}+\vec{b})-\vec{b} \times(\vec{a}+\vec{b})| \\
&=|\vec{a} \times \vec{a}+\vec{a} \times \vec{b}-\vec{b} \times \vec{a}-\vec{b} \times \vec{b}| \\
&=|0+\vec{a} \times \vec{b}+\vec{a} \times \vec{b}+0| \\
&=2|\vec{a} \times \vec{b}|=\text { R.H.S }
\end{aligned}
$$

Hence proved.
Q\#17:If $\vec{a}=2 \hat{\imath}-3 \hat{\jmath}+\widehat{\boldsymbol{k}} ; \vec{b}=-\hat{\imath}+\widehat{\boldsymbol{k}} \& \vec{c}=2 \hat{\jmath}-10 \widehat{k}$. Then find the Area of a parallelogram whose diagonals are $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$.

Solution: Given $\vec{a}=2 \hat{\imath}-3 \hat{\jmath}+\hat{k} ; \vec{b}=-\hat{\imath}+0 \hat{\jmath}+\hat{k} \quad \& \vec{c}=0 \hat{\imath}+2 \hat{\jmath}-10 \hat{k}$
If $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ be the two diagonals of a parallelogram. Then
Area of parallelogram $=\frac{1}{2}|(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|----(i)$

$$
\begin{aligned}
& \therefore \vec{a}+\vec{b}=2 \hat{\imath}-3 \hat{\jmath}+\hat{k}-\hat{\imath}+0 \hat{\jmath}+\hat{k}=\hat{\imath}-3 \hat{\jmath}+2 \hat{k} \\
& \therefore \vec{a}-\vec{b}=2 \hat{\imath}-3 \hat{\jmath}+\hat{k}+\hat{\imath}-0 \hat{\jmath}-\hat{k}=3 \hat{\imath}-3 \hat{\jmath}+0 \hat{k}
\end{aligned}
$$

$\operatorname{Now}(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & -3 & 2 \\ 3 & -3 & 0\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}-3 & -2 \\ -3 & 0\end{array}\right|-\hat{\jmath}\left|\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right|+\hat{k}\left|\begin{array}{cc}1 & -3 \\ 3 & -3\end{array}\right|$

$$
\begin{aligned}
& =\hat{\imath}(0-6)-\hat{\jmath}(0-6)+\hat{k}(-3+9) \\
& =-6 \hat{\imath}+6 \hat{\jmath}+6 \hat{k}
\end{aligned}
$$

From (i)

$$
\begin{aligned}
\text { Area of parallelogram } & =\frac{1}{2}|(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})| \\
& =\frac{1}{2}\left(\sqrt{(-6)^{2}+(6)^{2}+(6)^{2}}\right)=\frac{1}{2}(\sqrt{36+36+36}) \\
& =\frac{1}{2}(\sqrt{108})=\frac{6 \sqrt{3}}{2}=3 \sqrt{3} \text { sq.units. }
\end{aligned}
$$

Q\#18: Find two unit vectors which makes an angle of 60^{0} with vectors $[1,-1,0]$ and $[1,0,-1]$.

Solution : Let \hat{u} be the required unit vector. Let $\hat{u}=x i+y j+z k$ \qquad
Then $\quad|\hat{u}|^{2}=x^{2}+y^{2}+z^{2} \quad \Rightarrow x^{2}+y^{2}+z^{2}=1$ \qquad
Given $\quad \vec{a}=[1,-1,0]=i-j \quad$ and $\quad \vec{b}=[1,0,-1]=i-k$
$\boldsymbol{1}^{\text {st }}$ condition: The unit vector \hat{u} makes an angle 60° with \vec{a}.
Then

$$
\vec{a} \cdot \hat{u}=|\vec{a}||\hat{u}| \cos \theta \quad \text { where } \theta=60^{\circ}
$$

$2^{\text {nd }}$ condition: The unit vector \hat{u} makes an angle 60° with \vec{b}.
Then

$$
\vec{b} \cdot \hat{u}=|\vec{b}||\hat{u}| \cos \theta \quad \text { where } \theta=60^{\circ}
$$

Using equation (ii) and (iii) in (i)

$$
\begin{gathered}
x^{2}+\left[x-\frac{1}{\sqrt{2}}\right]^{2}+\left[x-\frac{1}{\sqrt{2}}\right]^{2}=1 \\
x^{2}+x^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}-2 x \frac{1}{\sqrt{2}}+x^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}-2 x \frac{1}{\sqrt{2}}=1 \\
3 x^{2}-\sqrt{2} x+\frac{1}{2}-\sqrt{2} x+\frac{1}{2}=1 \Rightarrow 3 x^{2}-2 \sqrt{2} x+1=1 \Rightarrow 3 x^{2}-2 \sqrt{2} x=0 x(3 x-2 \sqrt{2})=0
\end{gathered}
$$

Put in (ii) and (iii)

$$
y=0-\frac{1}{\sqrt{2}} \nRightarrow y=-\frac{1}{\sqrt{2}}
$$

$$
\begin{array}{r}
3 x-2 \sqrt{2}=0 \Rightarrow 3 x=2 \sqrt{2} \Rightarrow x=\frac{2 \sqrt{2}}{3} \\
y=\frac{2 \sqrt{2}}{3}-\frac{1}{\sqrt{2}}=\frac{4-3}{3 \sqrt{2}} \Rightarrow y^{3}=\frac{1}{3 \sqrt{2}} \\
\mathrm{z}=\frac{2 \sqrt{2}}{3}-\frac{1}{\sqrt{2}}=\frac{4-3}{3 \sqrt{2}} \Rightarrow \\
\mathrm{z}=\frac{1}{3 \sqrt{2}}
\end{array}
$$

\&
$z=0-\frac{1}{\sqrt{2}} \Rightarrow \quad z=\frac{-1}{\sqrt{2}}$
Using values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in required unit vector represented by equ.(A)

$$
\widehat{u}=0 i-\frac{1}{\sqrt{2}} j-\frac{1}{\sqrt{2}} k \quad \text { OR } \quad \hat{u}=\frac{2 \sqrt{2}}{3} i+\frac{1}{3 \sqrt{2}} j+\frac{1}{3 \sqrt{2}} k
$$

$$
\begin{align*}
& (i+0 j-k) \cdot(x i+y j+z k)=\sqrt{(0)^{2}+(1)^{2}+(-1)^{2}} 1 \cdot \cos 60^{\circ} \quad \therefore|\hat{u}|=1 \\
& \text { 1. } x+0 . y-1 . z=\sqrt{0+1+1} \cdot \frac{1}{2}=\sqrt{2} \\
& x-z=\frac{1}{\sqrt{2}} \Rightarrow z=x-\frac{1}{\sqrt{2}} \tag{iii}
\end{align*}
$$

$$
\begin{align*}
& (i-j+0 k) \cdot(x i+y j+z k)=\sqrt{(1)^{2}+(-1)^{2}+(0)^{2}} \cdot 1 \cdot \cos 60^{0} \\
& \text { 1. } x-1 . y-0 . z=\sqrt{1+1+0} \cdot \frac{1}{2}=\sqrt{2} \cdot \frac{1}{2} \\
& x-y=\frac{1}{\sqrt{2}} \Rightarrow y=x-\frac{1}{\sqrt{2}} \tag{iii}
\end{align*}
$$

Q\#19:Prove by using cross product that the points $(5,2,-3),(6,1,4),(-2,-3,6)$ and
$(-3,-2,1)$ Are the vertices of a parallelogram then find its area.
Solution: Let $A(5,2,-3) ; B(6,1,4) ; C(-2,-3,6)$ and $D(-3,-2,1)$ are the vertices of parallelogram $A B C D A . A B \& A D$ are its adjacent sides.
Now $\quad \overrightarrow{A B}=$ p.v's of $\mathrm{B}-\mathrm{p} . \mathrm{v}$'s of $\mathrm{A}=B(6,1,4)-A(5,2,-3)$

$$
\begin{aligned}
& =(6-5) \hat{\imath}+(1-2) \hat{\jmath}+(4+3) \hat{k} \\
& =\hat{\imath}-\hat{\jmath}+7 \hat{k}
\end{aligned}
$$

$$
\overrightarrow{A D}=\text { p.v's of } \mathrm{D}-\mathrm{p} . \mathrm{v} \text { 's of } \mathrm{A}=D(-3,-2,1)-A(5,2,-3)
$$

$$
=(-3-5) \hat{\imath}+(-2-2) \hat{\jmath}+(1+3) \hat{k}
$$

$$
=-8 \hat{\imath}-4 \hat{\jmath}+4 \hat{k}
$$

We know that perpendicular vector of $\overrightarrow{A B}$ and $\overrightarrow{C D}$ is

$$
\begin{aligned}
\overrightarrow{A B} \times \overrightarrow{A D} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & -1 & 7 \\
-8 & -4 & 4
\end{array}\right|=\hat{\imath}\left|\begin{array}{ll}
-1 & 7 \\
-4 & 4
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
1 & 7 \\
-8 & 2
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
1 & -1 \\
-8 & -4
\end{array}\right| \\
& =\hat{\imath}(-4+28)-\hat{\jmath}(2+56)+\hat{k}(-4-8) \\
& =24 \hat{\imath}-58 \hat{\jmath}-12 \hat{k}
\end{aligned}
$$

Area of parallelogram $=|\overrightarrow{A B} \times \overrightarrow{A D}|=\left(\sqrt{(24)^{2}+(-58)^{2}+(-12)^{2}}\right)=(\sqrt{576+3364+144})$

$$
=(\sqrt{4084}) \text { sq.units. }
$$

Q\#20: Find the area of parallelogram having diagonals $\vec{a}=\mathbf{3} \hat{\imath}+\hat{\jmath}-\mathbf{2} \widehat{\boldsymbol{k}} \& \vec{b}=\hat{\imath}-\mathbf{3} \hat{\jmath}+4 \widehat{\boldsymbol{k}}$
Solution: For diagonal expression

$$
\begin{equation*}
\text { Area of parallelogram }=\frac{1}{2}|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|- \tag{i}
\end{equation*}
$$

\qquad

$$
\begin{aligned}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
3 & 1 & -2 \\
1 & -3 & 4
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
1 & -2 \\
-3 & 4
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
3 & -2 \\
1 & 4
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
3 & 1 \\
1 & -3
\end{array}\right| \\
& =\hat{\imath}(4-6)-\hat{\jmath}(12+2)+\hat{k}(-9-1) \\
& =-2 \hat{\imath}-14 \hat{\jmath}-10 \hat{k}
\end{aligned}
$$

Area of parallelogram=
$\frac{1}{2}|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\frac{1}{2}\left(\sqrt{(-2)^{2}+(-14)^{2}+(-10)^{2}}\right)=\frac{1}{2}(\sqrt{4+196+100})$

$$
\begin{aligned}
& =\frac{1}{2}(\sqrt{300})=\frac{10 \sqrt{3}}{2} \\
& =5 \sqrt{3} \text { sq.units. }
\end{aligned}
$$

Q\#21: Find area of triangle with vertices at $(3,-1,2) ;(1,-1,-3)$ and $(4,-3,1)$.

Solution: Let $\mathrm{A}(3,-1,2) ; B(1,-1,-3)$ and $C(4,-3,1)$ are the vertices of triangle ABC.
If $A B \& A C$ be the adjacent sides of its triangle. Then

$$
\begin{aligned}
\overrightarrow{A B} & =p \cdot v^{\prime} s \text { of } B-p \cdot v^{\prime} \text { s of } A=B(1,-1,-3)-A(3,-1,2)=(1-3) \hat{\imath}+(-1+1) \hat{\jmath}+(-3-2) \hat{k} \\
& =-2 \hat{\imath}+0 \hat{\jmath}-5 \hat{k} \\
\overrightarrow{A C} & =p \cdot v^{\prime} s \text { of } C-p \cdot v^{\prime} s \text { of } A=C(4,-3,1)-A(3,-1,2)=(4-3) \hat{\imath}+(-3+1) \hat{\jmath}+(1-2) \hat{k} \\
& =\hat{\imath}-2 \hat{\jmath}-\hat{k}
\end{aligned}
$$

We know that perpendicular vector of $\overrightarrow{A B}$ and $\overrightarrow{C D}$ is

$$
\begin{aligned}
\overrightarrow{A B} \times \overrightarrow{A C} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
-2 & 0 & -5 \\
1 & -2 & -1
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
0 & -5 \\
-2 & -1
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
-2 & -5 \\
1 & -1
\end{array}\right|+\hat{k}\left|\begin{array}{c}
-2 \\
0 \\
-2
\end{array}\right| \\
& =\hat{\imath}(0-10)-\hat{\jmath}(2+5)+\hat{k}(4-0) \\
& =-10 \hat{\imath}-7 \hat{\jmath}+4 \hat{k}
\end{aligned}
$$

Area of triangle $=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|=\frac{1}{2}\left(\sqrt{(-10)^{2}+(-7)^{2}+(4)^{2}}\right)=\frac{1}{2}(\sqrt{100+49+16})$

$$
\begin{aligned}
& =\frac{1}{2}(\sqrt{165}) \\
& =\frac{\sqrt{165}}{2}
\end{aligned}
$$

sq.units
Q\#22: If $\vec{a}=2 \hat{\imath}-\hat{\jmath} ; \vec{b}=\hat{\jmath}+\widehat{k} \&|\vec{c}|=12$ and \vec{c} is perpendicular to both \vec{a} and \vec{b} , write the component form of $\overrightarrow{\boldsymbol{c}}$.

Solution: If $\vec{a}=2 \hat{\imath}-\hat{\jmath}+0 \hat{k} \quad \vec{b}=0 \hat{\imath}+\hat{\jmath}+\hat{k} \quad \& \quad|\vec{c}|=12$
Let \hat{c} be the unit vector perpendicular to both \vec{a} and \vec{b}. Then $\hat{c}=\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$

$$
\begin{align*}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
2 & -1 & 0 \\
0 & 1 & 1
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right|=\hat{\imath}(-1-0)-\hat{\jmath}(2-0)+\hat{k}(2-0) \tag{i}\\
& =-\hat{\imath}-2 \hat{\jmath}+2 \hat{k}
\end{align*}
$$

$$
|\vec{a} \times \vec{b}|=\sqrt{(-1)^{2}+(-2)^{2}+(2)^{2}}=\sqrt{1+4+4}=\sqrt{9}=3
$$

From (i)

$$
\begin{equation*}
\hat{c}=\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}=\frac{-\hat{\imath}-2 \hat{\jmath}+2 \hat{k}}{3} \tag{ii}
\end{equation*}
$$

Now by using definition of unit vector

$$
\begin{aligned}
& \hat{c}=\frac{\vec{c}}{|\vec{c}|} \Rightarrow \vec{c}=|\vec{c}| \hat{c} \\
& \vec{c}=12\left(\frac{-\hat{\imath}-2 \hat{\jmath}+2 \hat{k}}{3}\right)=4(-\hat{\imath}-2 \hat{\jmath}+2 \hat{k}) \Rightarrow \vec{c}=-4 \hat{\imath}-8 \hat{\jmath}+8 \hat{k}
\end{aligned}
$$

Q\#23: Show that $\vec{a} \times \vec{b}=\hat{\imath} \times a_{1} \vec{b}+\hat{\imath} \times a_{2} \vec{b}+\hat{\imath} \times a_{3} \vec{b} \quad$ where $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \widehat{k}$.
Solution: Given $\vec{a}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k}$
We have to prove $\vec{a} \times \vec{b}=\hat{\imath} \times a_{1} \vec{b}+\hat{\imath} \times a_{2} \vec{b}+\hat{\imath} \times a_{3} \vec{b}$
Now

$$
\begin{aligned}
\text { R.H.S } & =\hat{\imath} \times a_{1} \vec{b}+\hat{\imath} \times a_{2} \vec{b}+\hat{\imath} \times a_{3} \vec{b} \\
& =a_{1} \hat{\imath} \times \vec{b}+a_{2} \hat{\imath} \times \vec{b}+a_{3} \hat{\imath} \times \vec{b} \\
& =\left(a_{1} \hat{\imath}+a_{2} \hat{\imath}+a_{3} \hat{\imath}\right) \times \vec{b} \\
& =\vec{a} \times \vec{b}=\text { L.H.S }
\end{aligned}
$$

Hence proved .R.H.S= L.H.S
Q\#24: If $\vec{a}=2 \hat{\imath}-3 \hat{\jmath}+7 \widehat{\boldsymbol{k}} ; \vec{b}=\hat{\imath}-\hat{\jmath}+\mathbf{1 0} \widehat{\boldsymbol{k}} \& \vec{c}=3 \hat{\imath}-5 \hat{\jmath}+4 \widehat{k}$ and these vector have a common initial point, Determine whether the terminal points lies on a straight line.
Solution: Given if $\vec{a}=2 \hat{\imath}-3 \hat{\jmath}+7 \hat{k} ; \vec{b}=\hat{\imath}-\hat{\jmath}+10 \hat{k} \quad \& \vec{c}=3 \hat{\imath}-5 \hat{\jmath}+4 \hat{k}$
We have to prove $\quad \vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=0$

$$
\begin{align*}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
2 & -3 & 7 \\
1 & -1 & 10
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
-3 & 7 \\
-1 & 10
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
2 & 7 \\
1 & 10
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
2 & -3 \\
1 & -1
\end{array}\right| \\
& =\hat{\imath}(-30+7)-\hat{\jmath}(20-7)+\hat{k}(-2+3) \\
& =-23 \hat{\imath}-13 \hat{\jmath}+\hat{k}-----(\hat{1}) \\
\vec{b} \times \vec{c} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & -1 & 10 \\
3 & -5 & 4
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
-1 & 10 \\
-5 & 4
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
1 & 10 \\
3 & 4
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
1 & -1 \\
3 & -5
\end{array}\right| \\
& =\hat{\imath}(-4+50)-\hat{\jmath}(4-30)+\hat{k}(-5+3) \\
& =46 \hat{\imath}+26 \hat{\jmath}-2 \hat{k}-------(\mathrm{ii}) \tag{ii}
\end{align*}
$$

$$
\vec{c} \times \vec{a}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
3 & -5 & 4 \\
2 & -3 & 7
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
-5 & 4 \\
-3 & 7
\end{array}\right|-\hat{\jmath}\left|\begin{array}{ll}
3 & 4 \\
2 & 7
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
3 & -5 \\
2 & -3
\end{array}\right|
$$

$$
=\hat{\imath}(-35+12)-\hat{\jmath}(21-8)+\hat{k}(-9+10)
$$

$$
=-23 \hat{\imath}-13 \hat{\jmath}+\hat{k}--------(\text { (iii) }
$$

Adding (i), (ii) \& (iii)

$$
\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=0
$$

Yes, the terminal point lies on the straight line.

Q\#25: Let $\widehat{\boldsymbol{a}} \boldsymbol{\&} \widehat{\boldsymbol{b}}$ be the unit vectors and $\boldsymbol{\theta}$ be the angle between $\widehat{\boldsymbol{a}} \boldsymbol{\&} \widehat{\boldsymbol{b}}$.
Show that $\sin \frac{\theta}{2}=\frac{1}{2}|\widehat{b}-\widehat{a}|$.
Solution: Let $\hat{a} \& \hat{b}$ be the unit vectors and θ be the angle between $\hat{a} \& \hat{b}$.
Then we have to prove $\quad \sin \frac{\theta}{2}=\frac{1}{2}|\hat{b}-\hat{a}|$.
Let $|\hat{b}-\hat{a}|^{2}=(\hat{b}-\hat{a}) \cdot(\hat{b}-\hat{a})$

$$
=\hat{b} \cdot \hat{b}-\hat{b} \cdot \hat{a}-\hat{a} \cdot \hat{b}+\hat{a} \cdot \hat{a}
$$

$$
=|\hat{b}|^{2}+|\hat{a}|^{2}-2|\hat{b}||\hat{a}| \cos \theta
$$

$$
|\hat{b}|=|\hat{a}| \neq 1
$$

$$
=1+1-2 \cos \theta=2-2 \cos \theta=2(1-\cos \theta)
$$

$$
=2 \quad\left(2 \sin ^{2} \frac{\theta}{2}\right)
$$

$$
|\hat{b}-\hat{a}|^{2}=\left(2 \sin \frac{\theta}{2}\right)^{2}
$$

Taking square-root on the both sides

$$
\begin{array}{r}
|\hat{b}-\hat{a}|=2 \sin \frac{\theta}{2} \\
\frac{1}{2}|\hat{b}-\hat{a}|=\sin \frac{\theta}{2}
\end{array}
$$

Henc proved that
$\sin \frac{\theta}{2}=\frac{1}{2}|\hat{b}-\hat{a}|$.

Q\#26: Show that the component form of a unit tangent vector to a circle $x^{2}+y^{2}=a^{2}$

 is given by $\pm \frac{1}{a}(-y \hat{\imath}+x \hat{\jmath})$.Solution: Let \vec{r} be the radius vector of a circle. Let $\vec{r}=x \hat{\imath}+\mathrm{y} \hat{\jmath}$
Put $\mathrm{x}=\mathrm{a} \cos \theta \quad \& \mathrm{y}=\mathrm{a} \sin \theta$

$$
\begin{equation*}
\vec{r}=a \cos \theta \hat{\imath}+a \sin \theta \hat{\jmath} \tag{i}
\end{equation*}
$$

For tangent vector, differentiate equation (i) w.r.t θ

$$
\frac{d \vec{r}}{d \theta}=-a \sin \theta \hat{\imath}+a \cos \theta \hat{\jmath}
$$

Required unit vector of tangent vector is
$\frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{d} \theta}=\frac{\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{d} \theta}}{\left|\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{d} \theta}\right|}=\frac{-a \sin \theta \hat{\imath}+a \cos \theta \hat{\jmath}}{\sqrt{(-a \sin \theta)^{2}+(a \cos \theta)^{2}}}=\frac{-a \sin \theta \hat{\imath}+a \cos \theta \hat{\jmath}}{\sqrt{a^{2} \sin ^{2} \theta+a^{2} \cos ^{2} \theta}}$
$=\frac{-a \sin \theta \hat{\imath}+a \cos \theta \hat{\jmath}}{a \sqrt{\sin ^{2} \theta+\cos ^{2} \theta}}=\frac{-a \sin \theta \hat{\imath}+a \cos \theta \hat{\jmath}}{a \sqrt{1}}$
$=\frac{-a \sin \theta \hat{\imath}+a \cos \theta \hat{\jmath}}{a(\pm 1)}=\frac{-y \hat{\imath}+\mathrm{x} \hat{\jmath}}{ \pm a}$

$\frac{\mathrm{d} \hat{\mathrm{r}}}{\mathrm{d} \theta}= \pm \frac{1}{a}(-y \hat{\imath}+\mathrm{x} \hat{\jmath})$.
Hence proved.

