UNIT \# 01

VECTOR ALGEBRA

Introduction:

In this chapter, we will discuss about the basic concepts of vectors.

Scalars:

Scalars are physical quantities, which are described completely by its magnitude and units.
Examples: Mass, length, time, density, energy, work, temperature, charge etc.
Scalar can be added, subtracted and multiplied by the ordinary rule of algebra.

Vectors:

Vectors are the physical quantities which are described completely by its magnitude, unit and its direction.
Examples: Force, velocity, acceleration, momentum, torque, electric field, magnetic field etc.
Vectors are added, subtracted, multiplied by using vector algebra.
Representation of vector:
A vector quantity is represented by two ways.

1. Symbolically 2. Graphically

1. Symbolic Representation:

A vector quantity is represented by a bold letter such as F, a, d. or
It is represented by a bar or an arrow over their symbols. Such as $\overline{\mathrm{F}}, \overline{\mathrm{a}}, \overline{\mathrm{d}}$ or $\overrightarrow{\mathrm{F}}, \overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{d}}$.
2. Graphical Representation:

A vector can be represented by a line segment with an arrow head as shown in figure.

Let a line $\overrightarrow{\mathrm{AB}}$ with arrow head at B represent a vector $\overrightarrow{\mathrm{v}}$. The length of line $A B$ gives the magnitude of vector $\overrightarrow{\mathrm{v}}$ on a selected scale. While the direction of the line A to B gives the direction of vector \vec{v}.

Position vector:

A vector, whose initial point is origin O and whose terminal point is P, is called position vector of point P and it is written as $\overrightarrow{\mathrm{OP}}$.

Vector representation in two and three dimensions coordinate system:
Let \boldsymbol{R} be set of real numbers.
The Cartesian plane is define as $\mathrm{R}^{2}=\{(x, y): x, y \in R\}$ and it is written as $\quad \overrightarrow{\mathrm{OP}}=x \boldsymbol{i}+\boldsymbol{y}$ Similarly, in three dimension coordinate system. It is define as $\mathrm{R}^{3}=\{(x, y, z): x, y, z \in R\}$

And it is written as $\overrightarrow{\mathrm{OP}}=x i+y j+z k$

Magnitude (length or norm):

Magnitude (length or norm) of a vector $\overrightarrow{\mathrm{OP}}$ is its absolute value and it is written as $|\overrightarrow{\mathrm{OP}}|$.
As $\quad|\overrightarrow{\mathrm{OP}}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{Z}^{2}}$
Null or zero vector:
A vector having zero magnitude is called Null or zero vectors.

Unit vector:

A vector having unit magnitude and having direction along the given vector is called unit vector. These are usually represented by $\hat{a}, \hat{b}, \hat{c}$ or $\hat{\mathrm{c}}, \hat{\mathrm{j}}, \hat{\mathrm{k}}$.

If we consider a vector \vec{A}, then its unit vector can be written as $\hat{A}=\frac{\vec{A}}{|\vec{A}|}$

Direction cosines:

Let $\overrightarrow{\mathrm{A}}=\boldsymbol{A x} \hat{\mathrm{A}}+\boldsymbol{A y} \hat{\jmath}+A_{z}^{\prime} \hat{\mathrm{k}} \quad \&$
If a vector \vec{A} makes angles α, β and γ with x, y and z-axis. Then Direction cosines are define as
$\boldsymbol{C o s} \alpha=\frac{A_{X}}{|\vec{A}|} \quad ;$
$\operatorname{Cos} \beta=\frac{\mathrm{A}_{\mathrm{y}}}{|\overrightarrow{\mathrm{A}}|} \quad ;$
$\boldsymbol{C o s} \gamma=\frac{\mathrm{A}_{\mathrm{z}}}{|\overrightarrow{\mathrm{A}}|}$

Vector addition:

A process in which two or more vectors can be added in the form of single vector is called vectors addition.
For vector addition, we use a graphical method called Head To Tail Rule.

Resultant vector:

It is the sum of two or more than two vectors called resultant vector.

Rectangular components:

The components of a vector perpendicular to each other are called rectangular components.

Collinear vectors:

Let $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ be the two vectors. They are said to be collinear if $\overrightarrow{\mathrm{a}}=\lambda \overrightarrow{\mathrm{b}}$. where λ is \boldsymbol{a} scalar number.
(a) If $\lambda>0$ then $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ are said to be parallel vectors.
(b) If <0 then $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ are said to be anti-parallel vectors.
(c) If $\lambda=0$ then $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ are said to be equal vectors. In this case $\overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{b}}$.

Free vectors:
A vector whose position is not fixed in the space is called free vector.
Example: displacement
Localized vector:
A vector which can't be shifted to parallel to itself and whose line of action is fixed is called localized vector (bounded vector).

Examples: Force and Momentum.

Parallel vectors:

If two or more than two vectors having same direction are called parallel vectors.
Let

$$
\overrightarrow{\mathrm{a}}=\mathrm{a}_{1} i+\mathrm{a}_{2} j+\mathrm{a}_{3} k
$$

$$
\&
$$

$$
\overrightarrow{\mathrm{b}}=\mathrm{b}_{1} i+\mathrm{b}_{2} j+\mathrm{b}_{3} k
$$

They are said to be parallel if their directional component are proportional to each other as

$$
\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{3}}{b_{3}}
$$

Perpendicular vector:

If two or more than two vectors making an angle of 90° with each other are called perpendicular vectors.
Let $\quad \overrightarrow{\mathrm{a}}=\mathrm{a}_{1} i+\mathrm{a}_{2} j+\mathrm{a}_{3} k \quad \boldsymbol{\&} \quad \overrightarrow{\mathrm{~b}}=\mathrm{b}_{1} i+\mathrm{b}_{2} j+\mathrm{b}_{3} k$
They are said to be perpendicular if the sum of product of their directional component is equal to zero.

$$
a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=0
$$

If \vec{a}, \vec{b} be the two vectors. Then $\vec{a}+\vec{b}=\vec{b}+\vec{a}$ is called commutative property.
(ii) Associative property:

If \vec{a}, \vec{b} and \vec{c} be the three vectors. Then $(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$ is called associative property.
(iii) Scalar multiplication with vectors:

Let \vec{a} be a vector and be a scalar number then $\lambda \vec{a}$ is called Scalar multiplication with vector. If $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ be the vectors and λ and μ be the two scalar numbers then
(a) $(\boldsymbol{\lambda}+\boldsymbol{\mu}) \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{a}}+\boldsymbol{\mu} \overrightarrow{\mathrm{a}}$
(b) $\lambda(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}})=\lambda \overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$

Theorem\#01: If $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{c}}$ are three given non coplanar vectors, then any vector $\overrightarrow{\mathrm{r}}$ can be expressed uniquely as linear combination of $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}$ and \vec{c} i.e. $\quad \overrightarrow{\mathrm{r}}=x \overrightarrow{\mathrm{a}}+y \overrightarrow{\mathrm{~b}}+z \overrightarrow{\mathrm{c}} \quad$ where x, y and z are scalars.