Q\#27:Prove that: $\quad|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}+|\overrightarrow{\mathbf{c}}|^{2}+|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|^{2}=|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|^{2}+|\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|^{2}+|\overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}}|^{2}$
Solution: L.H.S $=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+|\vec{a}+\vec{b}+\vec{c}|^{2}$

$$
\begin{aligned}
& =|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+2 \vec{a} \cdot \vec{b}+2 \vec{b} \cdot \vec{c}+2 \vec{c} \cdot \vec{a} \\
& =\left[|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}\right]+\left[|\vec{b}|^{2}+|\vec{c}|^{2}+2 \vec{b} \cdot \vec{c}\right]+\left[|\vec{c}|^{2}+|\vec{a}|^{2}+2 \vec{c} \cdot \vec{a}\right] \\
& =|\vec{a}+\vec{b}|^{2}+|\vec{b}+\vec{c}|^{2}+|\vec{c}+\vec{a}|^{2}=\text { R.H.S }
\end{aligned}
$$

Hence proved
R.H.S = L.H.S

Q\#28: Show that the median through the vertex of an isosceles triangle is perpendicular to the base.
Solution: Consider an isosceles triangle OACB. Let O be the origin .
Let $\overrightarrow{O A}=\vec{a} ; \overrightarrow{O B}=\vec{b} ; \overrightarrow{O C}=\vec{a}+\vec{b}$ and $\overrightarrow{A B}=\vec{b}-\vec{a}$
We have to prove $\overrightarrow{O C} \perp \overrightarrow{A B} \Rightarrow \overrightarrow{O C} \cdot \overrightarrow{A B}=0$
Now $\overrightarrow{O C} \cdot \overrightarrow{A B}=(\vec{a}+\vec{b}) \cdot(\vec{b}-\vec{a})$

$$
=\vec{a} \cdot \vec{b}-\vec{a} \cdot \vec{a}+\vec{b} \cdot \vec{b}-\vec{b} \cdot \vec{a}
$$

$$
=|\vec{b}|^{2}-|\vec{a}|^{2}
$$

$=|\vec{a}|^{2}-|\vec{a}|^{2}$ In isosceles triangle: $|\overrightarrow{O A}|=|\overrightarrow{O B}| \Rightarrow|\vec{a}|=|\vec{b}|$
$\overrightarrow{O C} \cdot \overrightarrow{A B}=0$
Hence proved. $\quad \overrightarrow{O C} \perp \hat{A B}$
Q\#29: In triangle ABC, D \& E are mid points of the sides AB \& AC respectively. Show that DE is Parallel to BC.

Solution: Consider a $\triangle A B C$. Let Position vectors are $\mathrm{A}(\vec{a}), \mathrm{B}(\vec{b}), \mathrm{C}(\vec{c})$ and Mid points $\mathrm{D}\left(\frac{\vec{a}+\vec{b}}{2}\right) \& \mathrm{E}\left(\frac{\vec{a}+\vec{c}}{2}\right)$.
We have to prove. $\overrightarrow{D E} \| \overrightarrow{B C}$

$$
\begin{align*}
\overrightarrow{B C} & =\vec{c}-\vec{b}-\cdots-\cdots-\cdots-\cdots-\cdots \\
\overrightarrow{D E} & =\frac{\vec{a}+\vec{c}}{2}-\frac{\vec{a}+\vec{b}}{2}=\frac{\vec{a}+\vec{c}-\vec{a}-\vec{b}}{2}=\frac{\vec{c}-\vec{b}}{2} \\
& =\frac{1}{2}(\vec{c}-\vec{b}) \\
\overrightarrow{D E} & =\frac{1}{2} \overrightarrow{B C} \quad \therefore \text { Fron } \tag{i}
\end{align*}
$$

This shows that $\quad \overrightarrow{D E} \| \overrightarrow{B C}$

Q\#30:\{Example\}: Find the moment about the point $A(5,-1,3)$ of a force $4 \hat{\imath}+2 \hat{\jmath}+\widehat{k}$ through point $B(5,2,4)$.

Solution: Let $\vec{F}=4 \hat{\imath}+2 \hat{\jmath}+\hat{k}$ be a force \& \vec{r} be a position vector from point $A(5,-1,3)$ to $B(5,2,4)$.

$$
\begin{aligned}
\vec{r} & =P . v \text { of } B-P . v \text { of } A=B(5,2,4)-A(5,-1,3) \\
& =(5-5) \hat{\imath}+(2+1) \hat{\jmath}+(4-3) \hat{k} \\
\vec{r} & =0 \hat{\imath}+3 \hat{\jmath}+\hat{k}
\end{aligned}
$$

We know that
Moment of Force $=\vec{M}=\vec{r} \times \vec{F}=\left|\begin{array}{lll}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 0 & 3 & 1 \\ 4 & 2 & 1\end{array}\right|=\hat{\imath}\left|\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right|-\hat{\jmath}\left|\begin{array}{ll}0 & 1 \\ 4 & 1\end{array}\right|+\hat{k}\left|\begin{array}{ll}0 & 3 \\ 4 & 2\end{array}\right|$

$$
\begin{aligned}
& =\hat{\imath}(3-2)-\hat{\jmath}(0-4)+\hat{k}(0-12)^{\ominus} \\
& =\hat{\imath}+4 \hat{\jmath}-12 \hat{k}
\end{aligned}
$$

Q\#31: Find the moment about the point origin of a force $4 \hat{\boldsymbol{\imath}}+2 \hat{\boldsymbol{\jmath}}+\widehat{\boldsymbol{k}}$ through point $(5,2,4)$.
Solution: Let $\vec{F}=4 \hat{\imath}+2 \hat{\jmath}+\hat{k}$ be a force \& \vec{r} be a position vector from origin $\mathrm{O}(0,0,0)$ to $A(5,2,4)$.

$$
\begin{aligned}
& \vec{r}=\text { P.v of } \mathrm{A}-\mathrm{P} . \mathrm{v} \text { of } 0=A(5,2,4)-O(0,0,0) \\
& \vec{r}=5 \hat{\imath}+2 \hat{\jmath}+4 \hat{k}
\end{aligned}
$$

We know that

$$
\left.\begin{aligned}
& \text { Moment of Force }=\vec{M}=\vec{r} \times \vec{F}=\left\lvert\, \begin{array}{cc}
\hat{\imath} & \hat{\jmath} \\
5 & \hat{k} \\
4 & 2
\end{array}\right. \\
& 4
\end{aligned}|=\hat{\imath}| \begin{array}{ll}
2 & 4 \\
2 & 1
\end{array}|-\hat{\jmath}| \begin{array}{ll}
5 & 4 \\
4 & 1
\end{array}|+\hat{k}| \begin{array}{ll}
5 & 2 \\
4 & 2
\end{array} \right\rvert\,, \begin{aligned}
& =\hat{\imath}(2-8)-\hat{\jmath}(5-4)+\hat{k}(10-8) \\
& =-6 \hat{\imath}-\hat{\jmath}+2 \hat{k}
\end{aligned}
$$

Scalar Triple Product:

If $\vec{a}, \vec{b} \& \vec{c}$ be any three vectors, then $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$ or $\vec{a} \cdot(\vec{b} \times \vec{c})$ is called scalar triple product of $\vec{a}, \vec{b} \& \vec{c}$.

Characteristics:

(i) If $\overrightarrow{\boldsymbol{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k}$

$$
\begin{gathered}
\overrightarrow{\boldsymbol{b}}=\mathrm{b}_{1} \hat{l}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{k} \\
\overrightarrow{\boldsymbol{c}}=\mathrm{c}_{1} \hat{l}+\mathrm{c}_{2} \hat{\jmath}+\mathrm{c}_{3} \hat{k}
\end{gathered}
$$

Then the scalar triple product can be finding by the following method.

$$
\vec{a} \cdot(\vec{b} \times \vec{c})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

(ii) Volume of the parallelepiped :

Let $\vec{a}, \vec{b} \& \vec{c}$ be the three vectors along the edges of parallelepiped. Then
Volume of the parallelepiped $=V=\vec{a} \cdot(\vec{b} \times \overrightarrow{\mathrm{c}})$
(iii) Volume of the tetrahedron:

Let $\vec{a}, \vec{b} \& \vec{c}$ be the three vectors along the edges of tetrahedron. Then
Volume of the tetrahedron $\left.=V=\frac{1}{6}[\stackrel{\rightharpoonup}{a}](\vec{b} \times \vec{c})\right]$
(iv) Coplanar vectors:

If $\vec{a}, \vec{b} \& \vec{c}$ be the three non-zero vectors. These vectors are said to be coplanar if $\vec{a} \cdot(\vec{b} \times \vec{c})=0$

If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} be the four non-zero vectors. These vectors are said to be coplanar if

$$
(\vec{b}-\vec{a}) \cdot(\vec{c}-\vec{a}) \times(\vec{d}-\vec{c})=0
$$

(v) $\overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{b}} \times \vec{c})=\overrightarrow{\mathrm{b}} \cdot(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}})=\overrightarrow{\mathrm{c}} \cdot(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})$
(vi) If two vectors are same in scalar triple product, then the scalar triple product is equal to zero.

$$
\text { As } \vec{a} \cdot(\vec{b} \times \vec{a})=0
$$

Example\#01:Find the volume of parallelepiped whose edges are $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$. where
$\vec{a}=3 \hat{\imath}+2 \widehat{k} ; \vec{b}=\hat{\imath}+2 \hat{\jmath}-\widehat{k}$ and $\vec{c}=-\hat{\jmath}+4 \widehat{k}$.
Solution: Given $\vec{a}=3 \hat{\imath}+2 \hat{k} ; \vec{b}=\hat{\imath}+2 \hat{\jmath}-\hat{k}$ and $\vec{c}=-\hat{\jmath}+4 \hat{k}$.
We know that
Volume of the parallelepiped $=V=\vec{a} \cdot(\vec{b} \times \vec{c})=\left|\begin{array}{ccc}3 & 0 & 2 \\ 1 & 2 & -1 \\ 0 & -1 & 4\end{array}\right|$
$=3\left|\begin{array}{cc}2 & -1 \\ -1 & 4\end{array}\right|-0\left|\begin{array}{cc}1 & -1 \\ 0 & 4\end{array}\right|+2\left|\begin{array}{cc}1 & 2 \\ 0 & -1\end{array}\right|$

$$
\begin{aligned}
& =3(8-1)-0(4-0)+2(-1-0) \\
& =3(7)-0+2(-1) \\
& =21-0-2
\end{aligned}
$$

$$
=19 \text { cubic units }
$$

Example\#02: Find puch that the vectors $\vec{a}=2 \hat{\imath}-\hat{\jmath}+\widehat{k} ; \vec{b}=\hat{\imath}+2 \hat{\jmath}-3 \widehat{k} \& \vec{c}=3 \hat{\imath}+p \hat{\jmath}+5 \widehat{k}$ are coplanar .

Solution: Given $\vec{a}=2 \hat{\imath}-\hat{\jmath}+\hat{k} ; \vec{b}=\hat{\imath}+2 \hat{\jmath}-3 \hat{k}$ and $\vec{c}=3 \hat{\imath}+p \hat{\jmath}+5 \hat{k}$
According to given condition, the vectors are coplanar. Therefore

$$
\begin{aligned}
\overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}} \mathrm{p} & =0 \\
\left|\begin{array}{ccc}
2 & -1 & 1 \\
1 & 2 & -3 \\
3 & p & 5
\end{array}\right| & =0 \\
2\left|\begin{array}{cc}
2 & -3 \\
p & 5
\end{array}\right|-(-1)\left|\begin{array}{c}
1 \\
3 \\
-3 \\
5
\end{array}\right|+1\left|\begin{array}{cc}
1 & 2 \\
3 & p
\end{array}\right| & =0 \\
2(10+3 p)+1(5+9)+1(p-6) & =0 \\
20+6 p+14+p-6 & =0 \\
7 \mathrm{p}+28 & =0 \\
7 \mathrm{p} & =28 \\
\mathrm{p} & =28 / 7 \\
\mathrm{p} & =4
\end{aligned}
$$

> Example\#03:Prove that the four ponts $(4 \hat{\imath}+5 \hat{\jmath}+\widehat{k}) ;(-\hat{\jmath}-\widehat{k}) ;(3 \hat{\imath}+9 \hat{\jmath}+4 \widehat{k}) \& 4(-\hat{\imath}+\hat{\jmath}+\widehat{k})$ are coplanar.

Solution: Let $\mathrm{A}(4 \hat{\imath}+5 \hat{\jmath}+\hat{k}) ; \mathrm{B}(-\hat{\jmath}-\hat{k}) ; \mathrm{C}(3 \hat{\imath}+9 \hat{\jmath}+4 \hat{k}) \& \mathrm{D}(-4 \hat{\imath}+4 \hat{\jmath}+4 \hat{k})$ are given four points.

If these four points are coplanar then we have to prove coplanar condition

$$
\overrightarrow{\mathrm{AB}} \cdot(\overrightarrow{\mathrm{AC}} \times \overrightarrow{\mathrm{AD}})=0
$$

$\therefore \overrightarrow{\mathrm{AB}}=\mathrm{B}(-\hat{\jmath}-\hat{k})-\mathrm{A}(4 \hat{\imath}+5 \hat{\jmath}+\hat{k}) \quad=-\hat{\jmath}-\hat{k}-4 \hat{\imath}-5 \hat{\jmath}-\hat{k} \quad=-4 \hat{\imath}-6 \hat{\jmath}-2 \hat{k}$
$\therefore \overrightarrow{\mathrm{AC}}=\mathrm{C}(3 \hat{\imath}+9 \hat{\jmath}+4 \hat{k})-\mathrm{A}(4 \hat{\imath}+5 \hat{\jmath}+\hat{k})=3 \hat{\imath}+9 \hat{\jmath}+4 \hat{k}-4 \hat{\imath}-5 \hat{\jmath}-\hat{k}=-\hat{\imath}+4 \hat{\jmath}+3 \hat{k}$
$\therefore \overrightarrow{\mathrm{AD}}=\mathrm{D}(-4 \hat{\imath}+4 \hat{\jmath}+4 \hat{k})-\mathrm{A}(4 \hat{\imath}+5 \hat{\jmath}+\hat{k})=-4 \hat{\imath}+4 \hat{\jmath}+4 \hat{k}-4 \hat{\imath}-5 \hat{\jmath}-\hat{k}=-8 \hat{\imath}-\hat{\jmath}+3 \hat{k}$
Now $\quad \overrightarrow{\mathrm{AB}} \cdot(\overrightarrow{\mathrm{AC}} \times \overrightarrow{\mathrm{AD}})=\left|\begin{array}{ccc}-4 & -6 & -2 \\ -1 & 4 & 3 \\ -8 & -1 & 3\end{array}\right|=-4\left|\begin{array}{cc}4 & 3 \\ -1 & 3\end{array}\right|-(-6)\left|\begin{array}{cc}-1 & 3 \\ -8 & 3\end{array}\right|+(-2)\left|\begin{array}{cc}-1 & 4 \\ -8 & -1\end{array}\right|$

$$
\begin{aligned}
& =-4(12+3)+6(-3+24)-2(1+32) \\
& =-4(15)+6(21)-2(33) \\
& =-60+126-66
\end{aligned}
$$

$$
\overrightarrow{\mathrm{AB}} \cdot(\overrightarrow{\mathrm{AC}} \times \overrightarrow{\mathrm{AD}})=0
$$

This shows that the given four points are coplanar.
Example\#04: Prove that $\left[\begin{array}{lll}\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}} & \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}}\end{array}\right]=2\left[\begin{array}{lll}\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}\end{array}\right]$
Solution: L.H.S $=\left[\begin{array}{ll}\vec{a}+\vec{b} \\ b\end{array}+\vec{c} \bullet \vec{c}+\vec{a}\right]$

$$
\begin{aligned}
& =(\vec{a}+\vec{b}) \cdot[(\vec{b}+\vec{c}) \times(\vec{c}+\vec{a})] \\
& =(\vec{a}+\vec{b}) \cdot[\vec{b} \times \vec{c}+\vec{b} \times \vec{a}+\vec{c} \times \vec{c}+\vec{c} \times \vec{a}] \\
& =(\vec{a}+\vec{b}) \cdot[\vec{b} \times \vec{c}+\vec{b} \times \vec{a}+0+\vec{c} \times \vec{a}] \\
& =(\vec{a}+\vec{b}) \cdot[\vec{b} \times \vec{c}+\vec{b} \times \vec{a}+\vec{c} \times \vec{a}] \\
& =\vec{a} \cdot(\vec{b} \times \vec{c})+\vec{a} \cdot(\vec{b} \times \vec{a})+\vec{a} \cdot(\vec{c} \times \vec{a})+\vec{b} \cdot(\vec{b} \times \vec{c})+\vec{b} \cdot(\vec{b} \times \vec{a})+\vec{b} \cdot(\vec{c} \times \vec{a}) \\
& =\vec{a} \cdot(\vec{b} \times \vec{c})+0+0+0+0+\vec{b} \cdot(\vec{c} \times \vec{a}) \\
& =\vec{a} \cdot(\vec{b} \times \vec{c})+\vec{a} \cdot(\vec{b} \times \vec{c}) \\
& =2 \quad \vec{a} \cdot(\vec{b} \times \vec{c}) \\
& =2[\vec{a} \quad \vec{b} \quad \vec{c}]=R \cdot H \cdot S
\end{aligned}
$$

Hence proved L.H.S = R.H.S

Example\#05: if $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are the position vector of A, B, C. Prove that $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$ is a vector perpendicular to the plan of $A B C$.

Solution: Let $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{c}}$ are the position vector of $\mathrm{A}, \mathrm{B} \& \mathrm{C}$. then

$$
\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}} \quad: \overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{b}} \quad \& \quad \overrightarrow{\mathrm{CA}}=\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{c}}
$$

Let $\vec{d}=\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$
We have to prove $\vec{d} \perp \overrightarrow{A B} \quad \vec{d} \cdot \overrightarrow{A B}=0$

$$
\begin{aligned}
& \text { L.H.S }=\vec{d} \cdot \overrightarrow{A B}=[\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}] \cdot(\vec{b}-\vec{a}) \\
& =(\vec{a} \times \vec{b}) \cdot \vec{b}+(\vec{b} \times \vec{c}) \cdot \vec{b}+(\vec{c} \times \vec{a}) \cdot \vec{b}-(\vec{a} \times \vec{b}) \cdot \vec{a}-(\vec{b} \times \vec{c}) \cdot \vec{a}-(\vec{c} \times \vec{a}) \cdot \vec{a} \\
& =0+0+(\vec{c} \times \vec{a}) \cdot \vec{b}+0-(\vec{b} \times \vec{c}) \cdot \vec{a}-0 \\
& =(\vec{b} \times \vec{c}) \cdot \vec{a}-(\vec{b} \times \vec{c}) \cdot \vec{a} \\
& =0=\text { R.H.S }
\end{aligned}
$$

Hence proved . L.H.S = R.H.S
Example\#06: Prove that $\quad\left[\begin{array}{lll}\vec{l} & \vec{m} & \vec{n}\end{array}\right]\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=\left|\begin{array}{ccc}\vec{l} \cdot \vec{a} & \vec{l} \cdot \vec{b} & \vec{l} \cdot \vec{c} \\ \vec{m} \cdot \vec{a} & \vec{m} \cdot \vec{b} & \vec{m} \cdot \vec{c} \\ \vec{n} \cdot \vec{a} & \vec{n} \cdot \vec{b} & \vec{n} \cdot \vec{c}\end{array}\right|$

Solution: Let $\overrightarrow{\boldsymbol{l}}=l_{1} \hat{\imath}+l_{2} \hat{\jmath}+l_{3} \hat{k} \quad \& \quad \overrightarrow{\boldsymbol{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k}$

$$
\begin{array}{lll}
\overrightarrow{\boldsymbol{m}}=\mathrm{m}_{1} \hat{\imath}+\mathrm{m}_{2} \hat{\jmath}+\mathrm{m}_{3} \hat{k} & \& & \overrightarrow{\boldsymbol{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{k} \\
\overrightarrow{\boldsymbol{n}}=\mathrm{n}_{1} \hat{\imath}+\mathrm{n}_{2} \hat{\jmath}+\mathrm{n}_{3} \hat{k}^{\ominus} & \& & \overrightarrow{\boldsymbol{c}}=\mathrm{c}_{1} \hat{\imath}+\mathrm{c}_{2} \hat{\jmath}+\mathrm{c}_{3} \hat{k}
\end{array}
$$

L.H.S $=\left[\begin{array}{ll}\vec{l} & \vec{m} \\ \vec{n}\end{array}\right]\left[\begin{array}{ll}\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{b}} \\ \overrightarrow{\mathrm{c}}\end{array}\right]=\left|\begin{array}{ccc}l_{1} & l_{2} & l_{3} \\ \mathrm{~m}_{1} & \mathrm{~m}_{2} & \mathrm{~m}_{3} \\ \mathrm{n}_{1} & \mathrm{n}_{2} & \mathrm{n}_{3}\end{array}\right| \cdot\left|\begin{array}{lll}\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3} \\ \mathrm{c}_{1} & \mathrm{c}_{2} & \mathrm{c}_{3}\end{array}\right|$
$\hat{=}\left|\begin{array}{ccc}l_{1} & l_{2} & l_{3} \\ \mathrm{~m}_{1} & \mathrm{~m}_{2} & \mathrm{~m}_{3} \\ \mathrm{n}_{1} & \mathrm{n}_{2} & \mathrm{n}_{3}\end{array}\right| \cdot\left|\begin{array}{lll}\mathrm{a}_{1} & \mathrm{~b}_{1} & \mathrm{c}_{1} \\ \mathrm{a}_{2} & \mathrm{~b}_{2} & \mathrm{c}_{2} \\ \mathrm{a}_{3} & \mathrm{~b}_{3} & \mathrm{c}_{3}\end{array}\right| \quad \therefore$ Taking transpose of 2 ${ }^{\text {nd }}$ determinant.

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
l_{1} a_{1}+l_{2} a_{2}+l_{3} a_{3} & l_{1} b_{1}+l_{2} b_{2}+l_{3} b_{3} & l_{1} c_{1}+l_{2} c_{2}+l_{3} c_{3} \\
m_{1} a_{1}+m_{2} a_{2}+m_{3} a_{3} & m_{1} b_{1}+m_{2} b_{2}+m_{3} b_{3} & m_{1} c_{1}+m_{2} c_{2}+m_{3} c_{3} \\
n_{1} a_{1}+n_{2} a_{2}+n_{3} a_{3} & n_{1} a_{1}+n_{2} b_{2}+n_{3} b_{3} & n_{1} c_{1}+n_{2} c_{2}+n_{3} c_{3}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
\vec{l} \cdot \vec{a} & \vec{l} \cdot \vec{b} & \vec{l} \cdot \vec{c} \\
\vec{m} \cdot \vec{a} & \vec{m} \cdot \vec{b} & \vec{m} \cdot \vec{c} \\
\vec{n} \cdot \vec{a} & \vec{n} \cdot \vec{b} & \vec{n} \cdot \vec{c}
\end{array}\right|=\text { R.H.S }
\end{aligned}
$$

Hence proved that L.H.S $=$ R.H.S

Exercise\#2.3

Q\#01: If $\vec{a}=3 \hat{\imath}-\hat{\jmath}+5 \widehat{k} ; \vec{b}=4 \hat{\imath}+3 \hat{\jmath}-2 \widehat{k} \& \vec{c}=2 \hat{\imath}+5 \hat{\jmath}+\widehat{k}$. Find $\vec{a} \cdot(\vec{b} \times \vec{c})$ and also verify that $\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})=\overrightarrow{\mathbf{c}} \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$.