Proof: Let $\overrightarrow{\mathrm{OA}}=\vec{a}, \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{OC}}=\vec{c}$ and $\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{r}}$ as shown in the figure.
Let us complete the parallelepiped with $\overrightarrow{\mathrm{OP}}$ as its diagonal whose edges $\overrightarrow{\mathrm{OL}}, \overrightarrow{\mathrm{OM}}$ and $\overrightarrow{\mathrm{ON}}$ are along the vectors $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$.
$\overrightarrow{\mathrm{OL}}$ and $\overrightarrow{\mathrm{OA}}, \overrightarrow{\mathrm{OM}}$ and $\overrightarrow{\mathrm{OB}}, \overrightarrow{\mathrm{ON}}$ and $\overrightarrow{\mathrm{OG}}$
are coplanar and parallel. Then there exist
Three scalars x, y and z respectively.
$\overrightarrow{\mathrm{OL}}=x \overrightarrow{\mathrm{OA}} ; \overrightarrow{\mathrm{OM}}=y \overrightarrow{\mathrm{OB}} \& \overrightarrow{\mathrm{ON}}=\mathrm{z} \overrightarrow{\mathrm{OC}}$
By using head to tail rule
In $\triangle \mathrm{ABC}$

$$
\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OQ}}+\overrightarrow{\mathrm{QP}}=(\overrightarrow{\mathrm{OL}}+\overrightarrow{\mathrm{LQ}})+\overrightarrow{\mathrm{QP}}
$$

$$
\therefore \overrightarrow{O Q}=
$$

$\overrightarrow{\mathrm{OL}}+\stackrel{\rightharpoonup \mathrm{LQ}}{ }$
$\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OL}}+\overrightarrow{\mathrm{OM}}+\overrightarrow{\mathrm{ON}}$
but $\overrightarrow{\mathrm{LQ}}=\overrightarrow{\mathrm{OM}}$ and $\overrightarrow{\mathrm{QP}}=\overrightarrow{\mathrm{ON}}$
$\overrightarrow{\mathrm{OP}}=x \overrightarrow{\mathrm{OA}}+y \overrightarrow{\mathrm{OB}}+z \overrightarrow{\mathrm{OC}}$
$\vec{r}=x \vec{a}+y \vec{b}+z \vec{c}$

Uniqueness

Let $\quad \vec{r}=x^{\prime} \vec{a}+y^{\prime} \vec{b}+z^{\prime} \vec{c}$ \qquad
Comparing (i) and (ii)

$$
\begin{aligned}
& x \vec{a}+y \vec{b}+z \vec{c}=x^{\prime} \vec{a}+y^{\prime} \vec{b}+z^{\prime} \vec{c} \\
& x \vec{a}+y \vec{b}+z \vec{c}-x^{\prime} \vec{a}-y^{\prime} \vec{b}-z^{\prime} \vec{c}=0 \\
& \quad\left(x-x^{\prime}\right) \vec{a}+\left(y-y^{\prime}\right) \vec{b}+\left(z-z^{\prime}\right) \vec{c}=0
\end{aligned}
$$

Since, \vec{a}, \vec{b} and \vec{c} are non coplanar Therefore

$$
\begin{aligned}
\mathrm{x}-\mathrm{x}^{\prime}=0 & ; & \mathrm{y}-\mathrm{y}^{\prime}=0 & ; \mathrm{z}-\mathrm{z}^{\prime}=0 \\
\mathrm{x}=\mathrm{x}^{\prime} & ; & \mathrm{y}=\mathrm{y}^{\prime} ; & ;
\end{aligned}
$$

Hence, uniqueness proved.
Theorem\#02: Find the position vector of a point which divides the join of two given points whose position vectors are $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ in the given ratio : μ.

Proof: Let $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ be the position vector of point A and B referred to point O and let $\overrightarrow{\mathrm{r}}$ be the position vector of point P which divide $A B$ internally in ratio $\lambda: \mu$.

$$
\begin{equation*}
\text { As } \quad \overrightarrow{\mathrm{AP}}: \overrightarrow{\mathrm{PB}}=: \boldsymbol{\mu} \quad \text { or } \quad \frac{\overrightarrow{\mathrm{AP}}}{\overrightarrow{\mathrm{~PB}}}=\frac{\lambda}{\mu} \Rightarrow \boldsymbol{\mu} \overrightarrow{\mathrm{AP}}=\lambda \overrightarrow{\mathrm{PB}} \tag{i}
\end{equation*}
$$

Now $\quad \overrightarrow{\mathrm{AP}}=$ p. v's of $P-\boldsymbol{p}$. v's of $\boldsymbol{A}=\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{a}}$

$$
\overrightarrow{\mathrm{PB}}=\boldsymbol{p} \cdot \boldsymbol{v} \text { 's of } B-p . v \text {, of } P=\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{r}}
$$

Using values in equation (i)

$$
\begin{array}{r}
\boldsymbol{\mu}(\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{a}})=\lambda(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{r}}) \\
\boldsymbol{\mu} \overrightarrow{\mathrm{r}}-\boldsymbol{\mu} \overrightarrow{\mathrm{a}}=\lambda \overrightarrow{\mathrm{b}}-\lambda \overrightarrow{\mathrm{r}} \\
\boldsymbol{\mu} \overrightarrow{\mathrm{r}}+\lambda \overrightarrow{\mathrm{r}}=\boldsymbol{\mu} \overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}} \\
(\boldsymbol{\mu}+\lambda) \overrightarrow{\mathrm{r}}=\boldsymbol{\mu} \overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}} \\
\vec{r}=\frac{\mu \vec{a}+\lambda \vec{b}}{\mu+\lambda}
\end{array}
$$

Special Case:
If $\lambda=\mu \quad$ Then P is the mid-point of $A B$ and its position vector $\overrightarrow{\mathrm{r}}=\frac{\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}}{2}$.

Example \# 01- Find the sum of vectors $3 \widehat{\imath}+7 \hat{\jmath}-4 \hat{k}$; $\widehat{\imath}-5 \widehat{\jmath}-8 \widehat{k}$ and $6 \hat{\imath}-2 \hat{\jmath}+12 \hat{k}$
Also calculate the magnitude and direction cosines of each.
Solution: Let $\vec{a}=3 \hat{i}+7 \hat{j}-4 \hat{k} ; \vec{b}=\hat{\imath}-5 \hat{\jmath}-8 \hat{k}$ and $\vec{c}=6 \hat{\imath}-2 \hat{\jmath}+12 \hat{k}$
Let $\overrightarrow{\mathrm{r}}$ be the sum of given vectors.
$\vec{r}=\vec{a}+\vec{b}+\vec{c}=3 \hat{i}+7 \hat{j}-4 \hat{k}+\hat{\imath}-5 \hat{j}-8 \hat{k}+6 \hat{i}-2 \hat{j}+12 \hat{k}=10 \hat{\imath}+0 \hat{j}+0 \hat{k}=10 \hat{i}$
Magnitude of vector \vec{a}, \vec{b} and \vec{c} are

$$
\begin{aligned}
& |\overrightarrow{\mathrm{A}}|=\sqrt{(3)^{2}+(7)^{2}+(-4)^{2}}=\sqrt{9+49+16}=\sqrt{74} \\
& |\overrightarrow{\mathrm{~B}}|=\sqrt{(1)^{2}+(-5)^{2}+(-8)^{2}}=\sqrt{1+25+64}=\sqrt{90} \\
& |\overrightarrow{\mathrm{C}}|=\sqrt{(6)^{2}+(-2)^{2}+(12)^{2}}=\sqrt{36+4+144}=\sqrt{184}
\end{aligned}
$$