Solution:

$$
\begin{aligned}
\therefore \overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}})=\left|\begin{array}{ccc}
3 & -1 & 5 \\
4 & 3 & -2 \\
2 & 5 & 1
\end{array}\right| & =3\left|\begin{array}{cc}
3 & -2 \\
5 & 1
\end{array}\right|-(-1)\left|\begin{array}{cc}
4 & -2 \\
2 & 1
\end{array}\right|+5\left|\begin{array}{ll}
4 & 3 \\
2 & 5
\end{array}\right| \\
& =3(3+10)+1(4+4)+5(20-6) \\
& =3(13)+8+5(14) \\
& =39+8+70 \\
& =117----\cdots---(\mathrm{i})
\end{aligned}
$$

$$
\therefore \overrightarrow{\mathrm{b}} .(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}})=\left|\begin{array}{ccc}
4 & 3 & -2 \\
2 & 5 & 1 \\
3 & -1 & 5
\end{array}\right|=4\left|\begin{array}{cc}
5 & 1 \\
-1 & 5
\end{array}\right|-3\left|\begin{array}{cc}
\frac{1}{3} & 5
\end{array}\right|+(-2)\left|\begin{array}{cc}
2 & 5 \\
3 & -1
\end{array}\right|
$$

$$
=4(25+1)-3(10-3)-2(-2-15)
$$

$$
=4(26)-3(7)-2(-17)
$$

$$
=104-21+34
$$

$$
=117
$$

$$
\therefore \overrightarrow{\mathrm{c}} \cdot(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})=\left|\begin{array}{ccc}
2 & 5 & 1 \\
3 & -1 & 5 \\
4 & 3 & -2
\end{array}\right|=2\left|\begin{array}{cc}
-1 & 5 \\
3 & -2
\end{array}\right|-5\left|\begin{array}{cc}
3 & 5 \\
4 & -2
\end{array}\right|+1\left|\begin{array}{cc}
3 & -1 \\
4 & 3
\end{array}\right|
$$

$$
=2(2-15)-5(-6-20)+1(9+4)
$$

$$
=3(-13)-5(-26)+1(13)
$$

$$
=39+130+13
$$

= 117--------------(iii)

From (i),(ii) \& (iii) hence verify that

$$
\overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}})=\overrightarrow{\mathrm{b}} \cdot(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}})=\overrightarrow{\mathrm{c}} \cdot(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) .
$$

Q\#02:Find the value of $\hat{\boldsymbol{\imath}} . \hat{\boldsymbol{\jmath}} \times \widehat{\boldsymbol{k}}$.
Solution: $\quad \hat{\imath} .(\hat{\jmath} \times \hat{k})$

$$
\begin{array}{lc}
=\hat{\imath} . \hat{\imath} & \therefore \hat{\jmath} \times \hat{k}=\hat{\imath} \\
=1 & \therefore \quad \hat{\imath} . \hat{\imath}=1
\end{array}
$$

Q\#03: Prove that $\left.\begin{array}{ccc}\hat{\boldsymbol{\imath}}-\hat{\boldsymbol{\jmath}} & \hat{\boldsymbol{\jmath}}-\widehat{\boldsymbol{k}} & \widehat{\boldsymbol{k}}-\hat{\boldsymbol{\imath}}\end{array}\right]=\mathbf{0}$

Solution: L.H.S $=\left[\begin{array}{lll}\hat{\imath}-\hat{\jmath} & \hat{\jmath}-\hat{k} & \hat{k}-\hat{\imath}\end{array}\right]$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right|=1\left|\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right|-(-1)\left|\begin{array}{cc}
0 & -1 \\
-1 & 1
\end{array}\right|+0\left|\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right| \\
& =1(1-0)+1(0-1)+0 \\
& =1(1)+1(-1)=1-1 \\
& =\text { R.H.S }
\end{aligned}
$$

Hence proved L.H.S= R.H.S

Q\#04:Find the volume of parallelepiped whose edges are represented by

(i)

$$
\vec{a}=2 \hat{\imath}-3 \hat{\jmath}+\widehat{k} ; \vec{b}=\hat{\imath}-\hat{\jmath}+2 \widehat{k} \text { and } \vec{c}=2 \hat{\imath}+\hat{\jmath}-\widehat{k}
$$

Solution: Given $\vec{a}=2 \hat{\imath}-3 \hat{\jmath}+\hat{k} ; \vec{b}=\hat{\imath}-\hat{\jmath}+2 \hat{k}$ and $\vec{c}=2 \hat{\imath}+\hat{\jmath}-\hat{k}$
We know that
Volume of the parallelepiped $=V=\vec{a} \cdot(\vec{b} \times \vec{c})=\left|\begin{array}{cc}2 & -3 \\ 1 & 1 \\ 2 & -1 \\ 2 & -1\end{array}\right|$

$$
\begin{aligned}
& =2\left|\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right|-(-3)\left|\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right|+1\left|\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right| \\
& =2(1-2)+3(-1-4)+1(1+2) \\
& =2(-1)+3(-5)+1(3)=-2-15+3 \\
& =-14
\end{aligned}
$$

$$
y=14 \text { unit Cube } \quad(\mathrm{V} \text { is always positive })
$$

(ii) $\overrightarrow{\boldsymbol{a}}=\hat{\imath}-2 \hat{\jmath}+3 \widehat{\boldsymbol{k}} ; \overrightarrow{\boldsymbol{b}}=2 \hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}-\widehat{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{c}}=\hat{\boldsymbol{\jmath}}+\widehat{\boldsymbol{k}}$

Solution: Given $\vec{a}=\hat{\imath}-2 \vec{\jmath}+3 \widehat{\boldsymbol{k}} ; \vec{b}=2 \hat{\imath}+\hat{\jmath}-\widehat{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{c}}=\hat{\jmath}+\widehat{\boldsymbol{k}}$
We know that
Volume of the parallelepiped $=V=\vec{a} \cdot(\vec{b} \times \vec{c})=\left|\begin{array}{ccc}1 & -2 & 3 \\ 2 & 1 & -1 \\ 0 & 1 & 1\end{array}\right|$

$$
\begin{aligned}
& =1\left|\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right|-(-2)\left|\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right|+3\left|\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right| \\
& =1(1+1)+2(2-0)+3(2+0) \\
& =1(2)+2(2)+3(2)=2+4+6 \\
V & =12 \text { unit cube }
\end{aligned}
$$

Q\#05:Find the volume of tetrahedron bounded by the coordinate planes and the plane is
$15 x+10 y+2 z-30=0$
Solution: Given equation of the plane is

$$
15 x+10 y+2 z-30=0
$$

When $\quad x=0 \quad \& \quad y=0$ then
$2 z-30=0 \quad \Rightarrow 2 \mathrm{z}=30 \quad \Rightarrow \mathrm{z}=15$
When $\mathrm{y}=0$ \& $\mathrm{z}=0$ then
$15 x-30=0 \Rightarrow 15 \mathrm{x}=30 \Rightarrow \mathrm{x}=2$
When $\mathrm{z}=0$ \& $\mathrm{x}=0$ then
$10 y-30=0 \Rightarrow 10 \mathrm{y}=30 \Rightarrow \mathrm{y}=3$
Let $\overrightarrow{\mathrm{OA}}=\overrightarrow{\mathrm{a}}=2 \hat{\boldsymbol{\imath}} \quad ; \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{b}}=3 \hat{\boldsymbol{\jmath}} \quad \& \quad \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{c}}=15 \hat{k}$ along $\mathrm{x}, \mathrm{y}, \mathrm{z}$-axis as shown in the figure.

We know that
Volume of the tetrahedron $=V=\frac{1}{6}[\vec{a} \cdot(\vec{b} \times \vec{c})]=\frac{1}{6}[2 \hat{\boldsymbol{\imath}} \cdot(3 \hat{\boldsymbol{\jmath}} \times 15 \widehat{\boldsymbol{k}})]$

$$
\begin{array}{rlrl}
& =\frac{90}{6}[\hat{\boldsymbol{\imath}} .(\hat{\boldsymbol{\jmath}} \times \hat{\boldsymbol{k}})] & \\
=15[\hat{\imath} . \hat{\imath}] & \therefore \hat{\jmath} \times \hat{k}=\hat{\imath} \\
V & =15 \text { unit cube } & & \therefore \quad \hat{\imath} . \hat{\imath}=1
\end{array}
$$

Q\#06: Show that the vectors $\hat{\imath}-2 \hat{\jmath}+3 \widehat{k} ;-2 \hat{\imath}+3 \hat{\jmath}-4 \widehat{k} \& \hat{\imath}-3 \hat{\jmath}+5 \widehat{k}$ are coplanar.
Solution: Let $\vec{a}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k} \cdot \vec{b}=-2 \hat{\imath}+3 \hat{\jmath}-4 \hat{k}$ and $\vec{c}=\hat{\imath}-3 \hat{\jmath}+5 \hat{k}$
For coplanar vectors, we have to prove $\quad \vec{a} \cdot(\vec{b} \times \vec{c})=0$

$$
\begin{aligned}
& \therefore \overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}})=\left|\begin{array}{ccc}
1 & -2 & 3 \\
-2 & 3 & -4 \\
1 & -3 & 5
\end{array}\right|=1\left|\begin{array}{cc}
3 & -4 \\
-3 & 5
\end{array}\right|-(-2)\left|\begin{array}{cc}
-2 & -4 \\
1 & 5
\end{array}\right|+3\left|\begin{array}{cc}
-2 & 3 \\
1 & -3
\end{array}\right| \\
&=1(15-12)+2(-10+4)+3(6-3) \\
&=1(3)+2(-6)+3(3) \\
&=3-12+9 \\
& \overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}})=0
\end{aligned}
$$

Hence proved that the given vectors are coplanar.

Q\#07: Show that the vectors $5 \vec{a}+6 \vec{b}+7 \vec{c}, 7 \vec{a}-8 \vec{b}+9 \vec{c} \& 3 \vec{a}+20 \vec{b}+5 \vec{c}$ are coplanar, where $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}} \& \overrightarrow{\mathbf{c}}$ are any vectors.

Solution: Let $\vec{u}=5 \overrightarrow{\mathrm{a}}+6 \overrightarrow{\mathrm{~b}}+7 \overrightarrow{\mathrm{c}} ; \vec{v}=7 \overrightarrow{\mathrm{a}}-8 \overrightarrow{\mathrm{~b}}+9 \overrightarrow{\mathrm{c}}$ and $\vec{w}=3 \overrightarrow{\mathrm{a}}+20 \overrightarrow{\mathrm{~b}}+5 \overrightarrow{\mathrm{c}}$
For coplanar vectors, we have to prove $\quad \vec{a} \cdot(\vec{b} \times \vec{c})=0$

$$
\begin{aligned}
\therefore \overrightarrow{\mathrm{u}} \cdot(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}})=\left|\begin{array}{ccc}
5 & 6 & 7 \\
7 & -8 & 9 \\
3 & 20 & 5
\end{array}\right| & =5\left|\begin{array}{cc}
-8 & 9 \\
20 & 5
\end{array}\right|-6\left|\begin{array}{cc}
7 & 9 \\
3 & 5
\end{array}\right|+7\left|\begin{array}{cc}
7 & -8 \\
3 & 20
\end{array}\right| \\
& =5(-40-180)-6(35-27)+7(140+24) \\
& =5(-220)-6(8)+7(164) \\
& =-1100-48+1148 \\
\overrightarrow{\mathrm{u}} \cdot(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}}) & =0
\end{aligned}
$$

Hence proved that the given vectors are coplanar.
Q\#08: Show that the four points $2 \overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}} ; \overrightarrow{\mathbf{a}}-2 \overrightarrow{\mathbf{b}}+3 \overrightarrow{\mathbf{c}} ; \mathbf{3} \overrightarrow{\mathbf{a}}+4 \overrightarrow{\mathbf{b}}-2 \overrightarrow{\mathbf{c}} \quad \&$ $\vec{a}-6 \vec{b}+6 \vec{c}$ are coplanar.
Solution: Let $\mathrm{A}(2 \vec{a}+3 \vec{b}-\vec{c}) ; B(\vec{a}-2 \vec{b}+3 \vec{c}) ; C(3 \vec{a}+4 \vec{b}-2 \vec{c}) \& D(\vec{a}-6 \vec{b}+6 \vec{c})$ are given four points. If these four points are coplanar then we have to prove coplanar condition

$$
\overrightarrow{\mathrm{AB}} \cdot(\overrightarrow{\mathrm{AC}} \times \overrightarrow{\mathrm{AB}})=0
$$

$\therefore \overrightarrow{\mathrm{AB}}=\mathrm{B}(\overrightarrow{\mathrm{a}}-2 \vec{b}+3 \overrightarrow{\mathrm{c}})-\mathrm{A}(2 \overrightarrow{\mathrm{a}}+3 \overrightarrow{\mathrm{~b}}-\overrightarrow{\mathrm{c}})=\overrightarrow{\mathrm{a}}-2 \overrightarrow{\mathrm{~b}}+3 \overrightarrow{\mathrm{c}}-2 \vec{a}-3 \vec{b}+\vec{c}=-\vec{a}-5 \vec{b}+4 \vec{c}$
$\therefore \overrightarrow{\mathrm{AC}}=\mathrm{C}(3 \overrightarrow{\mathrm{a}}+4 \overrightarrow{\mathrm{~b}}-2 \overrightarrow{\mathrm{c}})-\mathrm{A}(2 \overrightarrow{\mathrm{a}}+3 \overrightarrow{\mathrm{~b}}-\overrightarrow{\mathrm{c}})=3 \overrightarrow{\mathrm{a}}+4 \overrightarrow{\mathrm{~b}}-2 \overrightarrow{\mathrm{c}}-2 \overrightarrow{\mathrm{a}}-3 \overrightarrow{\mathrm{~b}}+\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}-\vec{c}$
$\therefore \overrightarrow{\mathrm{AD}}=\mathrm{D}(\overrightarrow{\mathrm{a}}-6 \overrightarrow{\mathrm{~b}}+6 \overrightarrow{\mathrm{c}})-\mathrm{A}(2 \overrightarrow{\mathrm{a}}+3 \overrightarrow{\mathrm{~b}}-\vec{c})=\vec{a}-6 \vec{b}+6 \vec{c}-2 \vec{a}-3 \vec{b}+\vec{c}=-\vec{a}-9 \vec{b}+7 \vec{c}$
Now $\quad \overrightarrow{\mathrm{AB}} \cdot(\overrightarrow{\mathrm{AC}} \times \overrightarrow{\mathrm{AD}})=\left|\begin{array}{ccc}-1 & -5 & 4 \\ 1 & 1 & -1 \\ -1 & -9 & 7\end{array}\right|=-1\left|\begin{array}{cc}1 & -1 \\ -9 & 7\end{array}\right|-(-5)\left|\begin{array}{cc}1 & -1 \\ -1 & 7\end{array}\right|+4\left|\begin{array}{cc}1 & 1 \\ -1 & -9\end{array}\right|$

$$
=-1(7-9)+5(7-1)+4(-9+1)
$$

$$
=-1(-2)+5(6)+4(-8)
$$

$$
=2+30-32
$$

$\overrightarrow{\mathrm{AB}} \cdot(\overrightarrow{\mathrm{AC}} \times \overrightarrow{\mathrm{AD}})=0$
This shows that the given four points are coplanar.

Q\#09: (i) If $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{r}}=0 ; \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{r}}=0 \& \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{r}}=0 \quad$ then prove that $\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=0$.
(ii) If $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{n}}=\mathbf{0} ; \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{n}}=\mathbf{0} \& \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{n}}=\mathbf{0}$ then prove that $\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=0$.

Solution: Let $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\imath}+y \hat{\jmath}+z \hat{k} \quad$ \&

$$
\begin{gathered}
\vec{a}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k} \\
\vec{b}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{k} \\
\vec{c}=\mathrm{c}_{1} \hat{\imath}+\mathrm{c}_{2} \hat{\jmath}+\mathrm{c}_{3} \hat{k}
\end{gathered}
$$

According to given conditions.

$$
\begin{array}{r}
\therefore \vec{a} \cdot \vec{r}=0 \\
\left(a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}\right) \cdot(x \hat{\imath}+y \hat{\jmath}+z \hat{k})=0 \\
a_{1} x+a_{2} y+a_{3} z=0 \\
\quad \therefore \vec{b} \cdot \vec{r}=0 \\
\left(b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}\right) \cdot(x \hat{\imath}+y \hat{\jmath}+z \hat{k})=0 \\
b_{1} x+b_{2} y+b_{3} z=0 \\
\therefore \vec{c} \cdot \vec{r}=0 \\
\left(c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}\right) \cdot(x \hat{\imath}+y \hat{\jmath}+z \hat{k})=0 \\
c_{1} x+c_{2} y+c_{3} z=0 \tag{iii}
\end{array}
$$

Eliminating $x, y \& z$ from equation (i),(ii) \& (iii)

$$
\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=0
$$

$$
\overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}})=0
$$

Note: Part (ii) is similar topart (ii) only \vec{r} replace by \vec{n}.

Q\#10; (i) is similar to example \#04:

(ii)prove that $\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})+\overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})+\overrightarrow{\mathbf{c}} \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=\mathbf{3}[\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})]$

Solution: L.H.S $=\vec{a} \cdot(\vec{b} \times \vec{c})+\vec{b} \cdot(\vec{c} \times \vec{a})+\vec{c} \cdot(\vec{a} \times \vec{b})$
Because $\quad \vec{a} \cdot(\vec{b} \times \vec{c})=\vec{b} \cdot(\vec{c} \times \vec{a})=\vec{c} \cdot(\vec{a} \times \vec{b})$
Therefore

$$
\begin{aligned}
& =\vec{a} \cdot(\vec{b} \times \vec{c})+\vec{a} \cdot(\vec{b} \times \vec{c})+\vec{a} \cdot(\vec{b} \times \vec{c}) \\
& =3[\vec{a} \cdot(\vec{b} \times \vec{c})]=\text { R.H.S }
\end{aligned}
$$

Hence proved
L.H.S = R.H.S

Q\#11: Find λ such that the vectors $\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}-\hat{\boldsymbol{k}} ; \hat{\boldsymbol{\imath}}-2 \hat{\jmath}+\widehat{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{c}}=\lambda \hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}-\lambda \widehat{\boldsymbol{k}}$ are coplanar .
Solution: Let $\vec{a}=\hat{\imath}+\hat{\jmath}-\hat{k} ; \vec{b}=\hat{\imath}-2 \hat{\jmath}+\hat{k}$ and $\vec{c}=\lambda \hat{\imath}+\hat{\jmath}-\lambda \hat{k}$
According to given condition , the vectors are coplanar. Therefore

$$
\begin{aligned}
\vec{a} \cdot(\vec{b} \times \vec{c}) & =0 \\
\left|\begin{array}{ccc}
1 & 1 & -1 \\
1 & -2 & 1 \\
\lambda & 1 & -\lambda
\end{array}\right| & =0 \\
1\left|\begin{array}{cc}
-2 & 1 \\
1 & -\lambda
\end{array}\right|-1\left|\begin{array}{cc}
1 & 1 \\
\lambda & -\lambda
\end{array}\right|+(-1)\left|\begin{array}{cc}
1 & -2 \\
\lambda & 1
\end{array}\right| & =0 \\
1(2 \lambda-1)-1(-\lambda-\lambda)-1(1+2 \lambda) & =0 \\
2 \lambda-1+2 \lambda-1-2 \lambda & =0 \\
2 \lambda-2 & =0 \\
2 \lambda & =2 \\
\lambda & =1
\end{aligned}
$$

Q\#12: If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}} \& \overrightarrow{\mathbf{c}}$ are three non coplanar vectors, show that

Solution: Let

$$
\overrightarrow{\mathrm{r}}=x \overrightarrow{\mathrm{a}}+\mathrm{y} \overrightarrow{\mathrm{~b}}+\mathrm{z} \overrightarrow{\mathrm{c}}------(\mathrm{A})
$$

Taking dot product of equation (A) with ($\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}$)

$$
\begin{align*}
& (\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}) \cdot \overrightarrow{\mathrm{r}}=(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}) \cdot(x \overrightarrow{\mathrm{a}}+y \overrightarrow{\mathrm{~b}}+\mathrm{z} \overrightarrow{\mathrm{c}}) \\
& {\left[\begin{array}{lll}
\vec{b} & \vec{c} & \vec{r}
\end{array}\right]=x \vec{a} \cdot(\vec{b} \times \vec{c})+y \vec{b} \cdot(\vec{b} \times \vec{c})+z \vec{c} \cdot(\vec{b} \times \vec{c})} \\
& {[\overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}} \overrightarrow{\mathrm{r}}]=x \overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}})+0+0} \\
& {\left[\begin{array}{lll}
\overrightarrow{\mathrm{b}} & \overrightarrow{\mathrm{c}} & \overrightarrow{\mathrm{r}}
\end{array}\right]=x\left[\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{c}}
\end{array}\right]} \\
& \mathrm{x}=\frac{\left.\begin{array}{ll}
{\left[\begin{array}{ll}
\vec{b} & \vec{c} \\
\overrightarrow{\mathrm{a}}
\end{array}\right]} \\
\vec{a} & \vec{b} \\
\vec{c}
\end{array}\right]}{} \tag{i}
\end{align*}
$$

Taking dot product of equation (i) with ($\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}$)

$$
\begin{align*}
(\vec{c} \times \vec{a}) \cdot \vec{r} & =(\vec{c} \times \vec{a}) \cdot(x \overrightarrow{\mathrm{a}}+y \vec{b}+z \vec{c}) \\
{\left[\begin{array}{lll}
\overrightarrow{\mathrm{c}} & \overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{r}}
\end{array}\right] } & =x \overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}})+y \overrightarrow{\mathrm{~b}} \cdot(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}})+z \overrightarrow{\mathrm{c}} \cdot(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}) \\
{\left[\begin{array}{lll}
\overrightarrow{\mathrm{c}} & \overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{r}}
\end{array}\right] } & =0+y \overrightarrow{\mathrm{~b}} \cdot(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}})+0 \\
{\left[\begin{array}{lll}
\overrightarrow{\mathrm{c}} & \overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{r}}
\end{array}\right] } & =y\left[\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}} & \vec{c}
\end{array}\right] \\
y & =\frac{\left[\begin{array}{ll}
\overrightarrow{\mathrm{c}} & \overrightarrow{\mathrm{a}} \\
\overrightarrow{\mathrm{r}}
\end{array}\right]}{\left[\begin{array}{lll}
\vec{b} & \vec{c}
\end{array}\right]}
\end{align*}
$$

Taking dot product of equation (i) with ($\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$)

$$
\begin{align*}
& (\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \cdot \overrightarrow{\mathrm{r}}=(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \cdot(x \overrightarrow{\mathrm{a}}+y \overrightarrow{\mathrm{~b}}+\mathrm{z} \overrightarrow{\mathrm{c}}) \\
& {\left[\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{r}}
\end{array}\right]=x \overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})+y \overrightarrow{\mathrm{~b}} \cdot(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})+\mathrm{z} \overrightarrow{\mathrm{c}} \cdot(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})} \\
& {\left[\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{r}}
\end{array}\right]=0+0+\mathrm{z} \overrightarrow{\mathrm{c}} .\left(\begin{array}{l}
\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})
\end{array}\right.} \\
& {\left[\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{r}}
\end{array}\right]=z\left[\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{c}}
\end{array}\right]} \\
& z=\frac{\left[\begin{array}{ll}
\vec{a} & \vec{b} \\
\vec{r}
\end{array}\right]}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]} \tag{iii}
\end{align*}
$$

Using value $\mathrm{x}, \mathrm{y} \& \mathrm{z}$ in equation (A)

Hence Proved.

Q\#13:Solve the following system of equation. $a_{r} x+b_{r} y+c_{r} z=d_{r}$ where $\mathbf{r}=1,2,3$.