Direction cosines of vector $\vec{a} \quad$ are $\left.\quad \frac{3}{\sqrt{74}} \quad, \quad \frac{7}{\sqrt{74}} \quad, \quad \frac{-4}{\sqrt{74}}\right)$
Direction cosines of vector $\overrightarrow{\mathrm{b}} \quad$ are $\quad \frac{1}{\sqrt{90}} \quad, \frac{-5}{\sqrt{90}}, \frac{-8}{\sqrt{90}}$
Direction cosines of vector $\overrightarrow{\mathrm{c}} \quad$ are $\frac{6}{\sqrt{184}} \quad, \frac{\boldsymbol{-}^{-2}}{\sqrt{184}}, \frac{12}{\sqrt{184}}$
Example \#02: Find the value of m.if the vector $5 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$ and $2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\mathrm{m} \hat{\mathrm{k}}$ have the same direction.
Solution: Let $\quad \vec{a}=5 \hat{i}+4 \hat{j}-3 \hat{k} \& \quad \vec{b}=2 \hat{i}+2 \hat{j}-m \hat{k}$
According to given condition $\quad \hat{a}=\hat{b}$

$$
\frac{\vec{a}}{a}=\frac{\vec{b}}{b}
$$

$$
\frac{5 \hat{\mathrm{\imath}}+4 \hat{\jmath}-3 \widehat{\mathrm{k}}}{\sqrt{(5)^{2}+(4)^{2}+(-3)^{2}}}=\frac{2 \hat{\mathrm{\imath}}+2 \hat{\mathrm{\jmath}}-\mathrm{m} \widehat{\mathrm{k}}}{\sqrt{(2)^{2}+(2)^{2}+(-\mathrm{m})^{2}}} \Rightarrow \frac{5 \hat{1}+4 \hat{\jmath}-3 \hat{\mathrm{k}}}{\sqrt{25+16+9}}=\frac{2 \hat{\mathrm{\imath}}+2 \hat{\mathrm{\jmath}}-\mathrm{m} \widehat{\mathrm{k}}}{\sqrt{4+4+\mathrm{m}^{2}}}
$$

$$
\frac{5 \hat{1}+4 \hat{\jmath}-3 \widehat{k}}{\sqrt{50}}=\frac{2 \hat{\imath}+2 \hat{\jmath}-m \widehat{k}}{\sqrt{8+\mathrm{m}^{2}}}
$$

$$
\frac{5}{\sqrt{50}} \hat{\imath}+\frac{4}{\sqrt{50}} \hat{j}-\frac{3}{\sqrt{50}} \hat{\mathrm{k}}=\frac{2}{\sqrt{8+\mathrm{m}^{2}}} \hat{\imath}+\frac{2}{\sqrt{8+\mathrm{m}^{2}}} \hat{\mathrm{j}}-\frac{\mathrm{m}}{\sqrt{8+\mathrm{m}^{2}}} \hat{\mathrm{k}}
$$

Comparing coefficients of $\widehat{\mathrm{k}}$ unit vector

$$
\begin{aligned}
&-\frac{3}{\sqrt{50}}=-\frac{\mathrm{m}}{\sqrt{8+\mathrm{m}^{2}}} \\
& \Rightarrow \quad \frac{3}{\sqrt{50}}=\frac{\mathrm{m}}{\sqrt{8+\mathrm{m}^{2}}}
\end{aligned}
$$

Taking square on both sides

$$
\frac{9}{50}=\frac{\mathrm{m}^{2}}{8+\mathrm{m}^{2}}
$$

$$
\begin{aligned}
9\left(+\mathrm{m}^{2}\right) & =50 \mathrm{~m}^{2} \\
72+9 \mathrm{~m}^{2} & =50 \mathrm{~m}^{2} \\
72 & =50 \mathrm{~m}^{2}-9 \mathrm{~m}^{2} \\
72 & =41 \mathrm{~m}^{2} \\
\frac{72}{41} & =\mathrm{m}^{2}
\end{aligned}
$$

Taking square root on both sides

$$
\boldsymbol{m}= \pm \sqrt{\frac{72}{41}} \quad \text { or } \quad \boldsymbol{m}= \pm \frac{6 \sqrt{2}}{\sqrt{41}}
$$

Example\# 03:The unit vector i, j, k are represented respectively by the three edges $\overrightarrow{\mathrm{OA}}, \overrightarrow{\mathrm{OB}}$ and $\overrightarrow{\mathrm{OC}}$ of a unit cube, write down the expression for the vector represented by the diagonals $\overrightarrow{\mathrm{AA}^{\prime}}, \overrightarrow{\mathrm{BB}^{\prime}}$ and $\overrightarrow{\mathrm{CC}^{\prime}}$ of the cube, find the length of and direction cosines of these diagonals also.

Solution: Let a unit cube whose origin is at point O as shown in figure. Point of each corner of a cube are represented in the figure as $O(0,0,0), P(1,1,1), A(1,0,0), B(0,1,0), C(0,0,1), \mathrm{A}^{\prime}(0,1,1), \mathrm{B}^{\prime}(1,0,1)$ and C^{\prime} (1,1,0). Required diagonals of a unit cube are $\overrightarrow{\mathrm{AA}^{\prime}}, \overrightarrow{\mathrm{BB}^{\prime}}$ and $\overrightarrow{\mathrm{CC}^{\prime}}$. Then

$$
\begin{aligned}
& \overrightarrow{\mathrm{AA}^{\prime}}=P \text {.v's of } \mathrm{A}^{\prime}-\boldsymbol{P} . \boldsymbol{v} \text { 's of } \boldsymbol{A}=\mathrm{A}^{\prime}(\mathbf{0}, 1,1)-\boldsymbol{A}(\mathbf{1}, \mathbf{0}, \mathbf{0})=-\hat{\imath}+\hat{\jmath}+\hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{BB}^{\prime}}=P . \boldsymbol{v}^{\prime} \text { s of } \mathrm{B}^{\prime}-\boldsymbol{P} \text {.v's of } \boldsymbol{B}=\mathrm{B}^{\prime}(\mathbf{1}, \boldsymbol{0}, 1)-\boldsymbol{B}(0,1,0)=\hat{\imath}-\hat{\jmath}+\hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{CC}^{\prime}}=P . v \text { 's of } \mathrm{C}^{\prime}-P . v \text { 's of } \boldsymbol{C}=\mathrm{C}^{\prime}(1,1,0)-\boldsymbol{C}(0,0,1)=\hat{\imath}+\hat{\jmath}-\hat{\mathrm{k}}
\end{aligned}
$$