Solution: Let $\quad \overrightarrow{\boldsymbol{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k}$

$$
\begin{gathered}
\overrightarrow{\boldsymbol{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{k} \\
\overrightarrow{\boldsymbol{c}}=\mathrm{c}_{1} \hat{\imath}+\mathrm{c}_{2} \hat{\jmath}+\mathrm{c}_{3} \hat{k} \\
\overrightarrow{\boldsymbol{d}}=\mathrm{d}_{1} \hat{\imath}+\mathrm{d}_{2} \hat{\jmath}+\mathrm{d}_{3} \hat{k}
\end{gathered}
$$

Given equation

$$
a_{r} x+b_{r} y+c_{r} z=d_{r}
$$

Put $r=1$

$$
a_{1} x+\dot{b}_{1} y+c_{1} z=d_{1}
$$

Multiplying equation with $\hat{\imath}$ unit vector.

$$
\begin{equation*}
a_{1} x \hat{\imath}+b_{1} y \hat{\imath}+c_{1} z \hat{\imath}=d_{1} \hat{\imath} \tag{i}
\end{equation*}
$$

Putr $=2 \quad a_{2} x+b_{2} y+c_{2} z=d_{2}$
Multiplying equation with $\hat{\jmath}$ unit vector

$$
\begin{equation*}
a_{2} x \hat{\jmath}+b_{2} y \hat{\jmath}+c_{2} z \hat{\jmath}=d_{2} \hat{\jmath} \tag{ii}
\end{equation*}
$$

Put $r=3$

$$
a_{3} x+b_{3} y+c_{3} z=d_{3}
$$

Multiplying equation with \hat{k} unit vector

$$
\begin{equation*}
a_{3} x \hat{k}+b_{3} y \hat{k}+c_{3} z \hat{k}=d_{3} \hat{k} \tag{iii}
\end{equation*}
$$

Adding equation (i), (ii) \& (iii)

$$
\begin{align*}
& \left(\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k}\right) \mathrm{x}+\left(\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{k}\right) \mathrm{y}+\left(\mathrm{c}_{1} \hat{\imath}+\mathrm{c}_{2} \hat{\jmath}+\mathrm{c}_{3} \hat{k}\right) \mathrm{z}=\mathrm{d}_{1} \hat{\imath}+\mathrm{d}_{2} \hat{\jmath}+\mathrm{d}_{3} \hat{k} \\
& \vec{a} x+\vec{b} \mathrm{y}+\vec{c} \mathrm{z}=\vec{d}-------------------(\mathrm{vi}) \tag{vi}
\end{align*}
$$

Taking dot product of equation (iv) with ($\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}$)

$$
\left.\begin{array}{rl}
(\vec{a} x+\vec{b} \mathrm{y}+\vec{c} \mathrm{z}) \cdot(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}) & =\vec{d} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}}) \\
\vec{a} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}}) x+\vec{b} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}}) \mathrm{y}+\vec{c} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}}) \mathrm{z}=\vec{d} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}}) \\
\vec{a} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}}) \quad x+0+0 & =\vec{d} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}}) \\
{\left[\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{c}}
\end{array}\right] x} & =\left[\begin{array}{lll}
\overrightarrow{\mathrm{d}} & \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{c}}
\end{array}\right] \\
\mathrm{x} & =\frac{\left[\begin{array}{lll}
\overrightarrow{\mathrm{b}} & \overrightarrow{\mathrm{~b}} & \vec{c}
\end{array}\right]}{[\overrightarrow{\mathrm{a}}} \overrightarrow{\mathrm{b}} \\
\overrightarrow{\mathrm{c}}
\end{array}\right] .
$$

Taking dot product of equation (iv) with ($\vec{c} \times \vec{a}$)

$$
\begin{aligned}
& (\vec{a} x+\vec{b} \mathrm{y}+\vec{c} \mathrm{z}) \cdot(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=\vec{d} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}}) \\
& \vec{a} \cdot(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}) x+\vec{b} \cdot(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}) \mathrm{y}+\overrightarrow{\mathrm{c}} \cdot(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}) \mathrm{z}=\vec{d} \cdot(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}) \\
& 0+\vec{a} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}}) y+0=\vec{d} \cdot(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}) \\
& \quad\left[\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{c}}] y=\left[\begin{array}{ll}
\mathrm{d} & \overrightarrow{\mathrm{c}}
\end{array} \overrightarrow{\mathrm{a}}\right]
\end{array}\right.
\end{aligned}
$$

$$
\left.y=\frac{\left[\begin{array}{lll}
\vec{d} & \vec{c} & \vec{a}
\end{array}\right]}{\mid \vec{a}} \overrightarrow{\vec{a}} \vec{b} \quad \vec{d}\right] \mid, ~
$$

Similarly
Taking dot product of equation (iv) with $(\vec{a} \times \vec{b})$

$$
\mathrm{z}=\frac{\left[\begin{array}{lll}
\overrightarrow{\mathrm{d}} & \overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}}
\end{array}\right]}{\left[\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{c}}
\end{array}\right]}
$$

$$
\text { Solution set } \left.=\left\{\left(\begin{array}{lll}
{\left[\begin{array}{lll}
\vec{d} & \vec{b} & \vec{c}
\end{array}\right]} & {\left[\begin{array}{lll}
\vec{a} & \vec{c} & \vec{a}
\end{array}\right]} & \vec{c}]
\end{array}, \frac{\left[\begin{array}{lll}
\vec{a} & \vec{a} & \vec{b}
\end{array}\right]}{\vec{a}} \begin{array}{ll}
\vec{b} & \vec{c}
\end{array}\right],\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]\right)\right\}
$$

Q\#14: Solve the simultaneous equation $\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} \quad$; where $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{c}}=\mathbf{0} \quad \& \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}} \neq \mathbf{0}$.
Solution: Given conditions

$$
\vec{r} \cdot \vec{c}=0 \quad \& \vec{a} \cdot \vec{c} \neq 0
$$

Given simultaneous equation

$$
\begin{aligned}
\vec{r} \times \vec{a} & =\vec{a} \times \vec{b} \\
\vec{r} \times \vec{a}-\vec{a} \times \vec{b} & =0 \\
\vec{r} \times \vec{a}+\vec{b} \times \vec{a} & =0 \quad-\vec{a} \times \vec{b}=\vec{b} \times \vec{a} \\
(\vec{r}+\vec{b}) \times \vec{a} & =0
\end{aligned}
$$

This condition hold when

$$
\begin{align*}
\vec{r}+\vec{b} & =t \vec{a} \\
\vec{r} & =t \vec{a}-\vec{b} \tag{i}
\end{align*}
$$

t is a scalar number
Taking dot product of equation (i) with \vec{c} vector

$$
\begin{aligned}
\vec{r} \cdot \vec{c} & =(t \vec{a}-\vec{b}) \cdot \vec{c} \\
\vec{r} \cdot \vec{c} & =t \vec{a} \cdot \vec{c}-\vec{b} \cdot \vec{c} \\
0 & =t \vec{a} \cdot \vec{c}-\vec{b} \cdot \vec{c} \\
t(\vec{a} \cdot \vec{c}) & =\vec{b} \cdot \vec{c} \\
t & =\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{c}}
\end{aligned}
$$

using value of t in equation (i)

$$
\vec{r}=\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{c}} \vec{a}-\vec{b}
$$

This is the required solution.

VECTOR TRIPLE PRODUCT:

If $\vec{a}, \vec{b} \& \vec{c}$ be any three vectors, then $\vec{a} \times(\vec{b} \times \vec{c})$ is called scalar triple product of $\vec{a}, \vec{b} \& \vec{c}$.

Theorem:04:Prove that $\quad \overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}) \overrightarrow{\mathbf{b}}-(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{c}}$

Proof: Let $\overrightarrow{\boldsymbol{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k} \quad ; \quad \overrightarrow{\boldsymbol{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{k} \quad \& \quad \overrightarrow{\boldsymbol{c}}=\mathrm{c}_{1} \hat{\imath}+\mathrm{c}_{2} \hat{\jmath}+\mathrm{c}_{3} \hat{k}$

$$
\begin{aligned}
\vec{b} \times \vec{c}= & \left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3} \\
\mathrm{c}_{1} & \mathrm{c}_{2} & \mathrm{c}_{3}
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
\mathrm{b}_{2} & \mathrm{~b}_{3} \\
\mathrm{c}_{2} & \mathrm{c}_{3}
\end{array}\right|-\hat{\jmath}\left|\begin{array}{ll}
\mathrm{b}_{1} & \mathrm{~b}_{3} \\
\mathrm{c}_{1} & \mathrm{c}_{3}
\end{array}\right|+\hat{k}\left|\begin{array}{ll}
\mathrm{b}_{1} & \mathrm{~b}_{2} \\
\mathrm{c}_{1} & \mathrm{c}_{2}
\end{array}\right|=\left(\mathrm{b}_{2} \mathrm{c}_{3}-\mathrm{b}_{3} \mathrm{c}_{2}\right) \hat{\imath}-\left(\mathrm{b}_{1} \mathrm{c}_{3}-\mathrm{b}_{3} \mathrm{c}_{1}\right) \hat{\jmath}+\left(\mathrm{b}_{1} \mathrm{c}_{2}-\mathrm{b}_{2} \mathrm{c}_{1}\right) \hat{k} \\
= & \left(\mathrm{b}_{2} \mathrm{c}_{3}-\mathrm{b}_{3} \mathrm{c}_{2}\right) \hat{\imath}+\left(\mathrm{b}_{3} \mathrm{c}_{1}-\mathrm{b}_{1} \mathrm{c}_{3}\right) \hat{\jmath}+\left(\mathrm{b}_{1} \mathrm{c}_{2}-\mathrm{b}_{2} \mathrm{c}_{1}\right) \hat{k} \\
& \text { L.H.S } \left.=\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
\mathrm{~b}_{2} \mathrm{c}_{3}-\mathrm{b}_{3} \mathrm{c}_{2} & \mathrm{~b}_{3} \mathrm{c}_{1}-\mathrm{b}_{1} \mathrm{c}_{3} & \mathrm{~b}_{1} \mathrm{c}_{2}-\mathrm{b}_{2} \mathrm{c}_{1}
\end{array}\right|\right)
\end{aligned}
$$

$$
=\hat{\imath}\left|\begin{array}{cc}
a_{2} & a_{3} \\
b_{3} c_{1}-b_{1} c_{3} & b_{1} c_{2}-b_{2} c_{1}
\end{array}\right|-\left.\hat{\jmath}\right|_{b_{2} c_{3}-b_{3} c_{2}} \quad \mathrm{~b}_{1} c_{2}-\mathrm{a}_{3} \mathrm{~b}_{2} c_{1}+\hat{\imath}\left|\begin{array}{cc}
a_{1} & a_{2} c_{3}-b_{3} c_{2} \\
b_{3} c_{1}-b_{1} c_{3}
\end{array}\right|
$$

$$
=\left\{\left(\mathrm{a}_{2} \mathrm{~b}_{1} \mathrm{c}_{2}-\mathrm{a}_{2} \mathrm{~b}_{2} \mathrm{c}_{1}\right)-\left(\mathrm{a}_{3} \mathrm{~b}_{3} \mathrm{c}_{1}-\mathrm{a}_{3} \mathrm{~b}_{1} \mathrm{c}_{3}\right)\right\} \hat{\imath}-\left\{\left(\mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{c}_{2}-\mathrm{a}_{1} \mathrm{~b}_{2} \mathrm{c}_{1}\right)-\left(\mathrm{a}_{3} \mathrm{~b}_{2} \mathrm{c}_{3}-\mathrm{a}_{3} \mathrm{~b}_{3} \mathrm{c}_{2}\right)\right\} \hat{\jmath}
$$

$$
+\left\{\left(\mathrm{a}_{1} \mathrm{~b}_{3} \mathrm{c}_{1}-\mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{c}_{3}\right)-\left(\mathrm{a}_{2} \mathrm{~b}_{2} \mathrm{c}_{3}-\mathrm{a}_{2} \mathrm{~b}_{3} \mathrm{c}_{2}\right)\right\} \hat{k}
$$

$$
=\left\{a_{2} b_{1} c_{2}-a_{2} b_{2} c_{1}-a_{3} b_{3} c_{1}+a_{3} b_{1} c_{3}\right\} \hat{\imath}-\left\{a_{1} b_{1} c_{2}-a_{1} b_{2} c_{1}-a_{3} b_{2} c_{3}+a_{3} b_{3} c_{2}\right\} \hat{\jmath}
$$

$$
+\left\{a_{1} b_{3} c_{1}-a_{1} b_{1} c_{3}-a_{2} b_{2} c_{3}+a_{2} b_{3} c_{2}\right\} \hat{k}
$$

$$
=\left\{\mathrm{a}_{2} \mathrm{~b}_{1} \mathrm{c}_{2}+\mathrm{a}_{3} \mathrm{~b}_{1} \mathrm{c}_{3}-\mathrm{a}_{2} \mathrm{~b}_{2} \mathrm{c}_{1}-\mathrm{a}_{3} \mathrm{~b}_{3} \mathrm{c}_{1}\right\} \hat{\imath}-\left\{\mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{c}_{2}+\mathrm{a}_{3} \mathrm{~b}_{3} \mathrm{c}_{2}-\mathrm{a}_{1} \mathrm{~b}_{2} \mathrm{c}_{1}-\mathrm{a}_{3} \mathrm{~b}_{2} \mathrm{c}_{3}\right\} \hat{\jmath}
$$

$$
+\left\{a_{1} b_{3} c_{1}+a_{2} b_{3} c_{2}-a_{1} b_{1} c_{3}-a_{2} b_{2} c_{3}\right\} \hat{k}
$$

$$
=\left\{a_{1} b_{1} c_{1}+a_{2} b_{1} c_{2}+a_{3} b_{1} c_{3}-a_{1} b_{1} c_{1}-a_{2} b_{2} c_{1}-a_{3} b_{3} c_{1}\right\} \hat{l}
$$

$$
-\left\{a_{1} b_{1} c_{2}+a_{2} b_{2} c_{2}+a_{3} b_{3} c_{2}-a_{1} b_{2} c_{1}-a_{2} b_{2} c_{2}-a_{3} b_{2} c_{3}\right\} \hat{\jmath}
$$

$$
+\left\{a_{1} b_{3} c_{1}+a_{2} b_{3} c_{2}+a_{3} b_{3} c_{3}-a_{1} b_{1} c_{3}-a_{2} b_{2} c_{3}-a_{3} b_{3} c_{3}\right\} \hat{k}
$$

$$
=\left\{b_{1}\left(a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3}\right)-c_{1}\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right\} \hat{l}\right.
$$

$$
-\left\{c_{2}\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)-b_{2}\left(a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3}\right\} \hat{\jmath}\right.
$$

$$
+\left\{\mathrm{b}_{3}\left(\mathrm{a}_{1} \mathrm{c}_{1}+\mathrm{a}_{2} \mathrm{c}_{2}+\mathrm{a}_{3} \mathrm{c}_{3}\right)-\mathrm{c}_{3}\left(\mathrm{a}_{1} \mathrm{~b}_{1}-\mathrm{a}_{2} \mathrm{~b}_{2}-\mathrm{a}_{3} \mathrm{~b}_{3}\right)\right\} \hat{k}
$$

$$
=\left\{\mathrm{b}_{1}\left(\mathrm{a}_{1} \mathrm{c}_{1}+\mathrm{a}_{2} \mathrm{c}_{2}+\mathrm{a}_{3} \mathrm{c}_{3}\right)-\mathrm{c}_{1}\left(\mathrm{a}_{1} \mathrm{~b}_{1}+\mathrm{a}_{2} \mathrm{~b}_{2}+\mathrm{a}_{3} \mathrm{~b}_{3}\right)\right\} \hat{\imath}
$$

$$
+\left\{b_{2}\left(a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3}-c_{2}\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)\right\} \hat{\jmath}\right.
$$

$$
+\left\{\mathrm{b}_{3}\left(\mathrm{a}_{1} \mathrm{c}_{1}+\mathrm{a}_{2} \mathrm{c}_{2}+\mathrm{a}_{3} \mathrm{c}_{3}\right)-\mathrm{c}_{3}\left(\mathrm{a}_{1} \mathrm{~b}_{1}-\mathrm{a}_{2} \mathrm{~b}_{2}-\mathrm{a}_{3} \mathrm{~b}_{3}\right)\right\} \hat{k}
$$

$$
=b_{1}\left(a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3}\right) \hat{\imath}-c_{1}\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right) \hat{\imath}
$$

$$
+b_{2}\left(a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3} \hat{\jmath}-c_{2}\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right) \hat{\jmath}\right.
$$

$$
+\mathrm{b}_{3}\left(\mathrm{a}_{1} \mathrm{c}_{1}+\mathrm{a}_{2} \mathrm{c}_{2}+\mathrm{a}_{3} \mathrm{c}_{3}\right) \hat{k}-\mathrm{c}_{3}\left(\mathrm{a}_{1} \mathrm{~b}_{1}-\mathrm{a}_{2} \mathrm{~b}_{2}-\mathrm{a}_{3} \mathrm{~b}_{3}\right) \hat{k}
$$

$$
\begin{aligned}
& =\left(a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3}\right)\left(b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}\right)-\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)\left(c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}\right) \\
& =(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{b}}-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}) \overrightarrow{\mathrm{c}}=\text { R.H.S }
\end{aligned}
$$

Example\#05: Prove that $\quad\left[\begin{array}{lll}\overrightarrow{\mathbf{a}} & \vec{b} & \overrightarrow{\mathbf{c}}\end{array}\right]^{2}=\left|\begin{array}{lll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c}\end{array}\right|$

Solution: Let $\vec{a}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k}$

$$
\begin{aligned}
& \vec{b}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{k} \\
\text { \&.H.S } & =\left[\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{c}}
\end{array}\right]^{2} \\
& =\left[\begin{array}{lll}
\vec{a} \hat{\imath}+\mathrm{c}_{2} \hat{\jmath}+\mathrm{c}_{3} \hat{k} \\
\hline
\end{array}\right]\left[\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{c}}
\end{array}\right] \\
& =\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
\mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3} \\
\mathrm{c}_{1} & \mathrm{c}_{2} & \mathrm{c}_{3}
\end{array}\right| \cdot\left|\begin{array}{lll}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
\mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3} \\
\mathrm{c}_{1} & \mathrm{c}_{2} & \mathrm{c}_{3}
\end{array}\right| \\
& =\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
\mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3} \\
\mathrm{c}_{1} & \mathrm{c}_{2} & \mathrm{c}_{3}
\end{array}\right| \cdot\left|\begin{array}{lll}
\mathrm{a}_{1} & \mathrm{~b}_{1} & \mathrm{c}_{1} \\
\mathrm{a}_{2} & \mathrm{~b}_{2} & \mathrm{c}_{2} \\
\mathrm{a}_{3} & \mathrm{~b}_{3} & \mathrm{c}_{3}
\end{array}\right| \\
& =\left|\begin{array}{lll}
a_{1} a_{1}+a_{2} a_{2}+a_{3} a_{3} & a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} & a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3} \\
b_{1} a_{1}+b_{2} a_{2}+b_{3} a_{3} & b_{1} b_{1}+b_{2} \mathrm{~b}_{2}+b_{3} b_{3} & b_{1} c_{1}+b_{2} c_{2}+b_{3} c_{3} \\
c_{1} a_{1}+c_{2} a_{2}+c_{3} a_{3} & c_{1} a_{1}+c_{2} b_{2}+c_{3} b_{3} & c_{1} c_{1}+c_{2} c_{2}+c_{3} c_{3}
\end{array}\right| \\
& =\left|\begin{array}{ll}
\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\
\vec{b} \cdot \vec{a} \cdot \vec{a} & \vec{b} \cdot \vec{b} \\
\vec{b} \cdot \vec{c} \\
\vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} \\
\vec{c} \cdot \vec{c}
\end{array}\right|=\text { R.H.S }
\end{aligned}
$$

$$
\text { Hence proved that }>\text { L.H.S }=\text { R.H.S }
$$

Example\#06: Prove that the component of a vector $\overrightarrow{\mathbf{r}}$ is parallel and perpendicular to $\overrightarrow{\boldsymbol{c}}$ in the $\begin{array}{lll}\text { plane of } \overrightarrow{\mathbf{c}} \& \overrightarrow{\mathbf{r}} \text { are. } & \text { (i) } \frac{\vec{c} \cdot \vec{r}}{\vec{c} \cdot \vec{c}} \overrightarrow{\boldsymbol{c}} & \text { (ii) } \frac{\overrightarrow{\boldsymbol{c}} \times(\vec{r} \times \vec{c})}{\overrightarrow{\boldsymbol{c}} \cdot \vec{c}}\end{array}$

Solution: Consider two vectors $\vec{c} \& \vec{r}$.
Vector \vec{c} taken along x -axis and vector $\overrightarrow{\mathrm{r}}$ makes an angle θ with \vec{c} vector.
Draw a perpendicular BD on \vec{c} vector as shown in the figure.
From figure :

$$
\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{r}} \quad \& \quad \overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{c}}
$$

(i) Component of \vec{r} parallel to \vec{c}.

Let $\overrightarrow{\mathrm{AD}}$ be vector whose magnitude is parallel to the direction of $\stackrel{\rightharpoonup}{\mathrm{c}}$ vector.
As

$$
\begin{aligned}
\overrightarrow{\mathrm{AD}} & =|\overrightarrow{\mathrm{AD}}| \hat{c} \\
\overrightarrow{\mathrm{AD}} & =|\overrightarrow{\mathrm{r}}| \cos \theta \frac{\vec{c}}{|\overrightarrow{\mathrm{c}}|} \\
& =\frac{|\overrightarrow{\mathrm{c}}||\overrightarrow{\mathrm{r}}| \cos \theta \overrightarrow{\mathrm{c}}}{|\overrightarrow{\mathrm{c}}||\overrightarrow{\mathrm{c}}|} \\
& \therefore \frac{\mathrm{x} \text {-coponent of } \overrightarrow{\mathrm{r}}=|\overrightarrow{\mathrm{AD}}|=|\overrightarrow{\mathrm{r}}| \cos \theta \quad \& \hat{c}=\frac{\vec{c}}{|\overrightarrow{\mathrm{c}}|}}{|\overrightarrow{\mathrm{c}}|^{2}} \overrightarrow{\mathrm{c}} \\
\overrightarrow{\mathrm{AD}} & =\frac{\vec{c} \cdot \vec{r}}{\vec{c} \cdot \vec{c}} \vec{c}
\end{aligned}
$$

(ii) Component of $\overrightarrow{\mathrm{r}}$ perpedicular to $\overrightarrow{\mathrm{c}}$.