Lengths of above diagonals are $\left|\overrightarrow{\mathrm{AA}^{\prime}}\right|=\left|\overrightarrow{\mathrm{BB}^{\prime}}\right|=\left|\overrightarrow{\mathrm{CC}^{\prime}}\right|=\sqrt{1+1+1}=\sqrt{3}$
Now
Direction cosines of vector $\overrightarrow{\mathrm{AA}^{\prime}} \quad$ are $\quad \frac{-1}{\sqrt{3}}, \quad \frac{1}{\sqrt{3}}, \quad \frac{1}{\sqrt{3}}$
Direction cosines of vector $\overrightarrow{\mathrm{BB}^{\prime}}$
are $\quad \frac{1}{\sqrt{3}}, \quad \frac{-1}{\sqrt{3}}, \quad \frac{1}{\sqrt{3}}$
Direction cosines of vector $\overrightarrow{\mathrm{CC}^{\prime}} \quad$ are $\quad \frac{1}{\sqrt{3}}, \quad \frac{1}{\sqrt{3}}, \quad \frac{-1}{\sqrt{3}}$

Example\#04: Given the vectors $\overrightarrow{\mathrm{a}}=3 \hat{1}-2 \hat{\jmath}+4 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=2 \hat{1}+\hat{\jmath}+3 \hat{\mathrm{k}}$ find the magnitude and direction cosines
of
(i) $\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}} \quad$ and
(ii) $3 \overrightarrow{\mathrm{a}}-2 \overrightarrow{\mathrm{~b}}$.

Solution: Given $\overrightarrow{\mathrm{a}}=3 \hat{1}-2 \hat{\jmath}+4 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=2 \hat{\imath}+\hat{\jmath}+3 \hat{\mathrm{k}}$

$$
\begin{aligned}
\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}} & =(3 \hat{\imath}-2 \hat{\jmath}+4 \hat{\mathrm{k}})-(2 \hat{\imath}+\hat{\jmath}+3 \hat{\mathrm{k}})=3 \hat{\imath}-2 \hat{\jmath}+4 \hat{\mathrm{k}}-2 \hat{\imath}-\hat{\jmath}-3 \hat{\mathrm{k}} \\
& =\hat{\imath}-3 \hat{\jmath}+\hat{k}
\end{aligned}
$$

Magnitude: $|\vec{a}-\vec{b}|=\sqrt{(1)^{2}+(-3)^{2}+(1)^{2}}=\sqrt{1+9+1}=\sqrt{11}$
Direction Cosines: $\quad \frac{1}{\sqrt{11}} \quad \begin{aligned} & \frac{-3}{\sqrt{11}}\end{aligned}, \quad \frac{1}{\sqrt{11}}$
(ii) $3 \overrightarrow{\mathrm{a}}-2 \overrightarrow{\mathrm{~b}}=3(3 \hat{\imath}-2 \hat{\jmath}+4 \hat{\mathrm{k}})-2(2 \mathrm{i}+\mathrm{j}+3 \mathrm{k})=9 \hat{\mathrm{i}}-6 \hat{\jmath}+12 \hat{\mathrm{k}}-4 \hat{\imath}-2 \hat{\jmath}-6 \hat{\mathrm{k}}$

$$
=5 \hat{\imath}-8 \hat{\jmath}+6 \hat{k}
$$

Magnitude: $|3 \overrightarrow{\mathrm{a}}-2 \overrightarrow{\mathrm{~b}}|=\sqrt{(5)^{2}+(-8)^{2}+(6)^{2}}=\sqrt{25+64+36}=\sqrt{125}=5 \sqrt{5}$
Direction Cosines: $\quad \frac{5}{5 \sqrt{5}}, \frac{-8}{5 \sqrt{5}}, \frac{6}{5 \sqrt{5}} \quad$ Or $\frac{1}{\sqrt{5}}, \frac{-8}{5 \sqrt{5}}, \frac{6}{5 \sqrt{5}}$
Example\#05: Prove that the points $-2 \mathrm{a}+3 \mathrm{~b}+5 \mathrm{c}, \mathrm{a}+2 \mathrm{~b}+3 \mathrm{c}$ and $7 \mathrm{a}-\mathrm{c}$ are collinear.
Solution: Let A $(-4 \mathrm{a}+6 \mathrm{~b}+10 \mathrm{c}), \mathrm{B}(2 \mathrm{a}+4 \mathrm{~b}+6 \mathrm{c})$ and $\mathrm{C}(14 \mathrm{a}-2 \mathrm{c})$
be three points. Take A be the initial point of B and C
Now

$$
\begin{aligned}
\overrightarrow{\mathrm{AB}} & =\text { P.v's of } B-P . v^{\prime} \text { of } A=(2 a+4 b+6 c)-(-4 a+6 b+10 c) \\
& =2 a+4 b+6 c+4 a-6 b-10 c \\
& =6 a-2 b-4 c \\
\overrightarrow{\mathrm{AC}} & =P \cdot v^{\prime} s o f C-P . v^{\prime} \text { of } A=(14 a-2 c)-(-4 a+6 b+10 c)
\end{aligned}
$$

$$
\begin{aligned}
& =14 a-2 c+4 a-6 b-10 c \\
& =18 a-6 b-12 c \\
\overrightarrow{\mathrm{AC}} & =3(6 a-2 b-4 c) \\
\overrightarrow{\mathrm{AC}} & =3 \overrightarrow{\mathrm{AB}}
\end{aligned}
$$

According to above condition, this shows that the given points are collinear .

EXERCISE: 1.1

Q\#01: Find magnitude (length or norm) of vectors (i) $2 \hat{\imath}+\hat{\jmath}-2 \hat{\mathrm{k}}$ (ii) $\left(\frac{-3}{5}\right) \hat{\imath}-\left(\frac{-4}{5}\right) \hat{\jmath}+\sigma \hat{\mathrm{k}}$
(i) $2 \hat{\imath}+\hat{\jmath}-2 \hat{k}$

Solution: Let $\quad \overrightarrow{\mathrm{r}}=2 \hat{\imath}+\hat{\jmath}-2 \hat{\mathrm{k}}$
Magnitude of $\overrightarrow{\mathrm{r}}=|\overrightarrow{\mathrm{r}}|=\sqrt{(2)^{2}+(1)^{2}+(-2)^{2}}=\sqrt{4+1+4}=\sqrt{9} \quad \Rightarrow|\overrightarrow{\mathrm{r}}|=\mathbf{3}$
(ii) $\left(\frac{-3}{5}\right) \hat{\imath}-\left(\frac{-4}{5}\right) \hat{\jmath}+6 \hat{\mathrm{k}}$

Solution: Let

$$
\overrightarrow{\mathrm{r}}=\left(\frac{-3}{5}\right) \hat{\mathrm{\imath}}-\left(\frac{-4}{5}\right) \hat{\mathrm{\jmath}}+\boldsymbol{\theta} \hat{\mathrm{k}}=\left(\frac{-3}{5}\right) \hat{\mathrm{\imath}}+\left(\frac{4}{5}\right) \hat{\jmath}+\boldsymbol{\theta} \hat{\mathrm{k}}
$$

Magnitude of $\overrightarrow{\mathrm{r}}=|\overrightarrow{\mathrm{r}}|=\sqrt{\left(\frac{-3}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}+(6)^{2}}=\sqrt{\left(\frac{9}{25}\right)+\left(\frac{16}{25}\right)+4}=\sqrt{\frac{9+16+100}{25}}=\sqrt{\frac{125}{25}} \Rightarrow|\overrightarrow{\mathrm{r}}|=\sqrt{5}$
Q\#02: Given the points $A(1,2,-1): B(-3,1,2)$ and $C(0,-4,3)$
(i)Find $\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{BC}}, \overrightarrow{\mathrm{AC}}, \overrightarrow{\mathrm{BA}}, \overrightarrow{\mathrm{CB}}, \overrightarrow{\mathrm{BA}}$
(ii) Prove that $\quad \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}}$
(i)Find $\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{BC}}, \overrightarrow{\mathrm{AC}}, \overrightarrow{\mathrm{BA}}, \overrightarrow{\mathrm{CB}}, \overrightarrow{\mathrm{BA}}$

Solution: $\therefore \overrightarrow{\mathrm{AB}}=\boldsymbol{P}$.v's of $\boldsymbol{B}-\boldsymbol{P}$.v's of \boldsymbol{A}

$$
\begin{aligned}
& =B(-3,1,2)-A(1,2,-1) \\
& =(-3-1) i+(1-2) j+(2+1) k \\
& =-4 \hat{\imath}-\hat{\jmath}+3 \hat{k}
\end{aligned}
$$

$\therefore \overrightarrow{\mathrm{BC}}=\boldsymbol{P} . \boldsymbol{v}$'s of $C_{\sigma} \boldsymbol{P}$ (v's of B

$$
=C(0,-4,3)-B(-3,1,2)
$$

$$
=(0+3) \hat{1}+(-4-1) j+(3-2) k
$$

$$
=3 \hat{\imath}-5 \hat{\jmath}+\hat{k}
$$

$$
\therefore \overrightarrow{\mathrm{AC}}=\boldsymbol{P} . \boldsymbol{v} \text { 's of } C-\boldsymbol{P} . \boldsymbol{v} \text { 's of } A
$$

$$
=\mathrm{C}(0,-4,3)-\mathrm{A}(1,2,-1)
$$

$$
=(0-1) i+(-4-2) j+(3+1) k
$$

$$
=-\hat{\imath}-6 \hat{\jmath}+4 \hat{k}
$$

$\overrightarrow{\mathrm{BA}}=$ P. v's of $A-P . v$'s of B

$$
\begin{aligned}
& =A(1,2,-1)-B(-3,1,2) \\
& =(1+3) i+(2-1) j+(-1-2) \\
& =4 \hat{\imath}+\hat{\jmath}-3 \hat{k}
\end{aligned}
$$

$$
\therefore \overrightarrow{\mathrm{CB}}=\boldsymbol{P} . \boldsymbol{v} \text { 's of } \boldsymbol{B}-\boldsymbol{P} . \boldsymbol{v} \text { 's of }
$$

$$
=\mathrm{B}(-3,1,2)-\mathrm{C}(0,-4,3)
$$

$$
=(-3-0) i+(1+4) j+(2-3) k
$$

$$
=-3 \hat{\imath}+5 \hat{\jmath}-\hat{k}
$$

$$
\therefore \overrightarrow{\mathrm{CA}}=\boldsymbol{P} . \boldsymbol{v} \text { 's of } A-\boldsymbol{P} . v \text { 's of } C
$$

$$
=\mathrm{A}(1,2,-1)-\mathrm{C}(0,-4,3)
$$

$$
=(1-0) \mathrm{i}+(2+4) \mathrm{j}+(-1-3) \mathrm{k}
$$

$$
=\hat{\imath}+6 \hat{\jmath}-4 \hat{k}
$$

(ii)Prove that $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}}$

Solution: $\therefore \overrightarrow{\mathrm{AB}}=\boldsymbol{P}$.v's of $\boldsymbol{B}-\boldsymbol{P} . \boldsymbol{v}$'s of $\boldsymbol{A}=\mathrm{B}(-3,1,2)-\mathrm{A}(1,2,-1)$

$$
\begin{aligned}
& =(1+3) \hat{i}+(2+1) j+(-1-2) k \\
& =-4 \hat{\imath}-\hat{\jmath}+3 \hat{k}
\end{aligned}
$$

$$
\therefore \quad \overrightarrow{\mathrm{BC}}=\boldsymbol{P} . \boldsymbol{v} \text { 's of } \boldsymbol{C}-\boldsymbol{P} . \boldsymbol{v} \text { 's of } \boldsymbol{B}=\mathrm{C}(0,-4,3)-\mathrm{B}(-3,1,2)
$$

$$
=(-3-0) i+(1+4) j+(2-3) k
$$

$$
=3 \hat{\imath}-5 \hat{\jmath}+\hat{k}
$$

$$
\therefore \quad \overrightarrow{\mathrm{AC}}=\boldsymbol{P} . \boldsymbol{v} \text { 's of } \boldsymbol{C}-\boldsymbol{P} . \boldsymbol{v} \text { 's of } \boldsymbol{A}=\mathrm{C}(0,-4,3)-\mathrm{A}(1,2,-1)
$$

$$
\begin{aligned}
& =(0-1) \hat{i}+(2+4) j+(-1-3) k \\
& =-\hat{\imath}-6 \hat{\jmath}+4 \hat{k}
\end{aligned}
$$

Now

$$
\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=-4 \hat{\imath}-\hat{\jmath}+3 \hat{k}+3 \hat{\imath}-5 \hat{\jmath}+\hat{k}=-\hat{\imath}-6 \hat{\jmath}+4 \hat{\mathrm{k}}
$$

$$
\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}}
$$

Hence proved

Q\#03: Given $\overrightarrow{r_{1}}=3 \hat{\imath}-2 \hat{\jmath}+\hat{k} ; \overrightarrow{r_{2}}=2 \hat{\imath}-4 \hat{\jmath}-3 \hat{k}$ and $\overrightarrow{r_{3}}=-\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$ then find the magnitude of
(a) $\overrightarrow{\mathrm{r}_{3}}($ b $) \overrightarrow{\mathrm{r}_{1}}+\overrightarrow{\mathrm{r}_{2}}+\overrightarrow{\mathrm{r}_{3}}$ (c) $2 \overrightarrow{\mathrm{r}_{1}}-3 \overrightarrow{\mathrm{r}_{2}}-5 \overrightarrow{\mathrm{r}_{3}}$
(a) $\overrightarrow{r_{3}}$