By using Head To Tail Rule.

$$
\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{DB}}
$$

$$
\overrightarrow{\mathrm{DB}}=\overrightarrow{\mathrm{AB}}-\overrightarrow{\mathrm{AD}}
$$

$$
\overrightarrow{\mathrm{DB}}=\overrightarrow{\mathrm{r}}-\frac{\vec{c} \cdot \vec{r}}{\vec{c} \cdot \vec{c}} \vec{c}
$$

$$
=\frac{(\vec{c} \cdot \vec{c}) \overrightarrow{\mathrm{r}}-(\vec{c} \cdot \vec{r}) \vec{c}}{\vec{c} \cdot \vec{c}}
$$

$$
\overrightarrow{\mathrm{DB}}=\frac{\vec{c} \times(\vec{r} \times \vec{c})}{\vec{c} \cdot \vec{c}}
$$

Hence proved

Exercise\#2.4

Q\#01: Find

(i) $\hat{\boldsymbol{i}} \times(\hat{\boldsymbol{j}} \times \widehat{\boldsymbol{k}})$

$$
\hat{\boldsymbol{\imath}} \times(\hat{\boldsymbol{\jmath}} \times \widehat{\boldsymbol{k}})
$$

$$
\begin{array}{ll}
=\hat{\imath} \times \hat{\imath} & \therefore \hat{\jmath} \times \hat{k}=\hat{\imath} \\
=0 & \therefore \hat{\imath} \times \hat{\imath}=0
\end{array}
$$

(ii) $\hat{\boldsymbol{j}} \times(\widehat{\boldsymbol{k}} \times \hat{\boldsymbol{j}})$

$$
\begin{aligned}
& \hat{\boldsymbol{\jmath}} \times(\widehat{\boldsymbol{k}} \times \hat{\boldsymbol{\jmath}}) \\
= & \hat{\jmath} \times(-\hat{\imath}) \\
= & -\hat{\jmath} \times \hat{\imath} \\
= & \hat{\imath} \times \hat{\jmath} \\
= & \hat{k}
\end{aligned}
$$

$$
\therefore-\hat{\jmath} \times \hat{\imath}=\hat{\imath} \times \hat{\jmath})
$$

(iii) $(\hat{\boldsymbol{\imath}} \times \widehat{\boldsymbol{k}}) \times \hat{\boldsymbol{\imath}}$

$$
\begin{array}{ll}
=-\hat{\jmath} \times \hat{\imath} & \therefore \hat{\imath} \times \hat{k}=-\hat{\jmath} \\
=\hat{\imath} \times \hat{\jmath} & \therefore-\hat{\jmath} \times \hat{\imath}=\hat{\imath} \\
=\hat{k} & \therefore \hat{\imath} \times \hat{\jmath}=\hat{k}
\end{array}
$$

Q\#02: Evaluate $\vec{a} \times(\vec{b} \times \vec{c})$. If $\overrightarrow{\boldsymbol{a}}=2 \hat{\imath}+3 \hat{\jmath}-5 \widehat{\boldsymbol{k}} ; \overrightarrow{\boldsymbol{b}}=-\hat{\imath}+\hat{\jmath}+\widehat{\boldsymbol{k}}$ and $\vec{c}=4 \hat{\imath}+2 \hat{\jmath}+6 \widehat{\boldsymbol{k}}$.
Solution: Given $\vec{a}=2 \hat{\imath}+3 \hat{\jmath}-5 \hat{k}) ; \vec{b}=-\hat{\imath}+\hat{\jmath}+\hat{k}$ and $\vec{c}=4 \hat{\imath}+2 \hat{\jmath}+6 \hat{k}$
We know that

$$
\begin{aligned}
\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}) & =(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{b}}-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}) \overrightarrow{\mathrm{c}} \\
& =\{(2 \hat{\imath}+3 \hat{\jmath}-5 \hat{k}) \cdot(4 \hat{\imath}+2 \hat{\jmath}+6 \hat{k})\} \vec{b}-\{(2 \hat{\imath}+3 \hat{\jmath}-5 \hat{k}) \cdot(-\hat{\imath}+\hat{\jmath}+\hat{k})\} \overrightarrow{\mathrm{c}} \\
& =\{8+6-30\} \vec{b}-\{-2+3-5\} \vec{c} \\
& =(-16)(-\hat{\imath}+\hat{\jmath}+\hat{k})-(-4)(4 \hat{\imath}+2 \hat{\jmath}+6 \hat{k}) \\
& =(-16)(-\hat{\imath}+\hat{\jmath}+\hat{k})+4(4 \hat{\imath}+2 \hat{\jmath}+6 \hat{k}) \\
& =16 \hat{\imath}-16 \hat{\jmath}-16 \hat{k}+16 \hat{\imath}+8 \hat{\jmath}+24 \hat{k} \\
\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}) & =32 \hat{\imath}-8 \hat{\jmath}+8 \hat{k}
\end{aligned}
$$

Q\#03: Verify the formula $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}) \overrightarrow{\mathbf{b}}-(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{c}}$
If $\vec{a}=\hat{\imath}+\hat{\jmath} ; \vec{b}=-\hat{\imath}+2 \widehat{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{c}}=\hat{\boldsymbol{\jmath}}+\widehat{\boldsymbol{k}}$
Solution: $\vec{a}=\hat{\imath}+\hat{\jmath}+0 \hat{k} ; \vec{b}=-\hat{\imath}+0 \hat{\jmath}+2 \hat{k}$ and $\vec{c}=0 \hat{\imath}+\hat{\jmath}+\hat{k}$

$$
\begin{align*}
& \vec{b} \times \vec{c}=\left|\begin{array}{rrr}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
-1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right|=\hat{\imath}\left|\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
-1 & 2 \\
0 & 1
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right|=\hat{\imath}(0-2)-\hat{\jmath}(-1-0)+\hat{k}(-1-0) \\
& =-2 \hat{\imath}+\hat{\jmath}-\hat{k} \\
& \overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & 1 & 0 \\
-2 & 1 & -1
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
1 & 0 \\
-2 & -1
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right| \\
& =\hat{\imath}(-1-0)-\hat{\jmath}(-1-0)+\hat{k}(1+2) \\
& =-\hat{\imath}+\hat{\jmath}+3 \hat{k} \tag{i}\\
& (\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{b}}-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}) \overrightarrow{\mathrm{c}}=\{(\hat{\imath}+\hat{\jmath}+0 \hat{k}) \cdot(0 \hat{\imath}+\hat{\jmath}+\hat{k})\} \vec{b}-\{(\hat{\imath}+\hat{\jmath}+0 \hat{k}) \cdot(-\hat{\imath}+0 \hat{\jmath}+2 \hat{k})\} \overrightarrow{\mathrm{c}} \\
& =\{0+1+0\} \vec{b}-\{-1+0+0\} \vec{c} \\
& =(1)(-\hat{\imath}+0 \hat{\jmath}+2 \hat{k})-(-1)(0 \hat{\imath}+\hat{\jmath}+\hat{k}) \\
& =(1)(-\hat{\imath}+0 \hat{\jmath}+2 \hat{k})+1(-0 \hat{\imath}+\hat{\jmath}+\hat{k}) \\
& =-\hat{\imath}+0 \hat{\jmath}+\hat{k}+0 \hat{\imath}+\hat{\jmath}+\hat{k} \\
& =-2 \hat{\imath}+\hat{\jmath}+3 \hat{k} \tag{ii}
\end{align*}
$$

From (i) \& (ii) hence verified that $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$

Solution:

$$
\text { L.H.S }=(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})
$$

Let $\vec{b} \times \vec{c}=\vec{r}$

$$
\begin{aligned}
& =\vec{r} \times(\vec{c} \times \vec{a}) \\
& =(\vec{r} \cdot \vec{a}) \vec{c}-(\vec{r} \cdot \vec{c}) \vec{a} \\
& =\{(\vec{b} \times \vec{c}) \cdot \vec{a}\} \vec{c}-\{(\vec{b} \times \vec{c}) \cdot \vec{c}\} \vec{a} \\
& =\{(\vec{a} \times \vec{b}) \cdot \vec{c}\} \vec{c}-\{0\} \vec{a} \\
& =\{(\vec{a} \times \vec{b}) \cdot \vec{c}\} \vec{c}-0 \\
& =\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right] \vec{c}=\text { R.H.S }
\end{aligned}
$$

Hence proved
L.H.S = R.H.S

Q\#05: (i) Example\#04: show that $\left[\begin{array}{lll}\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}} & \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}\end{array}\right]=\left[\begin{array}{lll}\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}\end{array}\right]^{2}$
Solution: we have $\quad\left[\begin{array}{lll}\vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a}]=(\vec{a} \times \vec{b}) .\{(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})\}-----\quad .\end{array}\right.$
-(i) Let $(\vec{b} \times \vec{c})=\vec{d}$
$\left[\begin{array}{lll}\vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a}\end{array}\right]=\left(\begin{array}{l}\left.\vec{a} \times \vec{b}) .\left\{\begin{array}{l}\vec{d} \times(\vec{c} \times \vec{a})\end{array}\right\},\right\} .\end{array}\right.$

$$
\begin{aligned}
& =(\vec{a} \times \vec{b}) \cdot\{(\vec{d} \cdot \vec{a}) \vec{c}-(\vec{d} \cdot \vec{c}) \vec{a}\} \\
& =(\vec{a} \times \vec{b}) \cdot[\{(\vec{b} \times \vec{c}) \cdot \vec{a}\} \vec{c}-\{(\vec{b} \times \vec{c}) \cdot \vec{c}\} \vec{a}] \\
& =(\vec{a} \times \vec{b}) \cdot[\{(\vec{b} \times \vec{c}) \cdot \vec{a}\} \vec{c}-\{0\} \vec{a}] \\
& =(\vec{a} \times \vec{b}) \cdot[\{(\vec{b} \times \vec{c}) \cdot \vec{a}\} \vec{c}-0] \\
& =(\vec{a} \times \vec{b}) \cdot\{(\vec{b} \times \vec{c}) \cdot \vec{a}\} \vec{c} \\
& =[(\vec{a} \times \vec{b}) \cdot \vec{c}][(\vec{a} \times \vec{b}) \cdot \vec{c}]
\end{aligned}
$$

$\left[\begin{array}{lll}\vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a}\end{array}\right]=\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{2} \quad$ Hence proved
Q\#05: (ii)Example \#02: Show that $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\boldsymbol{c}})+\overrightarrow{\mathbf{b}} \times(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})+\overrightarrow{\boldsymbol{c}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=\mathbf{0}$.
Solution: We know that

$$
\begin{aligned}
& \vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c} \\
& \vec{b} \times(\vec{c} \times \vec{a})=(\vec{b} \cdot \vec{a}) \vec{c}-(\vec{b} \cdot \vec{c}) \vec{a} \\
& \vec{c} \times(\vec{a} \times \vec{b})=(\vec{c} \cdot \vec{b}) \vec{a}-(\vec{c} \cdot \vec{a}) \vec{b}
\end{aligned}
$$

Now L.H.S $=\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})$

$$
\begin{aligned}
& =(\vec{a} \cdot \vec{c}) \overrightarrow{\mathrm{b}}-\left(\overrightarrow{a_{0}} \overrightarrow{\mathrm{~b}}\right) \overrightarrow{\mathrm{c}}+(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{a}}) \overrightarrow{\mathrm{c}}-(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{a}}+(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{~b}}) \overrightarrow{\mathrm{a}}-(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}) \overrightarrow{\mathrm{b}} \\
& =(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}) \overrightarrow{\mathrm{c}}+(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}) \overrightarrow{\mathrm{c}}-(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{a}}+(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{a}}-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{b}}=0=\text { R.H.S }
\end{aligned}
$$

Hence Proved
L.H.S $=$ R.H.S

Q\#05(iii) E\#03: If $\overrightarrow{\boldsymbol{a}}=\hat{\imath}-2 \hat{\jmath}+\widehat{\boldsymbol{k}} ; \overrightarrow{\boldsymbol{b}}=\mathbf{2} \hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}+\widehat{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{c}}=\hat{\boldsymbol{\imath}}+2 \hat{\boldsymbol{\jmath}}-\widehat{\boldsymbol{k}}$ then find $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\boldsymbol{c}})$.
Solution: Giyen $\vec{a}=\hat{\imath}-2 \hat{\jmath}+\hat{k} ; \vec{b}=2 \hat{\imath}+\hat{\jmath}+\hat{k}$ and $\vec{c}=\hat{\imath}+2 \hat{\jmath}-\hat{k}$
We know that $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$

$$
\begin{aligned}
& =\{(\hat{\imath}-2 \hat{\jmath}+\hat{k}) \cdot(\hat{\imath}+2 \hat{\jmath}-\hat{k})\} \vec{b}-\{(\hat{\imath}-2 \hat{\jmath}+\hat{k}) \cdot(2 \hat{\imath}+\hat{\jmath}+\hat{k})\} \vec{c} \\
& =\{1-4-1\} \vec{b}-\{2-2+1\} \vec{c} \\
& =(-4)(2 \hat{\imath}+\hat{\jmath}+\hat{k})-(1)(\hat{\imath}+2 \hat{\jmath}-\hat{k}) \\
& =-8 \hat{\imath}-4 \hat{\jmath}-4 \hat{k}-\hat{\imath}-2 \hat{\jmath}+\hat{k} \\
\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}) & =-9 \hat{\imath}-6 \hat{\jmath}-3 \hat{k}
\end{aligned}
$$

Q\#06: Determine the components of $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$ along the directions of $\hat{\boldsymbol{\imath}}, \hat{\jmath} \& \widehat{\boldsymbol{k}}$.

Solution: Let $\quad \vec{a}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k} ; \vec{b}=\mathrm{b}_{1} \hat{l}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{k} \quad \& \quad \vec{c}=\mathrm{c}_{1} \hat{\imath}+\mathrm{c}_{2} \hat{\jmath}+\mathrm{c}_{3} \hat{k}$
We know that $\quad \vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$

$$
=(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}})\left(\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{k}\right)-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}})\left(\mathrm{c}_{1} \hat{\imath}+\mathrm{c}_{2} \hat{\jmath}+\mathrm{c}_{3} \hat{k}\right)
$$

$$
\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=\left[(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}) \mathrm{b}_{1}-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}) \mathrm{c}_{1}\right] \hat{\imath}+\left[(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}) \mathrm{b}_{2}-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}) \mathrm{c}_{2}\right] \hat{\jmath}+\left[(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}) \mathrm{b}_{3}-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}) \mathrm{c}_{3}\right] \hat{k}
$$

Hence $\left[(\vec{a} \cdot \vec{c}) b_{1}-(\vec{a} \cdot \vec{b}) c_{1}\right],\left[(\vec{a} \cdot \vec{c}) b_{2}-(\vec{a} \cdot \vec{b}) c_{2}\right] \&\left[(\vec{a} \cdot \vec{c}) b_{3}-(\vec{a} \cdot \vec{b}) c_{3}\right]$ are the components of $\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})$ along the directions of $\hat{\imath}, \hat{\jmath} \& \hat{k}$.

Q\#07: Establish the identity $\quad \overrightarrow{\mathbf{a}}=\frac{1}{2}[\hat{\boldsymbol{\imath}} \times(\overrightarrow{\mathbf{a}} \times \hat{\boldsymbol{\imath}})+\hat{\boldsymbol{\jmath}} \times(\overrightarrow{\mathbf{a}} \times \hat{\boldsymbol{\jmath}})+\widehat{\boldsymbol{k}} \times(\overrightarrow{\mathbf{a}} \times \widehat{\boldsymbol{k}})]$

Solution: Let $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
R.H.S $=\frac{1}{2}[\hat{\imath} \times(\overrightarrow{\mathrm{a}} \times \hat{\imath})+\hat{\jmath} \times(\overrightarrow{\mathrm{a}} \times \hat{\jmath})+\hat{k} \times(\overrightarrow{\mathrm{a}} \times \hat{k})]$

$$
\begin{aligned}
= & \frac{1}{2}\left[\hat{\imath} \times\left\{\left(\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k}\right) \times \hat{\imath}\right\}+\hat{\jmath} \times\left\{\left(\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k}\right) \times \hat{\jmath}\right\}\right. \\
& \left.+\hat{k} \times\left\{\left(\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k}\right) \times \hat{k}\right\}\right] \\
= & \frac{1}{2}\left[\hat{\imath} \times\left\{\mathrm{a}_{1}(\hat{\imath} \times \hat{\imath})+\mathrm{a}_{2}(\hat{\jmath} \times \hat{\imath})+\mathrm{a}_{3}(\hat{k} \times \hat{\imath})\right\}+\hat{\jmath} \times\left\{\mathrm{a}_{1}(\hat{\imath} \times \hat{\jmath})+\mathrm{a}_{2}(\hat{\jmath} \times \hat{\jmath})\right.\right. \\
& \left.\left.+\mathrm{a}_{3}(\hat{k} \times \hat{\jmath})\right\}+\hat{k} \times\left\{\mathrm{a}_{1}(\hat{\imath} \times \hat{k})+\mathrm{a}_{2}(\hat{\jmath} \times \hat{k})+\mathrm{a}_{3}(\hat{k} \times \hat{k})\right\}\right] \\
= & \frac{1}{2}\left[\hat{\imath} \times\left\{\mathrm{a}_{1}(0)+\mathrm{a}_{2}(-\hat{k})+\mathrm{a}_{3}(\hat{\jmath})\right\}+\hat{\jmath} \times\left\{\mathrm{a}_{1}(\hat{k})+\mathrm{a}_{2}(0)+\mathrm{a}_{3}(-\hat{\imath})\right\}\right. \\
& \left.+\hat{k} \times\left\{\mathrm{a}_{1}(-\hat{\jmath})+\mathrm{a}_{2}(\hat{\imath})+\mathrm{a}_{3}(0)\right\}\right] \\
= & \frac{1}{2}\left[\hat{\imath} \times\left\{0-\mathrm{a}_{2} \hat{k}+\mathrm{a}_{3} \hat{\jmath}\right\}+\hat{\jmath} \times\left\{\mathrm{a}_{1} \hat{k}+0-\mathrm{a}_{3} \hat{\imath}\right\}+\hat{k} \times\left\{-\mathrm{a}_{1} \hat{\jmath}+\mathrm{a}_{2} \hat{\imath}+0\right\}\right] \\
= & \frac{1}{2}\left[\hat{\imath} \times\left\{-\mathrm{a}_{2} \hat{k}+\mathrm{a}_{3} \hat{\jmath}\right\}+\hat{\jmath} \times\left\{\mathrm{a}_{1} \hat{k}-\mathrm{a}_{3} \hat{\imath}\right\}+\hat{k} \times\left\{-\mathrm{a}_{1} \hat{\jmath}+\mathrm{a}_{2} \hat{\imath}\right\}\right] \\
= & \frac{1}{2}\left[-\mathrm{a}_{2}(\hat{\imath} \times \hat{k})+\mathrm{a}_{3}(\hat{\imath} \times \hat{\jmath})+\mathrm{a}_{1}(\hat{\jmath} \times \hat{k})-\mathrm{a}_{3}(\hat{\jmath} \times \hat{\imath})-\mathrm{a}_{1}(\hat{k} \times \hat{\jmath})+\mathrm{a}_{2}(\hat{k} \times \hat{\imath})\right] \\
= & \frac{1}{2}\left[-\mathrm{a}_{2}(-\hat{\jmath})+\mathrm{a}_{3}(\hat{k})+\mathrm{a}_{1}(\hat{\imath})-\mathrm{a}_{3}(-\hat{k})-\mathrm{a}_{1}(-\hat{\imath})+\mathrm{a}_{2}(\hat{\jmath})\right] \\
= & \frac{1}{2}\left[\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k}+\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{3} \hat{k}+\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}\right] \\
= & \frac{1}{2}\left[2 \mathrm{a}_{1} \hat{\imath}+2 \mathrm{a}_{2} \hat{\jmath}+2 \mathrm{a}_{3} \hat{k}\right] \\
= & \frac{1}{2} \cdot 2\left[\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k}\right] \\
= & \mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k} \\
= & \mathrm{a}=\mathrm{L} \cdot H . S
\end{aligned}
$$

Hence proved. L.H.S= R.H.S

Q\#08: Show that $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$ if $\&$ only if , the vector $\overrightarrow{\mathbf{a}} \& \overrightarrow{\mathbf{c}}$ are collinear.

Solution:

Given

$$
(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})
$$

We have to prove vector $\vec{a} \& \vec{c}$ are collinear.
Let

$$
\begin{gathered}
(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c}) \\
(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a}=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}
\end{gathered}
$$

By using cancellation property

$$
(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{a}}=(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}) \overrightarrow{\mathrm{c}}
$$

Let

$$
\vec{b} \cdot \vec{c}=\lambda \quad \& \quad \vec{a} \cdot \vec{b}=\mu
$$

$$
\begin{aligned}
\lambda \vec{a} & =\mu \vec{c} \\
\vec{a} & =\frac{\mu}{\lambda} \vec{c}
\end{aligned}
$$

This shows that vector $\vec{a} \& \vec{c}$ are collinear.
Conversely, suppose that vector $\vec{a} \& \sqrt{\vec{c}}$ are collinear.
We have to prove $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$
As

$$
\begin{aligned}
& \vec{e}=\frac{\mu}{\lambda} \vec{c} \\
& \lambda \vec{a}=\mu \vec{c} \\
& \vec{b} \cdot \vec{c}=\lambda \quad \vec{a} \cdot \vec{b}=\mu \\
&(\vec{b} \cdot \vec{c}) \vec{a}=(\vec{a} \cdot \vec{b}) \vec{c} \\
&-(\vec{b} \cdot \vec{c}) \vec{a}=-(\vec{a} \cdot \vec{b}) \vec{c} \\
&(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a}=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c} \\
&(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})
\end{aligned}
$$

Hence proved.

Q\#09: (i) If $\widehat{\boldsymbol{a}}, \widehat{\boldsymbol{b}} \& \hat{c}$ be three unit vectors such that $\quad \widehat{\boldsymbol{a}} \times(\widehat{\boldsymbol{b}} \times \hat{\boldsymbol{c}})=\frac{1}{2} \widehat{\boldsymbol{b}}$
Find the angle which $\widehat{\boldsymbol{a}}$ makes with $\widehat{\boldsymbol{b}} \& \hat{c}, \widehat{\boldsymbol{b}} \boldsymbol{\&} \hat{c}$ being non- parallel.
Solution: Given condition

$$
\begin{aligned}
\hat{a} \times(\hat{b} \times \hat{c})=\frac{1}{2} \hat{b} \\
(\hat{a} . \hat{c}) \hat{b}-(\hat{a} . \hat{b}) \hat{c}=\frac{1}{2} \hat{b}-0 \hat{c} \quad \text { here } \quad|\hat{a}|=|\hat{b}|=|\hat{c}|=1
\end{aligned}
$$

Comparing coefficients of $\hat{b} \& \hat{c}$.

$$
\begin{aligned}
\hat{a} \cdot \hat{c} & =\frac{1}{2} \\
|\hat{a}||\hat{c}| \cos \alpha & =\frac{1}{2} \\
\cos \alpha & =\frac{1}{2} \\
\alpha & =\cos ^{-1}\left(\frac{1}{2}\right) \\
\alpha & =60
\end{aligned}
$$

$$
\hat{a} . \hat{b}=0
$$

$$
|\hat{a}||\hat{b}| \cos \beta=0
$$

\hat{a} makes Angle $\alpha=60^{\circ}$ with \hat{c}.
\hat{a} makes Angle $\beta=90^{\circ}$ with \hat{b}.

Q\#09: (ii) If $\widehat{\boldsymbol{a}}, \widehat{\boldsymbol{b}} \& \hat{\boldsymbol{c}}$ be three unit vectors such that $\quad \widehat{\boldsymbol{a}} \times(\widehat{\boldsymbol{b}} \times \hat{\boldsymbol{c}})=\frac{1}{2} \widehat{\boldsymbol{b}}-\frac{\sqrt{3}}{2} \hat{c}$ Find the angle which $\widehat{\boldsymbol{a}}$ makes with $\widehat{\boldsymbol{b}} \boldsymbol{\&} \hat{\boldsymbol{c}}, \widehat{\boldsymbol{b}}$ \& $\hat{\boldsymbol{c}}$ being non- parallel.