Solution: \quad Let $\quad \overrightarrow{r_{3}}=-\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$
Magnitude of $\quad \overrightarrow{r_{3}}=\left|\overrightarrow{r_{3}}\right|=\sqrt{(-1)^{2}+(2)^{2}+(2)^{2}}=\sqrt{1+4+4}=\sqrt{9} \quad \Rightarrow\left|\overrightarrow{r_{3}}\right|=3$
(b) $\overrightarrow{r_{1}}+\overrightarrow{r_{2}}+\overrightarrow{r_{3}}$

Solution: Let $\overrightarrow{\mathrm{r}}=\widehat{\mathrm{r}_{1}}+\overrightarrow{\mathrm{r}_{2}}+\overrightarrow{\mathrm{r}_{3}}=3 \hat{\imath}-2 \hat{\jmath}+\hat{\mathrm{k}}+2 \hat{\imath}-4 \hat{\jmath}-3 \hat{\mathrm{k}}-\hat{\imath}+2 \hat{\jmath}+2 \hat{\mathrm{k}}=4 \hat{\imath}-4 \hat{\jmath}+0 \hat{\mathrm{k}}$
Magnitude of $\vec{r}=|\vec{r}|=\sqrt{(4)^{2}+(4)^{2}+(0)^{2}}=\sqrt{16+16+0}=\sqrt{32} \quad \Rightarrow|\vec{r}|=4 \sqrt{2}$
(c) $2 \overrightarrow{r_{1}}-3 \overrightarrow{r_{2}}-5 \overrightarrow{r_{3}}$

Solution: Let $\quad \vec{r}=2 \overrightarrow{r_{1}}-3 \overrightarrow{r_{2}}-5 \overrightarrow{r_{3}}=2(3 \hat{\imath}-2 \hat{\jmath}+\hat{k})-3(2 \hat{\imath}-4 \hat{\jmath}-3 \hat{k})-5(-\hat{\imath}+2 \hat{\jmath}+2 \hat{k})$

$$
=6 \hat{\imath}-4 \hat{\jmath}+2 \hat{k}-6 \hat{\imath}+12 \hat{\jmath}+9 \hat{k}+5 \hat{\imath}-10 \hat{\jmath}-10 \hat{k}
$$

$$
\vec{r}=5 \hat{\imath}-2 \hat{\jmath}+\hat{k}
$$

Magnitude of $\overrightarrow{\mathrm{r}}=|\overrightarrow{\mathrm{r}}|=\sqrt{(5)^{2}+(-2)^{2}+(1)^{2}}=\sqrt{25+4+1} \quad \Rightarrow|\overrightarrow{\mathrm{r}}|=\sqrt{30}$

Q\#04: if Given $\overrightarrow{\mathrm{r}_{1}}=2 \hat{\imath}-\hat{\jmath}+\hat{\mathrm{k}} ; \overrightarrow{\mathrm{r}_{2}}=\hat{\imath}+3 \hat{\jmath}-2 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{r}_{3}}=-2 \hat{\imath}+\hat{\jmath}-3 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{r}_{4}}=3 \hat{\imath}+2 \hat{\jmath}+5 \hat{\mathrm{k}}$
Find scalar $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ such that $\overrightarrow{\mathrm{r}_{4}}=a \overrightarrow{\mathrm{r}_{1}}+\mathrm{b} \overrightarrow{\mathrm{r}_{2}}+\mathrm{c} \overrightarrow{\mathrm{r}_{3}}$

S0lution: Since given condition $\quad \overrightarrow{r_{4}}=a \overrightarrow{r_{1}}+b \overrightarrow{r_{2}}+c \overrightarrow{r_{3}}$
Putting values $3 \mathrm{i}+2 \mathrm{j}+5 \mathrm{k}=\mathrm{a}(2 \mathrm{i}-\mathrm{j}+\mathrm{k})+\mathrm{b}(\mathrm{i}+3 \mathrm{j}-2 \mathrm{k})+\mathrm{c}(-2 \mathrm{i}+\mathrm{j}-3 \mathrm{k})$

$$
\begin{aligned}
& 3 i+2 j+5 k=2 a i-a j+a k+b i+3 b j-2 b k-2 c i+c j-3 c k \\
& \quad 3 i+2 j+5 k=(2 a+b-2 c) i+(-a+3 b+c) j+(a-2 b-3 c) k
\end{aligned}
$$

Comparing coefficients of $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ from both sides

$$
\begin{align*}
& 2 a+b-2 c=3------(i) \\
& -a+3 b+c=2------(i i) \\
& a-2 b-3 c=5-----(i i i) \tag{iii}
\end{align*}
$$

Adding equation (ii) and (iii)

$$
-a+3 b+c=2
$$

$$
\frac{a-2 b-3 c=5}{b-2 c=7--- \text { (iv) }}
$$

Multiplying equation (ii) by 2 and adding in equation(i)

$$
\begin{aligned}
-2 a+6 b+2 c & =4 \\
2 a+b-2 c & =3
\end{aligned}
$$

$7 \mathrm{~b} \quad=7$

$$
\Rightarrow b=1
$$

Putting $\boldsymbol{b}=\mathbf{1}$ in equation (iv) $\quad 1-2 c=7$

$$
\begin{aligned}
1-7 & =2 c \\
-6 & =2 c \quad \Rightarrow-\frac{6}{2}=c \quad \Rightarrow c=-3
\end{aligned}
$$

Putting $\mathrm{b}=1$ and $c=-3$ in equation (i)

$$
\begin{aligned}
2 \mathrm{a}+1-2(-3) & =3 \\
2 \mathrm{a}+1+6 & =3 \\
2 \mathrm{a}+7 & =3 \\
2 \mathrm{a} & =3-7 \\
2 \mathrm{a} & =-4 \Rightarrow a=-2
\end{aligned}
$$

Q\#05: Find a unit vector parallel to the resultant of vectors $\overrightarrow{\mathrm{r}_{1}}=2 \mathrm{i}+4 \mathrm{j}-5 \mathrm{k} ; \overrightarrow{\mathrm{r}_{2}}=\mathrm{i}+2 \mathrm{j}+3 \mathrm{k}$
Solution: let $\overrightarrow{\mathrm{r}}$ be resultant of $\overrightarrow{\mathrm{r}_{1}} \& \overrightarrow{\mathrm{r}_{2}}$. Then

$$
\begin{aligned}
\vec{r} & =\overrightarrow{r_{1}}+\overrightarrow{r_{2}}=2 i+4 j-5 k+i+2 j+3 k \\
\vec{r} & =3 i+6 j-2 k
\end{aligned}
$$