Solution: Given condition

$$
\begin{array}{ll}
\hat{a} \times(\hat{b} \times \hat{c})=\frac{1}{2} \hat{b}-\frac{\sqrt{3}}{2} \hat{c} \\
(\hat{a} . \hat{c}) \hat{b}-(\hat{a} . \hat{b}) \hat{c}=\frac{1}{2} \hat{b}-\frac{\sqrt{3}}{2} \hat{c} & \text { here } \quad|\hat{a}|=|\hat{b}|=|\hat{c}|=1
\end{array}
$$

Comparing coefficients of $\hat{b} \& \hat{c}$.

$$
\begin{array}{c|c}
\hat{a} . \hat{c}=\frac{1}{2} & \hat{a} . \hat{b}=\frac{\sqrt{3}}{2} \\
|\hat{a}||\hat{c}| \cos \alpha=\frac{1}{2} & |\hat{a}||\hat{b}| \cos \beta=\frac{\sqrt{3}}{2} \\
\cos \alpha=\frac{1}{2} & \cos \beta=\frac{\sqrt{3}}{2} \\
\alpha=\cos ^{-1}\left(\frac{1}{2}\right) & \beta=\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
\alpha=60^{0} & \beta=30^{\circ} \\
\hat{a} \text { makes Angle } \alpha=60^{\circ} \text { with } \hat{c} . & \hat{a} \text { makes Angle } \beta=30^{\circ} \text { with } \hat{b} .
\end{array}
$$

\hat{a} makes Angle $\alpha=60^{\circ}$ with \hat{c}.

Q\#10: Prove that $\quad[(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}})] \cdot \overrightarrow{\mathbf{d}}=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{d}})\left[\begin{array}{lll}\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}\end{array}\right]$

Solution: L.H.S $=[(\vec{a} \times \vec{b}) \times(\vec{a} \times \vec{c})] . \vec{d}$
Let $\vec{a} \times \vec{b}=\vec{r}$

Hence proved
L.H.S = R.H.S

Q\#11: Example\#02: Show that $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}), \overrightarrow{\mathbf{b}} \times(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}) \boldsymbol{\&} \overrightarrow{\mathbf{c}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$ are coplanar.

Solution:

Let

$$
\begin{aligned}
& \overrightarrow{r_{1}}=\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c} \\
& \overrightarrow{r_{2}}=\vec{b} \times(\vec{c} \times \vec{a})=(\vec{b} \cdot \vec{a}) \vec{c}-(\vec{b} \cdot \vec{c}) \vec{a} \\
& \overrightarrow{r_{3}}=\vec{c} \times(\vec{a} \times \vec{b})=(\vec{c} \cdot \vec{b}) \vec{a}-(\vec{c} \cdot \vec{a}) \vec{b}
\end{aligned}
$$

Adding $\overrightarrow{r_{1}}, \overrightarrow{r_{2}} \& \overrightarrow{r_{3}}$

$$
\begin{aligned}
\overrightarrow{r_{1}}+\overrightarrow{r_{2}}+\overrightarrow{r_{3}} & =\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b}) \\
& =(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}+(\vec{b} \cdot \vec{a}) \vec{c}-(\vec{b} \cdot \vec{c}) \vec{a}+(\vec{c} \cdot \vec{b}) \vec{a}-(\vec{c} \cdot \vec{a}) \vec{b} \\
& =(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}+(\vec{a} \cdot \vec{b}) \vec{c}-(\vec{b} \cdot \vec{c}) \vec{a}+(\vec{b} \cdot \vec{c}) \vec{a}-(\vec{a} \cdot \vec{c}) \vec{b}
\end{aligned}
$$

$$
\overrightarrow{r_{1}}+\overrightarrow{r_{2}}+\overrightarrow{r_{3}}=0
$$

This shows that $\overrightarrow{r_{1}}, \overrightarrow{r_{2}} \& \overrightarrow{r_{3}}$ are coplanar.

$$
\begin{aligned}
& =[\vec{r} \times(\vec{a} \times \vec{c})] . \vec{d} \\
& =[(\vec{r} \cdot \vec{c}) \vec{a}-(\vec{r} \cdot \vec{a}) \vec{c}] \cdot \vec{d} \\
& =[(\vec{a} \times \vec{b}) \cdot \vec{c}\} \vec{a}-\{(\vec{a} \times \vec{b}) \cdot \vec{a}\} \vec{c}] \cdot \vec{d} \\
& =[(\vec{a} \times \vec{b}) \cdot \vec{c}\} \vec{a}-\{0\} \vec{c}] \cdot \vec{d} \\
& =[\{(\vec{a} \times \vec{b}) \cdot \vec{c}\} \vec{a}-0] \cdot \vec{d} \\
& =\left[\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{c}}
\end{array}\right](\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~d}}) \\
& =(\vec{a} \cdot \vec{d})\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]=\text { R.H.S }
\end{aligned}
$$

SCALAR \& VECTOR PRODUCT OF FOUR VECTORS:

Scalar Product of Four Vectors:

If $\vec{a}, \vec{b}, \vec{c} \& \vec{d}$ be any four vectors, then the scalar product of these four vectors is define as

$$
(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \cdot(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{d}})=\left|\begin{array}{ll}
\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}} & \overrightarrow{\mathrm{~b}} \cdot \overrightarrow{\mathrm{c}} \\
\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~d}} & \overrightarrow{\mathrm{~b}} \cdot \overrightarrow{\mathrm{~d}}
\end{array}\right|
$$

Vector Product of Four Vectors:

If $\vec{a}, \vec{b}, \vec{c} \& \vec{d}$ be any four vectors, then the vector product of these four vectors is define as

$$
(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=[\vec{a} \cdot(\vec{c} \times \vec{d})] \vec{b}-[\vec{b} \cdot(\vec{c} \times \vec{d})] \vec{a}
$$

Reciprocal Vectors:

If $\vec{a}, \vec{b} \& \vec{c}$ be any three non coplanar vectors so that $[\vec{a} \vec{b} \quad \vec{c}] \neq 0$, then the three reciprocal vectors $\vec{a}^{\prime}, \vec{b}^{\prime} \& \vec{c}^{\prime}$ will be define as
$\vec{a}^{\prime}=\frac{\vec{b} \times \vec{c}}{\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]} \quad ; \vec{b}{ }^{\prime}=\frac{\vec{c} \times \vec{a}}{\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]} \quad ; \vec{c}^{\prime}=\frac{\vec{a} \times \vec{b}}{\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]}$
Theorem: I Prove that $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}^{\prime}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{b}}{ }^{\prime}=\overrightarrow{\mathbf{c}} \cdot \vec{c}^{\prime}=1$

Proof:

We know that

$$
\vec{a}^{\prime}=\frac{\vec{b} \times \vec{c}}{\left.\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]} \quad \overrightarrow{b^{\prime}}=\frac{\vec{c} \times \vec{a}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]} \quad ; \vec{c}^{\prime}=\frac{\vec{a} \times \vec{b}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]}
$$

From (i), (ii) \& (iii) Hence proved

$$
\vec{a} \cdot \vec{a}^{\prime}=\vec{b} \cdot \vec{b}{ }^{\prime}=\vec{c} \cdot \vec{c}^{\prime}=1
$$

Theorem: II

Prove that $\quad \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}{ }^{\prime}=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}^{\prime}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}^{\prime}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}^{\prime}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}^{\prime}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}}{ }^{\prime}=0$

Proof:

We know that

$$
\begin{aligned}
& \overrightarrow{\mathbf{a}}^{\prime}=\frac{\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}}{\left.\begin{array}{lll}
\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}
\end{array}\right]} \quad ; \quad \overrightarrow{\mathbf{b}}^{\prime}=\frac{\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}}{\left.\begin{array}{llll}
\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}
\end{array}\right]} \quad ; \quad \overrightarrow{\mathbf{c}}^{\prime}=\frac{\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}}{\left.\begin{array}{lll}
\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}
\end{array}\right]}
\end{aligned}
$$

From (i),(ii),(iii),(iv),(v) \& (vi) Hence proved

$$
\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}{ }^{\prime}=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}^{\prime}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}^{\prime}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}^{\prime}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}^{\prime}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}}^{\prime}=\mathbf{0}
$$

Theorem: III

Prove that $\quad\left[\begin{array}{lll}\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}\end{array}\right]\left[\begin{array}{ll}\vec{a}^{\prime} & \overrightarrow{\mathbf{b}}\end{array} \overrightarrow{\mathbf{c}}^{\prime}\right]=1$
Proof: We know that

$$
\vec{a}^{\prime}=\frac{\vec{b} \times \vec{c}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]} \quad ; \vec{b}^{\prime}=\frac{\vec{c} \times \vec{a}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]} \quad ; \vec{c}^{\prime}=\frac{\vec{a} \times \vec{b}}{\left.\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]}
$$

Let

$$
\begin{aligned}
& {\left[\vec{a}^{\prime} \vec{b} \vec{c}^{\prime} \vec{c}^{\prime}\right]=\vec{a}^{\prime} .\left(\vec{b}{ }^{\prime} \times \vec{c}^{\prime}\right)} \\
& =\frac{\vec{b} \times \vec{c}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]} \cdot\left(\begin{array}{ccc}
\left.\frac{\vec{c} \times \vec{a}}{\vec{a}} \begin{array}{lll}
\vec{b} & \vec{c}
\end{array}\right]
\end{array} \times \frac{\vec{a} \times \vec{b}}{\left.\begin{array}{llll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]}\right) \\
& =\frac{(\vec{b} \times \vec{c}) \cdot\{(\vec{c} \times \vec{a}) \times(\vec{a} \times \vec{b})\}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]^{3}} \\
& =\frac{(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}) \cdot\{[\overrightarrow{\mathrm{c}} \cdot(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})] \overrightarrow{\mathrm{a}}-[\overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})] \overrightarrow{\mathrm{c}}\}}{\left[\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}} & \vec{c}]^{3}
\end{array}\right)} \\
& =\frac{(\vec{b} \times \vec{c}) \cdot\left\{\left[\begin{array}{ll}
\vec{c} \cdot(\vec{a} \times \vec{b})] \vec{a}-[0] \vec{c}\}
\end{array}\right.\right.}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]^{3}} \\
& =\frac{(\vec{b} \times \vec{c}) \cdot\{[\vec{c} \cdot(\vec{a} \times \vec{b})] \vec{a}-0\}}{[\vec{a} \vec{b} \quad \vec{c}]^{3}} \\
& =\frac{(\vec{b} \times \vec{c}) \cdot \vec{a}[\vec{c} \cdot(\vec{a} \times \vec{b})]}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]^{3}} \\
& =\frac{\left.\begin{array}{lllll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]\left[\begin{array}{ll}
\vec{a} & \vec{b}
\end{array} \vec{c}\right]}{l} \\
& {\left[\begin{array}{ll}
\vec{a} & \vec{b}
\end{array} \vec{c}^{\prime}\right]=\frac{1}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]}} \\
& {\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]\left[\begin{array}{ll}
\vec{a}^{\prime} & \vec{b}^{\prime} \\
\vec{c}^{\prime}
\end{array}\right]=1}
\end{aligned}
$$

Hence proved.

Example \#01:Find the area of a triangle by using result

$$
(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}) .(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}) .(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})
$$

Solution: Let a triangle ABC . If $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}} \& \overrightarrow{\mathrm{c}}$ be the vectors along the sides of triangle.
We know that

$$
\begin{equation*}
\text { Area of triangle }=\frac{1}{2}|\vec{a} \times \vec{b}| \tag{i}
\end{equation*}
$$

Given condition

$$
\begin{gathered}
(\vec{b} \times \vec{c}) \cdot(\vec{b} \times \vec{c})=(\vec{c} \times \vec{a}) \cdot(\vec{c} \times \vec{a}) \\
|\vec{b} \times \vec{c}|^{2}=|\vec{c} \times \vec{a}|^{2}
\end{gathered}
$$

Taking square-root on both sides

$$
|\vec{b} \times \vec{c}|=|\vec{c} \times \vec{a}|
$$

Multiplying both sides by $|\vec{a} \times \vec{b}|$

$$
\begin{aligned}
|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}||\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}| & =|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}||\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}| \\
|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}||\overrightarrow{\mathrm{b}}||\overrightarrow{\mathrm{c}}| \sin \alpha & =|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sin \gamma|\overrightarrow{\mathrm{c}}||\overrightarrow{\mathrm{a}}| \sin \beta \\
|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}| & =\frac{|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sin \gamma \times|\overrightarrow{\mathrm{c}}||\overrightarrow{\mathrm{a}}| \sin \beta}{|\overrightarrow{\mathrm{b}}||\overrightarrow{\mathrm{q}}| \sin \alpha} \\
|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}| & =\frac{|\overrightarrow{\mathrm{a}}|^{2} \sin \gamma \sin \beta}{\sin \alpha}
\end{aligned}
$$

Using in equation(i)

$$
\text { Area of triangle }=\frac{1}{2}|\vec{a} \times \vec{b}|=\frac{|\vec{a}|^{2} \sin \gamma \sin \beta}{2 \sin \alpha}
$$

Hence proved
L.H.S = R.H.S

Example\#04: Prove that

$(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})+(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}) \times(\overrightarrow{\mathbf{d}} \times \overrightarrow{\mathbf{b}})+(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{d}}) \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=-2[\overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})] \overrightarrow{\mathbf{a}}$
Solution: We know that

$$
\begin{aligned}
& (\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=[\vec{a} \cdot(\vec{c} \times \vec{d})] \vec{b}-[\vec{b} \cdot(\vec{c} \times \vec{d})] \vec{a} \\
& (\vec{a} \times \vec{c}) \times(\vec{d} \times \vec{b})=[\vec{a} \cdot(\vec{d} \times \vec{b})] \vec{c}-[\vec{c} \cdot(\vec{d} \times \vec{b})] \vec{a} \\
& (\vec{a} \times \vec{d}) \times(\vec{b} \times \vec{c})=[\vec{a} \cdot(\vec{b} \times \vec{c})] \vec{d}-[\vec{d} \cdot(\vec{b} \times \vec{c})] \vec{a}
\end{aligned}
$$

L.H.S $=(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})+(\vec{a} \times \vec{c}) \times(\vec{d} \times \vec{b})+(\vec{a} \times \vec{d}) \times(\vec{b} \times \vec{c})$ $=[\vec{a} \cdot(\vec{c} \times \vec{d})] \vec{b}-[\vec{b} \cdot(\vec{c} \times \vec{d})] \vec{a}+[\vec{a} \cdot(\vec{d} \times \vec{b})] \vec{c}-[\vec{c} \cdot(\vec{d} \times \vec{b})] \vec{a}$ $+[\vec{a} \cdot(\vec{b} \times \vec{c})] \vec{d}-[\vec{d} \cdot(\vec{b} \times \vec{c})] \vec{a}$ $=[\vec{a} \cdot \vec{b}(\vec{c} \times \vec{d})]-[\vec{b} \cdot \vec{a}(\vec{c} \times \vec{d})]+[\vec{a} \cdot(\vec{d} \times \vec{b})] \vec{c}-[\vec{c} \cdot(\vec{d} \times \vec{b})] \vec{a}$ $+[\vec{a} \cdot(-\vec{c} \times \vec{b})] \vec{d}-[\vec{c} \cdot(\vec{d} \times \vec{b})] \vec{a}$ $=[(\vec{a} \cdot \vec{b})(\vec{c} \times \vec{d})]-[(\vec{a} \cdot \vec{b})(\vec{c} \times \vec{d})]+[\vec{c} \cdot(\vec{d} \times \vec{b})] \vec{a}-[\vec{c} \cdot(\vec{d} \times \vec{b})] \vec{a}$ $-[\vec{d} \cdot(\vec{c} \times \vec{b})] \vec{a}-[\vec{c} \cdot(\vec{d} \times \vec{b})] \vec{a}$ $=[\vec{c} \cdot(\vec{d} \times \vec{b})] \vec{a}-[\vec{c} \cdot(\vec{d} \times \vec{b})] \vec{a}-[\vec{d},(\vec{c} \times \vec{b})] \vec{a}-[\vec{c} \cdot(\vec{d} \times \vec{b})] \vec{a}$ $=-2[\vec{b} \cdot(\vec{c} \times \vec{d})] \vec{a}=$ R.H.S

Hence proved.
L.H.S = R.H.S

Example\#05: If the four vector $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}} \boldsymbol{\&} \overrightarrow{\mathbf{d}}$ are coplanar, show that $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})=\mathbf{0}$

Solution: Let $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$ is perpendicular to both $\overrightarrow{\mathrm{a}} \& \overrightarrow{\mathrm{~b}}$ in the plane .
Similarly, $\vec{c} \times \vec{d}$ is is perpendicular to both $\vec{c} \& \vec{d}$ in the plane. Then $(\vec{a} \times \vec{b}) \&(\vec{c} \times \vec{d})$ both the normal of the same plane.
In this situation $(\vec{a} \times \vec{b})$ is parallel to $(\vec{c} \times \vec{d})$.
Therefore
$(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=0$
Hence proved.

Example\#06: Find a set of vectors reciprocal to the set of $\mathbf{2} \hat{\boldsymbol{\imath}}+3 \hat{\jmath}-\widehat{\boldsymbol{k}} ; \hat{\boldsymbol{\imath}}-\hat{\boldsymbol{\jmath}}-\mathbf{2} \widehat{\boldsymbol{k}}$
 $$
\text { and }-\hat{\imath}+2 \hat{\jmath}+2 \widehat{k} .
$$

Solution: Let $\vec{a}=2 \hat{\imath}+3 \hat{\jmath}-\hat{k} ; \vec{b}=\hat{\imath}-\hat{\jmath}-2 \hat{k}$ and $\vec{c}=-\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$
We know that reciprocal vector of $\vec{a}, \vec{b}, \vec{c}$ are

$$
\begin{aligned}
& \overrightarrow{\mathrm{a}}^{\prime}=\frac{\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}}{\left.\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \vec{b} & \vec{c}
\end{array}\right]} \quad ; \overrightarrow{\mathrm{b}}^{\prime}=\frac{\vec{c} \times \vec{a}}{\left.\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]} \quad ; \overrightarrow{\mathrm{c}}^{\prime}=\frac{\vec{a} \times \vec{b}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]} \\
& \left.\therefore \vec{b} \times \vec{c}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & -1 & -2 \\
-1 & 2 & 2
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
-1 & -2 \\
2 & 2
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
1 & -2 \\
-1 & 2
\end{array}\right|+\hat{k} \right\rvert\, \begin{array}{c}
1 \\
-1
\end{array} \\
& =\hat{\imath}(2+4)-\hat{\jmath}(2-2)+\hat{k}(2-1) \\
& =6 \hat{\imath}+\hat{k} \\
& \therefore \vec{c} \times \vec{a}=\left|\begin{array}{rrr}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
-1 & 2 & 2 \\
2 & 3 & -1
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
2 & 2 \\
3 & -1
\end{array}\right|-\hat{\jmath}\left|\begin{array}{c}
-1 \\
2
\end{array}{ }_{-1}^{2}\right|+\hat{k}\left|\begin{array}{cc}
-1 & 2 \\
2 & 3
\end{array}\right| \\
& =\hat{\imath}(-2-6)-\hat{\jmath}(1-4)+\hat{k}(-3-4) \\
& =-8 \hat{\imath}+3 \hat{\jmath}-7 \hat{k} \\
& \therefore \vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
2 & 3 & -1 \\
1 & -1 & -2
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
3 & -1 \\
-1 & -2
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
2 & -1 \\
1 & -2
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right| \\
& =\hat{\imath}(-6-1)-\hat{\jmath}(-4+1)+\hat{k}(-2-3) \\
& =-7 \hat{\imath}+3 \hat{\jmath}-5 \hat{k} \\
& \therefore\left[\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{c}}
\end{array}\right] \ominus\left|\begin{array}{ccc}
2 & 3 & -1 \\
1 & -1 & -2 \\
-1 & 2 & 2
\end{array}\right|=2\left|\begin{array}{cc}
-1 & -2 \\
2 & 2
\end{array}\right|-3\left|\begin{array}{cc}
1 & -2 \\
-1 & 2
\end{array}\right|+(-1)\left|\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right| \\
& =2(-2+4)-3(2-2)-1(2-1) \\
& =2(2)-3(0)-1(1)=4-0-1 \\
& =3
\end{aligned}
$$

Then

$$
\begin{aligned}
& \overrightarrow{\mathrm{a}}^{\prime}=\frac{\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}}{[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{c}}]}=\frac{6 \hat{\imath}+\hat{k}}{3} \\
& \overrightarrow{\mathrm{~b}}^{\prime}=\frac{\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}}{[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{~b}}]}=\frac{-8 \hat{\imath}+3 \hat{\jmath}-7 \hat{k}}{3} \\
& \overrightarrow{\mathrm{c}}^{\prime}=\frac{\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}}{[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{~b}} \vec{c}]}=\frac{-7 \hat{\imath}+3 \hat{\jmath}-5 \hat{k}}{3}
\end{aligned}
$$

Exercise\#2.5

Q\#01: $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})+(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}) \cdot(\overrightarrow{\mathbf{d}} \times \overrightarrow{\mathbf{b}})+(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{d}}) \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\mathbf{0}$
And also show that $\quad \sin (\theta+\varphi) \cdot \sin (\theta-\varphi)=\sin ^{2} \theta-\sin ^{2} \varphi$

Solution:

L.H.S $=(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})+(\vec{a} \times \vec{c}) \cdot(\vec{d} \times \vec{b})+(\vec{a} \times \vec{d}) \cdot(\vec{b} \times \vec{c})$
$=\left|\begin{array}{ll}\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}} & \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}} \\ \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{d}} & \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{d}}\end{array}\right|+\left|\begin{array}{ll}\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{d}} & \overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{d}} \\ \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}} & \overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{b}}\end{array}\right|+\left|\begin{array}{ll}\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}} & \overrightarrow{\mathrm{d}} \cdot \overrightarrow{\mathrm{b}} \\ \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}} & \overrightarrow{\mathrm{d}} \cdot \overrightarrow{\mathrm{c}}\end{array}\right|$
$=(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d})-(\vec{a} \cdot \vec{d})(\vec{b} \cdot \vec{c})+(\vec{a} \cdot \vec{d})(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{b}})-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}})(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{d}})+(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}})(\overrightarrow{\mathrm{d}} \cdot \overrightarrow{\mathrm{c}})-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}})(\overrightarrow{\mathrm{d}} \cdot \overrightarrow{\mathrm{b}})$
$=(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}})(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{d}})-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{d}})(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}})+(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{d}})(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}})-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}})(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{d}})+(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}})(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{d}})-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}})(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{d}})$
= $0=$ R.H.S
Hence proved L.H.S= R.H.S
Now let

$$
(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})+(\vec{a} \times \vec{c}) \cdot(\vec{d} \times \vec{b})+(\vec{a} \times \vec{d}) \cdot(\vec{b} \times \vec{c})=0
$$

$|\vec{a}||\vec{b}| \sin \theta|\vec{c}||\vec{d}| \sin \theta+|\vec{a}||\vec{c}|(-\sin \varphi)|\vec{d}||\vec{b}| \sin \varphi+|\vec{a}||\vec{d}| \sin (\theta+\varphi)|\vec{b}||\vec{c}|\{-\sin (\theta-\varphi)\}=0$
$|\vec{a}||\vec{b}||\vec{c}||\vec{d}|\left[\sin ^{2} \theta-\sin ^{2} \varphi-\sin (\theta+\varphi) \sin (\theta-\varphi)\right]=0$
$|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}||\overrightarrow{\mathrm{c}}||\overrightarrow{\mathrm{d}}| \neq 0 \quad$ Then $\quad \sin ^{2} \theta-\sin ^{2} \varphi-\sin (\theta+\varphi) \sin (\theta-\varphi)=0$

$$
\sin ^{2} \theta-\sin ^{2} \varphi=\sin (\theta+\varphi) \sin (\theta-\varphi)
$$

Hence proved

$$
\sin (\theta+\varphi), \sin (\theta-\varphi)=\sin ^{2} \theta-\sin ^{2} \varphi
$$

Q\#02: Expand $\quad[\{\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})\} \times \overrightarrow{\mathbf{d}}] . \overrightarrow{\mathbf{e}}$

Solution:

$$
\begin{aligned}
& {[\{\vec{a} \times(\vec{b} \times \vec{c})\} \times \vec{d}] \cdot \vec{e} } \\
= & {[\{(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}\} \times \vec{d}] \cdot \vec{e} } \\
= & {[(\vec{a} \cdot \vec{c}) \vec{b} \times \vec{d}-(\vec{a} \cdot \vec{b}) \vec{c} \times \vec{d}] \cdot \vec{e} } \\
= & (\vec{a} \cdot \vec{c})[(\vec{b} \times \vec{d}) \cdot \vec{e}]-(\vec{a} \cdot \vec{b})[(\vec{c} \times \vec{d}) \cdot \vec{e}]
\end{aligned}
$$

Q\#03:Prove that

(i) $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\left[\begin{array}{lll}\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}\end{array}\right] \overrightarrow{\mathbf{b}}$

Solution:

$$
\begin{aligned}
\text { L.H.S } & =(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c}) \\
& =[\vec{a} \cdot(\vec{b} \times \vec{c})] \vec{b}-[\vec{b} \cdot(\vec{b} \times \vec{c})] \vec{a} \\
& =[\vec{a} \cdot(\vec{b} \times \vec{c})] \vec{b}-(0) \vec{a} \\
& =[\vec{a} \cdot(\vec{b} \times \vec{c})] \vec{b} \\
& =\left[\begin{array}{ll}
\vec{a} & \vec{b}
\end{array} \vec{c}\right] \vec{b}=\text { R.H.S }
\end{aligned}
$$

$$
=[\vec{a} \cdot(\vec{b} \times \vec{c})] \vec{b}-(0) \vec{a} \quad \therefore[\vec{b} \cdot(\vec{b} \times \vec{c})]=0
$$

Hence proved.
(ii) $[(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}})] \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\left[\begin{array}{lll}\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}\end{array}\right]^{2}$

Solution: L.H.S $=[(\vec{a} \times \vec{b}) \times(\vec{a} \times \vec{c})] .(\vec{b} \times \vec{c})$

$$
\begin{aligned}
& =[\{\vec{a} \cdot(\vec{a} \times \vec{c})\} \vec{b}-\{\vec{b} \cdot(\vec{a} \times \vec{c})\} \vec{a}] \cdot(\vec{b} \times \vec{c}) \\
& =[\{0\} \vec{b}-\{\vec{b} \cdot(\vec{a} \times \vec{c})\} \vec{a}] \cdot(\vec{b} \times \vec{c}) \\
& =[-\{\vec{b} \cdot(-\vec{c} \times \vec{a})\} \vec{a}] \cdot(\vec{b} \times \vec{c}) \\
& =[\{\vec{b} \cdot(\vec{c} \times \vec{a})\} \vec{a}] \cdot(\vec{b} \times \vec{c}) \\
& =[\vec{b} \cdot(\vec{c} \times \vec{a})][\vec{a} \cdot(\vec{b} \times \vec{c})] \\
& =[\vec{a} \cdot(\vec{b} \times \vec{c})][\vec{a} \cdot(\vec{b} \times \vec{c})] \\
& =\left[\begin{array}{ll}
\vec{a} & \vec{b} \\
c
\end{array}\right]^{2}=\text { R.H.S }
\end{aligned}
$$

Hence proved.
L.H.S = R.H.S
(iii) $[\{(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}) \times \overrightarrow{\mathbf{a}}\} \times \overrightarrow{\mathbf{a}}] \cdot \overrightarrow{\mathbf{b}}=\left[\begin{array}{lll}\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}\end{array}\right](\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})$

Solution: L.H.S $=\{\{(\vec{b} \times \vec{c}) \times \vec{a}\} \times \vec{a}] \cdot \vec{b}$

$$
\begin{aligned}
& =[\{(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}\} \times \vec{a}] \cdot \vec{b} \\
& =[(\vec{a} \cdot \vec{c}) \vec{b} \times \vec{a}-(\vec{a} \cdot \vec{b}) \vec{c} \times \vec{a}] \cdot \vec{b} \\
& =(\vec{a} \cdot \vec{c})[(\vec{b} \times \vec{a}) \cdot \vec{b}]-(\vec{a} \cdot \vec{b})[(\vec{c} \times \vec{a}) \cdot \vec{b}] \\
& =(\vec{a} \cdot \vec{c})[0]-(\vec{a} \cdot \vec{b})[(\vec{c} \times \vec{a}) \cdot \vec{b}] \\
& =-(\vec{a} \cdot \vec{b})[(-\vec{a} \times \vec{c}) \cdot \vec{b}] \\
& =(\vec{a} \cdot \vec{b})[(\vec{a} \times \vec{c}) \cdot \vec{b}] \\
& =[\vec{a} \vec{b} \quad \vec{c}](\vec{a} \cdot \vec{b})=R \cdot H \cdot S
\end{aligned}
$$

Hence proved L.H.S=R.H.S

Q\#04: Expand $\quad[\{\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})\} \times \overrightarrow{\mathbf{d}}] \times \overrightarrow{\mathbf{e}}$

Solution: $\quad[\{\vec{a} \times(\vec{b} \times \vec{c})\} \times \vec{d}] \times \vec{e}$

$$
\begin{aligned}
& =[\{(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}\} \times \vec{d}] \times \vec{e} \\
& =[(\vec{a} \cdot \vec{c}) \vec{b} \times \vec{d}-(\vec{a} \cdot \vec{b}) \vec{c} \times \vec{d}] \cdot \vec{e} \\
& =(\vec{a} \cdot \vec{c})[(\vec{b} \times \vec{d}) \times \vec{e}]-(\vec{a} \cdot \vec{b})[(\vec{c} \times \vec{d}) \times \vec{e}] \\
& =(\vec{a} \cdot \vec{c})[(\vec{b} \cdot \vec{e}) \vec{d}-(\vec{d} \cdot \vec{e}) \vec{b}]-(\vec{a} \cdot \vec{b})[(\vec{c} \cdot \vec{e}) \vec{d}-(\vec{d} \cdot \vec{e}) \vec{c}] \\
& =(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{e}) \vec{d}-(\vec{a} \cdot \vec{c})(\vec{d} \cdot \vec{e}) \vec{b}-(\vec{a} \cdot \vec{b})(\vec{c} \cdot \vec{e}) \vec{d}-(\vec{a} \cdot \vec{b})(\vec{d} \cdot \vec{e}) \vec{c}
\end{aligned}
$$

Q\#05: Prove that $\quad \mathbf{2}[(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})]=\left|\begin{array}{cccc}-\overrightarrow{\mathbf{a}} & -\overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}} & \overrightarrow{\mathbf{d}} \\ \mathbf{a}_{1} & \mathbf{b}_{1} & \mathbf{c}_{1} & \mathbf{d}_{1} \\ \mathbf{a}_{2} & \mathbf{b}_{2} & \mathbf{c}_{2} & \mathbf{d}_{2} \\ \mathbf{a}_{2} & \mathbf{b}_{3} & \mathbf{c}_{3} & \mathbf{d}_{3}\end{array}\right|$
Solution: Let $\overrightarrow{\boldsymbol{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k} ; \overrightarrow{\boldsymbol{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{k} ; \overrightarrow{\boldsymbol{c}}=\mathrm{c}_{1} \hat{\imath}+\mathrm{c}_{2} \hat{\jmath}+\mathrm{c}_{3} \hat{k}$ \& $\overrightarrow{\boldsymbol{d}}=\mathrm{d}_{1} \hat{\imath}+\mathrm{d}_{2} \hat{\jmath}+\mathrm{d}_{3} \hat{k}$
L.H.S $=\left|\begin{array}{cccc}-\vec{a} & -\vec{b} & \vec{c} & \vec{d} \\ a_{1} & b_{1} & c_{1} & d_{1} \\ a_{2} & b_{2} & c_{2} & d_{2} \\ a_{2} & b_{3} & c_{3} & d_{3}\end{array}\right|=-\vec{a}\left|\begin{array}{ccc}b_{1} & c_{1} & d_{1} \\ b_{2} & c_{2} & d_{2} \\ b_{3} & c_{3} & d_{2}\end{array}\right|-(-\vec{b})\left|\begin{array}{lll}a_{1} & c_{1} & d_{1} \\ a_{2} & c_{2} & d_{2} \\ a_{3} & c_{3} & d_{2}\end{array}\right|+\vec{c}\left|\begin{array}{ccc}a_{1} & b_{1} & d_{1} \\ a_{2} & b_{2} & d_{2} \\ a_{3} & b_{3} & d_{2}\end{array}\right|-\vec{d}\left|\begin{array}{ccc}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{2}\end{array}\right|$

Taking transpose of each determinant

$$
\begin{aligned}
& =-\vec{a}\left|\begin{array}{ccc}
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3} \\
d_{1} & d_{2} & d_{3}
\end{array}\right|+\vec{b}\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
c_{1} & c_{2} & c_{3} \\
d_{1} & d_{2} & d_{3}
\end{array}\right|+\vec{c}\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
d_{1} & d_{2} & d_{3}
\end{array}\right|-\vec{d}\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| \\
& =-\vec{a}[\vec{b} \cdot(\vec{c} \times \vec{d})]+\vec{b} \vec{b} \cdot(\vec{c} \times \vec{d})]+\vec{c}[\vec{a} \cdot(\vec{b} \times \vec{d})]-\vec{b}[\vec{a} \cdot(\vec{b} \times \vec{c})] \\
& =\vec{b}[\vec{a} \cdot(\vec{c} \times \vec{d})]-\vec{a}[\vec{b} \cdot(\vec{c} \times \vec{d})]+\vec{c}[\vec{a} \cdot(\vec{b} \times \vec{d})]-\vec{b}[\vec{a} \cdot(\vec{b} \times \vec{c})] \\
& =\vec{b}[\vec{a} \cdot(\vec{c} \times \vec{d})]-\vec{a}[\vec{b} \cdot(\vec{c} \times \vec{d})]+\vec{c}[\vec{b} \cdot(\vec{a} \times \vec{d})]-\vec{a}[\vec{d} \cdot(\vec{b} \times \vec{c})] \\
& =\vec{b}[\vec{a} \cdot(\vec{c} \times \vec{d})]-\vec{a}[\vec{b} \cdot(\vec{c} \times \vec{d})]+\vec{b}[\vec{c} \cdot(\vec{a} \times \vec{d})]-\vec{a}[\vec{b} \cdot(\vec{c} \times \vec{d})] \\
& =\vec{b}[\vec{a} \cdot(\vec{c} \times \vec{d})]-\vec{a}[\vec{b} \cdot(\vec{c} \times \vec{d})]+\vec{b}[\vec{a} \cdot(\vec{c} \times \vec{d})]-\vec{a}[\vec{b} \cdot(\vec{c} \times \vec{d})] \\
& =2 \vec{b}[\vec{a} \cdot(\vec{c} \times \vec{d})]-2 \vec{a}[\vec{b} \cdot(\vec{c} \times \vec{d})]--------(i)
\end{aligned}
$$

L.H.S $=2[(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})]$

$$
\begin{align*}
& =2\{[\vec{a} \cdot(\vec{c} \times \vec{d})] \vec{b}-[\vec{b} \cdot(\vec{c} \times \vec{d})] \vec{a}\} \\
& =2 \vec{b}[\vec{a} \cdot(\vec{c} \times \vec{d})]-2 \vec{a}[\vec{b} \cdot(\vec{c} \times \vec{d})]---- \tag{ii}
\end{align*}
$$

From (i) \&(ii) Hence Proved L.H.S = R.H.S

$$
\text { Q\#06: Prove that } \quad[\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathrm{c}})](\overrightarrow{\boldsymbol{p}} \times \overrightarrow{\boldsymbol{q}})=\left|\begin{array}{lll}
\overrightarrow{\boldsymbol{p}} \cdot \overrightarrow{\boldsymbol{a}} & \overrightarrow{\boldsymbol{q}} \cdot \vec{a} & \vec{a} \\
\overrightarrow{\boldsymbol{p}} \cdot \vec{b} & \overrightarrow{\boldsymbol{q}} \cdot \vec{b} & \vec{b} \\
\overrightarrow{\boldsymbol{p}} \cdot \overrightarrow{\boldsymbol{c}} & \overrightarrow{\boldsymbol{q}} \cdot \vec{c} & \vec{c}
\end{array}\right|
$$

Solution: Let $\vec{a}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k} \quad ; \vec{b}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{k} \quad ; \quad \vec{c}=\mathrm{c}_{1} \hat{\imath}+\mathrm{c}_{2} \hat{\jmath}+\mathrm{c}_{3} \hat{k}$

$$
\vec{p}=\mathrm{p}_{1} \hat{\imath}+\mathrm{p}_{2} \hat{\jmath}+\mathrm{p}_{3} \hat{k} \quad \& \quad \overrightarrow{\mathrm{q}}=\mathrm{q}_{1} \hat{\imath}+\mathrm{q}_{2} \hat{\jmath}+\mathrm{q}_{3} \hat{k}
$$

L.H.S $=[\overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})](\vec{p} \times \vec{q})$

$$
\begin{aligned}
& =\left|\begin{array}{lll}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
\mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3} \\
\mathrm{c}_{1} & \mathrm{c}_{2} & \mathrm{c}_{3}
\end{array}\right| \cdot\left|\begin{array}{lll}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\mathrm{p}_{1} & \mathrm{p}_{2} & \mathrm{p}_{3} \\
\mathrm{q}_{1} & \mathrm{q}_{2} & \mathrm{q}_{3}
\end{array}\right| \\
& =\left|\begin{array}{lll}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
\mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3} \\
\mathrm{c}_{1} & \mathrm{c}_{2} & \mathrm{c}_{3}
\end{array}\right| \cdot\left|\begin{array}{lll}
\hat{\imath} & p_{1} & q_{1} \\
\hat{\jmath} & \mathrm{p}_{2} & \mathrm{q}_{2} \\
\hat{k} & \mathrm{p}_{3} & \mathrm{q}_{3}
\end{array}\right| \quad \therefore \text { Taking transpose of 2nd determinant. } \\
& =\left|\begin{array}{lll}
a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k} & a_{1} p_{1}+a_{2} \mathrm{p}_{2}+a_{3} p_{3} & a_{1} q_{1}+a_{2} \mathrm{q}_{2}+a_{3} q_{3} \\
b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k} & b_{1} p_{1}+b_{2} \mathrm{p}_{2}+b_{3} p_{3} & b_{1} q_{1}+b_{2} q_{2}+b_{3} q_{3} \\
c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k} & c_{1} p_{1}+c_{2} p_{2}+c_{3} p_{3} & c_{1} q_{1}+c_{2} q_{2}+c_{3} q_{3}
\end{array}\right|
\end{aligned}
$$

$$
=\left|\begin{array}{lll}
\vec{a} & \vec{a} \cdot \vec{p} & \vec{a} \cdot \vec{q} \\
\vec{b} & \vec{b} \cdot \vec{p} & \vec{b} \cdot \vec{q} \\
\vec{c} & \vec{b} \cdot \vec{p} & \vec{c} \cdot \vec{q}
\end{array}\right|
$$

$$
=\left|\begin{array}{lll}
\vec{a} & \vec{p} \cdot \vec{a} & \vec{q} \cdot \vec{a} \\
\vec{b} & \vec{p} \cdot \vec{b} & \vec{q} \cdot \vec{b} \\
\vec{c} & \vec{p} \cdot \vec{c} & \vec{q} \cdot \vec{c}
\end{array}\right|
$$

$$
=-\left|\begin{array}{lll}
\vec{q} \cdot \vec{a} & \vec{p} \cdot \vec{a} & \vec{a} \\
\vec{q} \cdot \vec{b} & \vec{p} \cdot \vec{b} & \vec{b} \\
\rightarrow \rightarrow & \rightarrow & \rightarrow
\end{array}\right| \quad \therefore \text { Interchanging } \mathrm{C}_{1} \& \mathrm{C}_{2}
$$

$$
|\vec{q} \cdot \vec{c} \subset \vec{p} \cdot \vec{c} \quad \vec{c}|
$$

$$
=\left|\begin{array}{ccc}
\vec{p} \cdot \vec{a} & \vec{q} \cdot \vec{a} & \vec{a} \\
\vec{p} \cdot \vec{b} & \vec{q} \cdot \vec{b} & \vec{b} \\
\vec{p} \cdot \vec{c} & \vec{q} \cdot \vec{c} & \vec{c}
\end{array}\right|
$$

$$
=\text { R.H.S }
$$

Hence proved that
L.H.S = R.H.S

Q\#07:Prove the identity $\quad \overrightarrow{\mathbf{a}} \times\{\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})\}=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}})(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$

Solution: \quad L.H.S $=\vec{a} \times\{\vec{a} \times(\vec{a} \times \vec{b})\}$

$$
\begin{aligned}
& =\vec{a} \times\{(\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}\} \\
& =\vec{a} \times(\vec{a} \cdot \vec{b}) \vec{a}-\vec{a} \times(\vec{a} \cdot \vec{a}) \vec{b} \\
& =(\vec{a} \cdot \vec{b})(\vec{a} \times \vec{a})-(\vec{a} \cdot \vec{a})(\vec{a} \times \vec{b}) \\
& =(\vec{a} \cdot \vec{b})(0)-(\vec{a} \cdot \vec{a})(-\vec{b} \times \vec{a}) \quad \therefore \vec{a} \times \vec{a}=0 \quad \& \quad \vec{a} \times \vec{b}=-\vec{b} \times \vec{a} \\
& =0+(\vec{a} \cdot \vec{a})(\vec{b} \times \vec{a}) \\
& =(\vec{a} \cdot \vec{a})(\vec{b} \times \vec{a})=R \cdot H \cdot S
\end{aligned}
$$

Q\#08: Prove that

$[(\mathbf{a} \times \overrightarrow{\mathbf{p}}) \cdot\{(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{q}}) \times(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{r}})\}]+[(\mathbf{a} \times \overrightarrow{\mathbf{q}}) \cdot\{(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{r}}) \times(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{p}})\}]+[(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{r}}) \cdot\{(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{p}}) \times(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{q}})\}]=0$
Solution: Let

$$
\begin{align*}
{[(\vec{a} \times \vec{p}) \cdot\{(\vec{b} \times \vec{q}) \times(\vec{c} \times \vec{r})\}] } & =(\vec{a} \times \vec{p}) \cdot\{[\vec{b} \cdot(\vec{c} \times \vec{r})] \vec{q}-[\vec{q} \cdot(\vec{c} \times \vec{r})] \vec{b}\} \\
& =(\vec{a} \times \vec{p}) \cdot[\vec{b} \cdot(\vec{c} \times \vec{r})] \vec{q}-(\vec{a} \times \vec{p}) \cdot[\vec{q} \cdot(\vec{c} \times \vec{r})] \vec{b} \\
& =[(\vec{a} \times \vec{p}) \cdot \vec{q}][\vec{b} \cdot(\vec{c} \times \vec{r})]-[(\vec{a} \times \vec{p}) \cdot \vec{b}][\vec{q} \cdot(\vec{c} \times \vec{r})] \\
& =[(\vec{a} \times \vec{p}) \cdot \vec{b}][\vec{q} \cdot(\vec{c} \times \vec{r})]-[(\vec{a} \times \vec{p}) \cdot \vec{b}][\vec{q} \cdot(\vec{c} \times \vec{r})] \\
& =0-\cdots-\cdots) \tag{i}\\
{[(\vec{a} \times \vec{q}) \cdot\{(\vec{b} \times \vec{r}) \times(\vec{c} \times \vec{p})\}] } & =(\vec{a} \times \vec{q}) \cdot\{[\vec{b} \cdot(\vec{c} \times \vec{p})] \vec{r}-[\vec{r} \cdot(\vec{c} \times \vec{p})] \vec{b}\} \\
& =(\vec{a} \times \vec{q}) \cdot[\vec{b} \cdot(\vec{c} \times \vec{p})] \vec{r}-(\vec{a} \times \vec{q}) \cdot[\vec{r} \cdot(\vec{c} \times \vec{p})] \vec{b} \\
& =[(\vec{a} \times \vec{q}) \cdot \vec{r}][\vec{b} \cdot(\vec{c} \times \vec{p})]-[(\vec{a} \times \vec{q}) \cdot \vec{b}][\vec{r} \cdot(\vec{c} \times \vec{p})] \\
& =[(\vec{a} \times \vec{q}) \cdot \vec{r}][\vec{r} \cdot(\vec{c} \times \vec{p})]-[(\vec{a} \times \vec{q}) \cdot \vec{b}][\vec{r} \cdot(\vec{c} \times \vec{p})] \\
& =0--\cdots-\cdots---(i i) \tag{ii}
\end{align*}
$$

$[(\vec{a} \times \vec{r}) \cdot\{(\vec{b} \times \vec{p}) \times(\vec{c} \times \vec{q})\}]=(\vec{a} \times \vec{r}) \cdot\{[\vec{b} \cdot(\vec{c} \times \vec{q})] \vec{p}-[\vec{p} \cdot(\vec{c} \times \vec{q})] \vec{b}\}$

$$
\begin{align*}
& =(\vec{a} \times \vec{r}) \cdot[\vec{b} \cdot(\vec{c} \times \vec{q})] \vec{p}-(\vec{a} \times \vec{r}) \cdot[\vec{p} \cdot(\vec{c} \times \vec{q})] \vec{b} \\
& =[(\vec{a} \times \vec{r}) \cdot \vec{p}][\vec{b} \cdot(\vec{c} \times \vec{q})]-[(\vec{a} \times \vec{r}) \cdot \vec{b}][\vec{p} \cdot(\vec{c} \times \vec{q})] \\
& =[(\vec{a} \times \vec{r}) \cdot \vec{b}][\vec{p} \cdot(\vec{c} \times \vec{q})]-[(\vec{a} \times \vec{r}) \cdot \vec{b}][\vec{p} \cdot(\vec{c} \times \vec{q})] \\
& =0--------(i i i) \tag{iii}
\end{align*}
$$

Adding (i), (ii) \& (iii)
$[(\vec{a} \times \vec{p}) \cdot\{(\vec{b} \times \vec{q}) \times(\vec{c} \times \vec{r})\}]+[(\vec{a} \times \vec{q}) \cdot\{(\vec{b} \times \vec{r}) \times(\vec{c} \times \vec{p})\}]+[(\vec{a} \times \vec{r}) \cdot\{(\vec{b} \times \vec{p}) \times(\vec{c} \times \vec{q})\}]=0$

Solution:

Let $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\vec{A} \times(\vec{c} \times \vec{d}) \quad$ Put $\vec{a} \times \vec{b}=\vec{A}$

$$
\begin{align*}
& =(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{~d}}) \overrightarrow{\mathrm{c}}-(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{d}} \\
& =\{(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \cdot \overrightarrow{\mathrm{d}}\} \overrightarrow{\mathrm{c}}-\{(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \cdot \overrightarrow{\mathrm{c}}\} \overrightarrow{\mathrm{d}} \tag{i}
\end{align*}
$$