Let $\hat{\mathrm{r}}$ be unit vector in the direction of resultant vector $\overrightarrow{\mathrm{r}}$. since

$$
\hat{r}=\frac{\vec{r}}{r}=\frac{3 \mathrm{i}+6 \mathrm{j}-2 \mathrm{k}}{\sqrt{(3)^{2}+(6)^{2}+(-2)^{2}}}=\frac{3 \mathrm{i}+6 \mathrm{j}-2 \mathrm{k}}{\sqrt{9+36+4}}=\frac{3 \mathrm{i}+6 \mathrm{j}-2 \mathrm{k}}{\sqrt{49}}=\frac{3 \mathrm{i}+6 \mathrm{j}-2 \mathrm{k}}{7} \Rightarrow \hat{r}=\frac{3}{7} \mathrm{i}+\frac{6}{7} \mathrm{j}-\frac{2}{7} \mathrm{k}
$$

Q\#O6: If $\mathrm{a}=3 \mathrm{i}-\mathrm{j}-4 \mathrm{k}, \mathrm{b}=2 \mathrm{i}+4 \mathrm{j}-3 \mathrm{k}$ and $\mathrm{c}=\mathrm{i}+2 \mathrm{j}-\mathrm{k}$. Find unit vector parallel to $\mathbf{3 a}-\mathbf{2 b}+\mathbf{c}$.
Solution: Let $\quad \overrightarrow{\mathrm{r}}=3 \mathrm{a}-2 \mathrm{~b}+4 \mathrm{c}$

$$
\begin{aligned}
& =3(3 i-j-4 k)-2(-2 i+4 j-3 k)+4(i+2 j-k) \\
& =9 i-3 j-12 k+4 i-8 j+6 k+4 i+8 j-4 k
\end{aligned}
$$

$$
\vec{r}=17 i-3 j-10 k
$$

Let \hat{r} be unit vector in the direction of vector \vec{r}. Since

$$
\begin{aligned}
& \hat{r}=\frac{\vec{r}}{r}=\frac{17 \mathrm{i}-3 \mathrm{j}-10 \mathrm{k}}{\sqrt{(17)^{2}+(-3)^{2}+(-10)^{2}}}=\frac{17 \mathrm{i}-3 \mathrm{j}-10 \hat{k}}{\sqrt{289+9+100}}=\frac{17 \mathrm{i}-3 \mathrm{j}-10 \mathrm{k}}{\sqrt{398}} \\
& \hat{\mathrm{r}}=\frac{17}{\sqrt{398}} \mathrm{i}-\frac{3}{\sqrt{398}} \mathrm{j}-\frac{10}{\sqrt{398}} \mathrm{k}
\end{aligned}
$$

Q\#07: The position vectors of four points $\boldsymbol{P}, \boldsymbol{Q}, \boldsymbol{R}$ and \boldsymbol{S} are $\mathrm{a}, \mathrm{b}, 2 \mathrm{a}+3 \mathrm{~b}$ and $\mathrm{a}-2 \mathrm{~b}$ respectively. Express $\overrightarrow{\mathrm{PQ}}, \overrightarrow{\mathrm{SQ}}, \overrightarrow{\mathrm{QR}}$ and $\overrightarrow{\mathrm{PR}}$ in terms of \boldsymbol{a} and \boldsymbol{b}.

Solution: Given \quad P.vof $P=a$

$$
\begin{aligned}
& \text { P. of } Q=b \\
& \text { P.v of } R=2 a+3 b
\end{aligned}
$$

$$
\text { P.v of } S=a-2 b
$$

Now

$$
\begin{aligned}
& \overrightarrow{\mathrm{PQ}}=P . v \text { of } Q-P . v \text { of } P \\
& \Rightarrow \overrightarrow{P Q}=b-a \\
& \overrightarrow{S Q}=P . v \text { of } Q-P . v \text { of } S=\boldsymbol{b}-(\boldsymbol{a}-\mathbf{2 b})=\boldsymbol{b}-\boldsymbol{a}+\boldsymbol{2 b} \quad \Rightarrow \quad \overrightarrow{\mathrm{SQ}}=3 \mathrm{~b}-\mathrm{a} \\
& \overrightarrow{Q R}=P . v \text { of } \boldsymbol{R}-\boldsymbol{P} \text {.v of } \boldsymbol{Q}=\mathbf{2 a}+\mathbf{3} \boldsymbol{b}-\boldsymbol{b}=\mathbf{2} \boldsymbol{a}+\mathbf{2} \boldsymbol{b} \quad \Rightarrow \overrightarrow{\mathrm{QR}}=2(\mathrm{a}+\mathrm{b}) \\
& \overrightarrow{\mathrm{PR}}=\boldsymbol{P} \text {.v of } \boldsymbol{R}-\boldsymbol{P} \text {.v of } \boldsymbol{P}=\mathbf{2} \boldsymbol{a}+\mathbf{3} \boldsymbol{b}-\boldsymbol{a}=\boldsymbol{a}+\mathbf{3} \boldsymbol{b} \quad \Rightarrow \overrightarrow{\mathrm{PR}}=\mathrm{a}+3 \mathrm{~b}
\end{aligned}
$$

Q\#08:Find the value of mand n so that the vector $9 \mathrm{i}+7 \mathrm{j}-9 \mathrm{~m} \mathrm{k}$ and $9 \mathrm{i}-\mathrm{nj}+18 \mathrm{k}$ have same magnitude and direction.

Solution: Let $\quad \vec{a}=9 i+7 j-9 m k \quad \boldsymbol{\&} \quad \vec{b}=9 i-n j+18 k$
According to given condition $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ are parallel vectors.
Thus

$$
\begin{aligned}
& \frac{9}{9}=\frac{7}{-n}=\frac{-9 m}{18} \\
\Rightarrow & 1=\frac{-7}{n}=\frac{-m}{2} \\
\Rightarrow & 1=\frac{-7}{n} \Rightarrow n=-7 \quad \& \quad \Rightarrow 1=\frac{-m}{2} \Rightarrow m=-2
\end{aligned}
$$

Q\#09 : Three edges of a unit cube through the origin O represent the vector i, j, k respectively. Write the diagonal expression for the vectors represented by
(i) The diagonal of the cube, through O.
(ii) The diagonals of the three faces passes through O.

Solution: Let a unit cube whose origin is at point O as shown in figure.
Point of each corner of a cube are represented in the figure
as $O(0,0,0), P(1,1,1), A(1,0,0), B(0,1,0), C(0,0,1)$,
$L(1,0,1), M(0,1,1)$ and $N(1,1,0)$.
(i) The diagonal of the unit cube is $\overrightarrow{\mathrm{OP}}$

Then

$$
\overrightarrow{\mathrm{OP}}=\boldsymbol{P} . \boldsymbol{v} \text { 's of } \boldsymbol{P}-\boldsymbol{P} . v \text { 's of } \boldsymbol{O}=\boldsymbol{P}(\mathbf{1}, 1,1)-\boldsymbol{O}(0,0,0)=\mathrm{i}+\mathrm{j}+\mathrm{k}
$$

(ii) The diagonal of three faces of a cube are $\overrightarrow{\mathrm{OL}}, \overrightarrow{\mathrm{OM}}$ and $\overrightarrow{\mathrm{ON}}$.