Let

$$
\begin{align*}
(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d}) & =(\vec{a} \times \vec{b}) \times \vec{B} \\
& =(\vec{a} \cdot \vec{B}) \vec{b}-(\vec{b} \cdot \vec{B}) \vec{a} \\
& =\{\vec{a} \cdot(\vec{c} \times \vec{d})\} \vec{b}-\{\vec{b} \cdot(\vec{c} \times \vec{d})\} \vec{a} \tag{ii}
\end{align*}
$$

Comparing (i) \& (ii)

$$
\begin{aligned}
&\{(\vec{a} \times \vec{b}) \cdot \vec{d}\} \vec{c}-\{(\vec{a} \times \vec{b}) \cdot \vec{c}\} \vec{d}=\{\vec{a} \cdot(\vec{c} \times \vec{d})\} \vec{b}-\{\vec{b} \cdot(\vec{c} \times \vec{d})\} \vec{a} \\
&\{(\vec{a} \times \vec{b}) \cdot \vec{d}\} \vec{c}-\{(\vec{a} \times \vec{b}) \cdot \vec{c}\} \vec{d}=\{\vec{a} \cdot(-\vec{d} \times \vec{c})\} \vec{b}-\{\vec{b} \cdot(\vec{c} \times \vec{d})\} \vec{a} \\
&\{(\vec{a} \times \vec{b}) \cdot \vec{d}\} \vec{c}-\{(\vec{a} \times \vec{b}) \cdot \vec{c}\} \vec{d}=-\{\vec{a} \cdot(\vec{d} \times \vec{c})\} \vec{b}-\{\vec{b} \cdot(\vec{c} \times \vec{d})\} \vec{a} \\
&-\{(\vec{a} \times \vec{b}) \cdot \vec{c}\} \vec{d}=-\{\vec{a} \cdot(\vec{d} \times \vec{c})\} \vec{b}-\{\vec{b} \cdot(\vec{c} \times \vec{d})\} \vec{a}-\{(\vec{a} \times \vec{b}) \cdot \vec{d}\} \vec{c} \\
&\{(\vec{a} \times \vec{b}) \cdot \vec{c}\} \vec{d}=\{\vec{a} \cdot(\vec{d} \times \vec{c})\} \vec{b}+\{\vec{b} \cdot(\vec{c} \times \vec{d})\} \vec{a}+\{(\vec{a} \times \vec{b}) \cdot \vec{d}\} \vec{c} \\
& \quad[\vec{a} \quad \vec{b} \quad \vec{c}] \vec{d}=[\vec{b} \quad \vec{c} \quad \vec{d}] \vec{a}+[\vec{c} \vec{a} \quad \vec{d}] \vec{b}+[\vec{a} \quad \vec{b} \quad \vec{d}] \vec{c}
\end{aligned}
$$

Q\#10: Prove that $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot\{(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}) \times \overrightarrow{\mathbf{d}}\}=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{d}})\left[\begin{array}{lll}\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}\end{array}\right]$

Solution:

$$
\begin{aligned}
\text { L.H.S } & =(\vec{a} \times \vec{b}) \cdot\{(\vec{a} \times \vec{c}) \times \vec{d}\} \\
& =(\vec{a} \times \vec{b}) \times(\vec{a} \cdot \vec{d}) \vec{c}-(\vec{c} \cdot \vec{d}) \vec{a}\} \\
& =(\vec{a} \times \vec{b}) \cdot(\vec{a} \cdot \vec{d}) \vec{c}-(\vec{a} \times \vec{b}) \cdot(\vec{c} \cdot \vec{d}) \vec{a} \\
& =[(\vec{a} \times \vec{b}) \cdot \vec{c}](\vec{a} \cdot \vec{d})-[(\vec{a} \times \vec{b}) \cdot \vec{a}](\vec{c} \cdot \vec{d}) \\
& =[(\vec{a} \times \vec{b}) \cdot \vec{c}](\vec{a} \cdot \vec{d})-(0)(\vec{c} \cdot \vec{d}) \\
& =(\vec{a} \cdot \vec{d})\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right] \\
& =\text { R.H.S }
\end{aligned} \quad \therefore[(\vec{a} \times \vec{b}) \cdot \vec{a}]=0
$$

Hence proved
L.H.S=R.H.S

Q\#11:Prove that $\overrightarrow{\mathbf{a}} \times[\overrightarrow{\mathbf{b}} \times(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})]=(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{d}})(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}})-(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}})(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{d}})$
Solution: \quad L.H.S $=\vec{a} \times[\vec{b} \times(\vec{c} \times \vec{d})]$

$$
\begin{aligned}
& =\vec{a} \times[(\vec{b} \cdot \vec{d}) \vec{c}-(\vec{b} \cdot \vec{c}) \vec{d}] \\
& =\vec{a} \times(\vec{b} \cdot \vec{d}) \vec{c}-\vec{a} \times(\vec{b} \cdot \vec{c}) \vec{d} \\
& =(\vec{b} \cdot \vec{d})(\vec{a} \times \vec{c})-(\vec{b} \cdot \vec{c})(\vec{a} \times \vec{d}) \\
& =\text { R.H.S }
\end{aligned}
$$

Q\#12: Find a set of vectors reciprocal to the set of $-\hat{\boldsymbol{\imath}}+\hat{\jmath}+\widehat{\boldsymbol{k}} ; \hat{\boldsymbol{\imath}}-\hat{\boldsymbol{\jmath}}+\widehat{\boldsymbol{k}}$ and $\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}+\widehat{\boldsymbol{k}}$.
Solution: Let $\vec{a}=-\hat{\imath}+\hat{\jmath}+\hat{k} \quad ; \vec{b}=\hat{\imath}-\hat{\jmath}+\hat{k}$ and $\vec{c}=\hat{\imath}+\hat{\jmath}+\hat{k}$
We know that reciprocal vector of $\vec{a}, \vec{b}, \vec{c}$ are

$$
\begin{aligned}
& \vec{b} \times \vec{c}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & -1 & 1 \\
1 & 1 & 1
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
1 & \underline{1} \\
1 & 1
\end{array}\right|=\hat{\imath}(-1-1)-\hat{\jmath}(1-1)+\hat{k}(1+1) \\
& =-2 \hat{\imath}+2 \hat{k} \backslash \\
& \vec{c} \times \vec{a}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right|=\hat{\imath}\left|\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
1 & 1 \\
1
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right|=\hat{\imath}(1-1)-\hat{\jmath}(1+1)+\hat{k}(1+1) \\
& =-2 \hat{\jmath}+2 \hat{k} \backslash \\
& \vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
-1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right|=\hat{\imath}(1+1)-\hat{\jmath}(-1-1)+\hat{k}(1-1) \\
& =2 \hat{\imath}+2 \hat{\jmath} \\
& {\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]=\left|\begin{array}{cc}
-1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1
\end{array}\right|=-1\left|\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right|-1\left|\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right|+1\left|\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right|} \\
& =-1(-1-1)-1(1-1)+1(1+1) \\
& =-1(-2)-1(0)+1(2)=2-0+2=4
\end{aligned}
$$

Then

$$
\begin{aligned}
& \vec{a}^{\prime}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b}]}=\frac{-2 \hat{c}+2 \hat{k}}{4}=\frac{2(-\hat{i}+\hat{k})}{4}=\frac{-\hat{\imath}+\hat{k}}{2} \\
& \vec{b}^{\prime}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \quad \vec{c}]} 3 \ldots=\frac{-2 \hat{j}+2 \hat{k}}{4}=\frac{2(-\hat{\jmath}+\hat{k})}{4}=\frac{-\hat{\jmath}+\hat{k}}{2} \\
& \vec{c}^{\prime}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b}]}=\frac{2 \hat{c}+2 \hat{j}}{4}=\frac{2(\hat{i}+\hat{j})}{4}=\frac{\hat{i}+\hat{\jmath}}{2}
\end{aligned}
$$

Q\#13: If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ be the set of non-coplanar vectors and

$$
\overrightarrow{\mathbf{a}}^{\prime}=\frac{\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}}{\left[\begin{array}{lll}
\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}
\end{array}\right]} \quad ; \overrightarrow{\mathbf{b}}{ }^{\prime}=\frac{\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}}{\left.\begin{array}{lll}
\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}
\end{array}\right]} \quad ; \overrightarrow{\mathbf{c}}^{\prime}=\frac{\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}}{\left.\begin{array}{lll}
\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}
\end{array}\right]}
$$

Then prove that

Solution: Let $\quad\left[\vec{a}^{\prime} \quad \vec{b}^{\prime} \vec{c}^{\prime}\right]=\vec{a}^{\prime} \cdot\left(\vec{b}{ }^{\prime} \times \vec{c}^{\prime}\right)$

$$
\begin{aligned}
& =\frac{\vec{b} \times \vec{c}}{\left[\begin{array}{l}
\vec{a} \quad \vec{b} \quad \vec{c}]
\end{array}\right] \cdot\left(\frac{\vec{c} \times \vec{a}}{\left[\begin{array}{ll}
\vec{a} & \vec{b} \quad \vec{c}
\end{array}\right]} \times \frac{\vec{a} \times \vec{b}}{\left[\begin{array}{ll}
\vec{a} & \vec{b} \quad \vec{c}
\end{array}\right]}\right)} \\
& =\frac{(\vec{b} \times \vec{c}) \cdot\{(\vec{c} \times \vec{a}) \times(\vec{a} \times \vec{b})\}}{\left[\begin{array}{ll}
\vec{a} & \vec{c}
\end{array}\right]^{3}}
\end{aligned}
$$

$$
=\frac{(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}) \cdot\{[\overrightarrow{\mathrm{c}} \cdot(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})] \overrightarrow{\mathrm{a}}-[\overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})] \overrightarrow{\mathrm{c}}\}}{\left[\begin{array}{ll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}}
\end{array}\right]^{3}}
$$

$$
=\frac{(\vec{b} \times \vec{c}) \cdot\left\{\left[\begin{array}{ll}
\vec{c} \cdot(\vec{a} \times \vec{b})] \vec{a}-[0] \vec{c}\} \\
{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]^{3}}
\end{array}\right\},\right.}{}
$$

$$
=\frac{(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}) \cdot\{[\overrightarrow{\mathrm{c}} \cdot(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})] \overrightarrow{\mathrm{a}}-0\}}{[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{~b}} \overrightarrow{\mathrm{c}}]^{3}}
$$

$$
=\frac{(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}) \cdot \overrightarrow{\mathrm{a}} \mid[\overrightarrow{\mathrm{c}} \cdot(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})]}{[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{~b}} \overrightarrow{\mathrm{c}}]^{3}}
$$

$$
=\frac{\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}]
\end{array}\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]}{\left.\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]^{3}}
$$

$$
\left.\left[\begin{array}{lll}
\vec{a}^{\prime} & \vec{b} & \vec{c} \vec{c}^{\prime}
\end{array}\right]=\frac{1}{\vec{a}} \overrightarrow{\vec{b}} \vec{c}\right] \quad \Rightarrow\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]=\frac{1}{\left[\begin{array}{lll}
\vec{a}^{\prime} \vec{b}^{\prime} \vec{c}^{\prime} \tag{i}
\end{array}\right]}
$$

Now

Similarly

$$
\vec{b}=\frac{\vec{c}^{\prime} \times \vec{a}^{\prime}}{\left[\vec{a}^{\prime} \vec{b}^{\prime} \vec{c}^{\prime}\right]} \quad \& \quad \vec{c}=\frac{\vec{a}^{\prime} \times \vec{b}^{\prime}}{\left[\vec{a}^{\prime} \vec{b}^{\prime} \vec{c}^{\prime}\right]}
$$

$$
\begin{aligned}
& \vec{b}^{\prime} \times \vec{c}^{\prime}=\frac{\vec{c} \times \vec{a}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}]
\end{array} \times \frac{\vec{a} \times \vec{b}}{\vec{l}} \times \vec{b} \quad \vec{c}\right]}=\frac{(\vec{c} \times \vec{a}) \times(\vec{a} \times \vec{b})}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]^{2}}=\frac{[\vec{c} \cdot(\vec{a} \times \vec{b})] \vec{a}-[\vec{a} \cdot(\vec{a} \times \vec{b})] \vec{c}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]^{2}}=\frac{[\vec{c} \cdot(\vec{a} \times \vec{b})] \vec{a}-[0] \vec{c}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]^{2}} \\
& =\frac{\left.\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right] \vec{a}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]^{2}} \\
& \overrightarrow{\mathrm{~b}}^{\prime} \times \overrightarrow{\mathrm{c}}^{\prime}=\frac{\overrightarrow{\mathrm{a}}}{\left.\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}} & \vec{c}
\end{array}\right]} \\
& {\left[\vec{b}^{\prime} \times \vec{c}^{\prime}\right]\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]=\vec{a} \quad \Rightarrow \quad\left[\vec{b}{ }^{\prime} \times \vec{c}^{\prime}\right] \frac{1}{\left[\vec{a}^{\prime} \overrightarrow{b^{\prime}} \vec{c}^{\prime}\right]}=\vec{a} \quad \Rightarrow \quad \vec{a}=\frac{\vec{b}^{\prime} \times \vec{c}^{\prime}}{\left[\vec{a}^{\prime} \vec{b}^{\prime} \vec{c}^{\prime}\right]}}
\end{aligned}
$$

Q\#14: if $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}} \& \overrightarrow{\mathbf{a}}^{\prime}, \vec{b}^{\prime}, \overrightarrow{\mathbf{c}}^{\prime}$ are reciprocal system of vectors. Prove that

(i) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{a}}^{\prime}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{b}}^{\prime}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{c}}^{\prime}=\mathbf{0}$

Solution: We know that

$$
\begin{aligned}
& \vec{a}^{\prime}=\frac{\vec{b} \times \vec{c}}{\left[\begin{array}{ll}
\vec{a} & \vec{c}
\end{array}\right] \quad ; \vec{b}^{\prime}=\frac{\vec{c} \times \vec{a}}{\left[\begin{array}{ll}
\vec{a} & \vec{b} \quad \vec{c}
\end{array}\right] \quad ; \vec{c}^{\prime}=\frac{\vec{a} \times \vec{b}}{\left[\begin{array}{ll}
\vec{a} & \vec{b} \quad \vec{c}
\end{array}\right]}}} \begin{array}{l}
\text { L.H.S }
\end{array}=\vec{a} \times \vec{a}^{\prime}+\vec{b} \times \vec{b}^{\prime}+\vec{c} \times \vec{c}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& =\vec{a} \times \frac{\vec{b} \times \vec{c}}{\left[\begin{array}{ll}
\vec{a} & \vec{b} \quad \vec{c}
\end{array}\right]}+\vec{b} \times \frac{\vec{c} \times \vec{a}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} \quad \vec{c}
\end{array}\right]}+\vec{c} \times \frac{\vec{a} \times \vec{b}}{\left.\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]} \\
& =\frac{\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]}
\end{aligned}
$$

$$
=\frac{(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{b}}-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}) \overrightarrow{\mathrm{c}}+(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{a}}) \overrightarrow{\mathrm{c}}-(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{a}}+(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{~b}}) \overrightarrow{\mathrm{a}}-(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\vec{a}}) \overrightarrow{\mathrm{b}}}{\left[\begin{array}{ll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}}
\end{array} \overrightarrow{\mathrm{c}}\right]}
$$

$$
=\frac{(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{b}}-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}) \overrightarrow{\mathrm{c}}+(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}) \overrightarrow{\mathrm{c}}-(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{a}}+(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{a}}-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{b}}}{\left[\begin{array}{ll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}} \\
\vec{c}]
\end{array}\right]}
$$

$$
=\frac{0}{\begin{array}{lll}
{\left[\begin{array}{ll}
\mathrm{a} & \vec{b} \\
\vec{c}
\end{array}\right]}
\end{array}=0=\text { R.H.S }}
$$

(ii)

$$
\overrightarrow{\mathbf{a}}^{\prime} \times \overrightarrow{\mathbf{b}}^{\prime}+\overrightarrow{\mathbf{b}}^{\prime} \times \overrightarrow{\mathbf{c}}^{\prime}+\overrightarrow{\mathbf{c}}^{\prime} \times \overrightarrow{\mathbf{a}}^{\prime}=\frac{\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}}{\left.\begin{array}{lll}
\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}
\end{array}\right]}
$$

Solution: We know that

$$
\begin{aligned}
& \text { L.H.S }=\overrightarrow{\mathrm{a}}^{\prime} \times \overrightarrow{\mathrm{b}}^{\prime}+\overrightarrow{\mathrm{b}}^{\prime} \times \overrightarrow{\mathrm{c}}^{\prime}+\overrightarrow{\mathrm{c}}^{\prime} \times \overrightarrow{\mathrm{a}}^{\prime} \\
& =\frac{\vec{b} \times \vec{c}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]} \times \frac{\vec{c} \times \vec{a}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]}+\frac{\vec{c} \times \vec{a}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]} \times \frac{\vec{a} \times \vec{b}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]}+\frac{\vec{a} \times \vec{b}}{\left.\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]} \times \frac{\vec{b} \times \vec{c}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]} \\
& =\frac{(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})}{\left[\begin{array}{ll}
\vec{a} & \vec{b} \\
\vec{c}]^{2}
\end{array}+\frac{(\vec{c} \times \vec{a}) \times(\vec{a} \times \vec{b})}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]^{2}}+\frac{(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]^{2}}, \frac{1}{}\right.} \\
& =\frac{[\vec{b} \cdot(\vec{c} \times \vec{a})] \vec{c}-[\vec{c} \cdot(\vec{c} \times \vec{a})] \vec{b}}{\left[\begin{array}{ll}
\vec{a} & \vec{b} \\
\vec{c}
\end{array}\right]^{2}}+\frac{[\vec{c} \cdot(\vec{a} \times \vec{b})] \vec{a}-[\vec{a} \cdot(\vec{a} \times \vec{b})] \vec{c}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]^{2}}+\frac{[\vec{a} \cdot(\vec{b} \times \vec{c})] \vec{b}-[\vec{b} \cdot(\vec{b} \times \vec{c})] \vec{a}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]^{2}} \\
& =\frac{[\vec{a} \cdot(\vec{b} \times \vec{c})] \vec{c}-[0] \vec{b}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]^{2}}+\frac{[\vec{a} \cdot(\vec{b} \times \vec{c})] \vec{a}-[0] \vec{c}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]^{2}}+\frac{[\vec{a} \cdot(\vec{b} \times \vec{c})] \vec{b}-[0] \vec{a}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\vec{c}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]}+\frac{\vec{a}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]}+\frac{\vec{b}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]}=\frac{\vec{a}+\vec{b}+\vec{c}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]}=\text { R. H.S }
\end{aligned}
$$

(iii)

$$
\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}^{\prime}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{b}}^{\prime}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{c}}^{\prime}=\mathbf{3}
$$

Solution: We know that

$$
\begin{aligned}
& \vec{a}^{\prime}=\frac{\vec{b} \times \vec{c}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]} \quad ; \vec{b}^{\prime}=\frac{\vec{c} \times \vec{a}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]} \quad ; \vec{c}^{\prime}=\frac{\vec{a} \times \vec{b}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]} \\
& \text { L.H.S }=\vec{a} \cdot \vec{a}^{\prime}+\vec{b} \cdot \vec{b}^{\prime}+\vec{c} \cdot \vec{c}^{\prime} \\
& =\overrightarrow{\mathrm{a}} \cdot \frac{\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}}}{\left[\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \vec{b} & \vec{c}
\end{array}\right]}+\overrightarrow{\mathrm{b}} \cdot \frac{\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}}{\left.\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \vec{b} & \vec{c}
\end{array}\right]}+\overrightarrow{\mathrm{c}} \cdot \frac{\vec{a} \times \vec{b}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}]
\end{array}\right]} \\
& =\frac{\overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}})+\overrightarrow{\mathrm{b}} \cdot(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}})+\overrightarrow{\mathrm{c}} \cdot(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})}{\left[\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{c}}
\end{array}\right]} \\
& =\frac{\overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}})+\overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}})+\overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}})}{\left[\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{c}}
\end{array}\right]} \\
& =\frac{\left.\begin{array}{lll}
3\left[\begin{array}{ll}
\vec{a} & \vec{b} \\
\vec{c}
\end{array}\right] \\
\vec{a} & \vec{b} & \vec{c}]
\end{array}\right]}{\left[\begin{array}{ll}
\\
& \text { R.H.S }
\end{array}\right]=3}
\end{aligned}
$$

Q\#15: If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}} \& \overrightarrow{\mathbf{a}}^{\prime}, \overrightarrow{\mathbf{b}}^{\prime}, \overrightarrow{\mathbf{c}}^{\prime}$. Such that

$$
\overrightarrow{\mathbf{a}}^{\prime} \cdot \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{c}}^{\prime} \cdot \overrightarrow{\mathbf{c}}=1 \& \quad \overrightarrow{\mathbf{a}}^{\prime} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{a}}^{\prime} \cdot \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{b}}^{\prime} \cdot \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{b}}^{\prime} \cdot \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}}^{\prime} \cdot \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{c}}^{\prime} \cdot \overrightarrow{\mathbf{b}}=\mathbf{0}
$$

Then show that

$$
\overrightarrow{\mathbf{a}}^{\prime}=\frac{\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}}{\left.\begin{array}{lll}
\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}
\end{array}\right]} \quad ; \overrightarrow{\mathbf{b}}^{\prime}=\frac{\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}}{\left.\begin{array}{lll}
\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}
\end{array}\right]} \quad ; \overrightarrow{\mathbf{c}}^{\prime}=\frac{\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}}{\left.\begin{array}{lll}
\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}
\end{array}\right]}
$$

Solution: Given $\quad \vec{a}^{\prime} \cdot \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{b}}^{\prime} \cdot \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{c}}^{\prime} \cdot \overrightarrow{\mathrm{c}}=1$

$$
\begin{equation*}
\vec{a}^{\prime} \cdot \vec{b}=\overrightarrow{\mathrm{a}}^{\prime} \cdot \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{b}}^{\prime} \cdot \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{b}}^{\prime} \cdot \overrightarrow{\mathrm{c}}=\vec{c}^{\prime} \cdot \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{c}}^{\prime} \cdot \overrightarrow{\mathrm{b}}=0 \tag{i}
\end{equation*}
$$

Let $\quad \vec{a}^{\prime} \cdot \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{c}}=0$ This shows that $\overrightarrow{\mathrm{a}}^{\prime}$ is \perp to both $\overrightarrow{\mathrm{b}}$ \& $\overrightarrow{\mathrm{c}}$.
Then

$$
\begin{align*}
\vec{a} & =\lambda(\vec{b} \times \vec{c}) \tag{ii}\\
\vec{a} \cdot \vec{a} & =\lambda(\vec{b} \times \vec{c}) \cdot \vec{a} \\
1 & =\lambda[(\vec{a} \times \vec{b}) \cdot \vec{c}] \\
1 & \left.=\lambda\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right] \quad \Rightarrow \quad \lambda i\right)
\end{align*}
$$

Using value of λ in equation (ii)

$$
\vec{a}^{\prime}=\frac{1}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]}(\vec{b} \times \vec{c}) \quad \Rightarrow \quad \vec{a}^{\prime}=\frac{\vec{b} \times \vec{c}}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]}
$$

Similarly,

$$
\overrightarrow{\mathrm{b}}^{\prime}=\frac{\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}}{\left.\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \vec{b} & \vec{c}
\end{array}\right]} \quad \& \quad \Rightarrow \quad \overrightarrow{\mathrm{c}}^{\prime}=\frac{\overrightarrow{\mathrm{a}} \times \vec{b}}{\left.\begin{array}{llll}
\vec{a} & \vec{b} & \vec{c}]
\end{array}\right]}
$$