Then

$$
\begin{aligned}
& \overrightarrow{\mathrm{OL}}=\boldsymbol{P} . \boldsymbol{v} \text { 's of } \boldsymbol{L}-\boldsymbol{P} . \boldsymbol{v} \text { 's of } \boldsymbol{O}=\boldsymbol{L}(\mathbf{1}, \mathbf{0}, \mathbf{1})-\boldsymbol{O}(\mathbf{0}, \mathbf{0}, \mathbf{0})=\mathrm{i}+0 \mathrm{j}+\mathrm{k} \\
& \overrightarrow{\mathrm{OM}}=\boldsymbol{P} . \boldsymbol{v} \text { 's of } \boldsymbol{M}-\boldsymbol{P} . \boldsymbol{v} \text { 's of } \boldsymbol{O}=\boldsymbol{L}(\mathbf{0}, 1,1)-\boldsymbol{O}(\mathbf{0}, \mathbf{0}, \boldsymbol{0})=0 \mathrm{i}+\mathrm{j}+\mathrm{k} \\
& \overrightarrow{\mathrm{ON}}=\boldsymbol{P} . \boldsymbol{v} \text { 's of } \boldsymbol{N}-\boldsymbol{P} . \boldsymbol{v} \text { 's of } \boldsymbol{O}=\boldsymbol{N}(\mathbf{1 , 1 , 0})-\boldsymbol{O}(\mathbf{0}, \mathbf{0}, \mathbf{0})=\mathrm{i}+\mathrm{j}+0 \mathrm{k}
\end{aligned}
$$

Q\#10:Find the lengths of the sides of a triangle, whose vertices are $\mathrm{A}(2,4,-1), \mathrm{B}(4,5,1)$ and $\mathrm{C}(3,6,-3)$. and show that the triangle is a right angle triangle.

Solution: Let $\Delta \mathrm{ABC}$ whose corner points are $\boldsymbol{A}(2,4,-1), \mathrm{B}(4,5,1)$ and $\mathrm{C}(3,6,-3)$
The length of sides of $\triangle \mathrm{ABC}$ are :

$$
\begin{aligned}
\overrightarrow{\mathrm{AB}} & =\boldsymbol{P} . \boldsymbol{v} \text { 's of } \boldsymbol{B}-\boldsymbol{P} . \boldsymbol{v} \text { s of } \boldsymbol{A}=\mathrm{B}(4,5,1)-\mathrm{A}(2,4,-1) \\
& =(4-2) \mathrm{i}+(5-4) \mathrm{j}+(1+1) \mathrm{k} \\
& =2 \mathrm{i}+\mathrm{j}+2 \mathrm{k}
\end{aligned}
$$

$$
\begin{align*}
& |\overrightarrow{\mathrm{AB}}|=\sqrt{(2)^{2}+(1)^{2}+(2)^{2}}=\sqrt{4+1+4}=\sqrt{9} \\
& |\overrightarrow{\mathrm{AB}}|=3 \tag{i}
\end{align*}
$$

$$
\begin{align*}
& \overrightarrow{\mathrm{BC}}=\boldsymbol{P} \text {. } \boldsymbol{v} \text { 's of } \boldsymbol{C}-\boldsymbol{P} \text {.v's of } \boldsymbol{B}=\mathrm{C}(3,6,-3)-\mathrm{B}(4,5,1) \\
& =(3-4) \mathrm{i}+(6-5) \mathrm{j}+(-3-1) \mathrm{k} \\
& =-\mathrm{i}+\mathrm{j}-4 \mathrm{k} \\
& |\overrightarrow{\mathrm{BC}}|=\sqrt{(-1)^{2}+(1)^{2}+(-4)^{2}}=\sqrt{1+1+16} \\
& |\overrightarrow{B C}|=\sqrt{18} \\
& \overrightarrow{\mathrm{CA}}=\boldsymbol{P} \text {.v's of } \boldsymbol{A}-\boldsymbol{P} . \boldsymbol{v} \text { 's of } \boldsymbol{C}=\mathrm{A}(2,4,-1)-\mathrm{C}(3,6,-3) \\
& =(2-3) \mathrm{i}+(4-6) \mathrm{j}+(-1+3) \mathrm{k} \\
& =-\mathrm{i}-2 \mathrm{j}+2 \mathrm{k} \\
& |\mathrm{CA}|=\sqrt{(-1)^{2}+(-2)^{2}+(2)^{2}}=\sqrt{1+4+4}=\sqrt{9} \\
& |\overrightarrow{\mathrm{CA}}|=3 \tag{iii}
\end{align*}
$$

From equ, (i), (ii) and (iii)

$$
\begin{aligned}
& |\overrightarrow{\mathrm{AB}}|^{2}+|\overrightarrow{\mathrm{CA}}|^{2}=(3)^{2}+(3)^{2}=9+9=18=(\sqrt{18})^{2}=|\overrightarrow{\mathrm{BC}}|^{2} \\
& |\overrightarrow{\mathrm{AB}}|^{2}+|\overrightarrow{\mathrm{CA}}|^{2}=|\overrightarrow{\mathrm{BC}}|^{2}
\end{aligned}
$$

This show that given triangle is a right angle triangle at point A. because $\angle A=90^{\circ}$.

Q\#11:Find a vector whose magnitude is 5 and is in the direction of vector $4 \mathrm{i}-3 \mathrm{j}+\mathrm{k}$.
Solution: Let $\overrightarrow{\mathrm{A}}$ be a vector whose magnitude is 5 .

$$
\therefore \quad|\vec{A}|=5
$$

\&

$$
\text { let } \overrightarrow{\mathrm{r}}=4 \mathrm{i}-3 \mathrm{j}+\mathrm{k}
$$

According to given condition, \vec{A} be a vector whose magnitude is 5 in the direction of \vec{r} vector is written
as,

$$
\begin{aligned}
\overrightarrow{\mathrm{A}} & =|\overrightarrow{\mathrm{A}}| \cdot \hat{\mathrm{r}} \\
& =|\overrightarrow{\mathrm{A}}| \cdot \frac{\vec{r}}{\mathrm{r}} \\
& =5 \cdot \frac{4 \mathrm{i}-3 \mathrm{j}+\mathrm{k}}{\sqrt{(4)^{2}+(-3)^{2}+(1)^{2}}} \\
& =5 \cdot \frac{4 \mathrm{i}-3 \mathrm{j}+\mathrm{k}}{\sqrt{16+9+1}} \\
& =\frac{20 \mathrm{i}-15 \mathrm{j}+5 \mathrm{k}}{\sqrt{26}} \\
\overrightarrow{\mathrm{~A}} & =\frac{20}{\sqrt{26}} \mathrm{i}-\frac{15}{\sqrt{26}} \mathrm{j}+\frac{5}{\sqrt{26}} \mathrm{k}
\end{aligned}
$$

Q\#12:Find a vector whose magnitude is 2 and is parallel to vector $5 i+3 j+2 k$.
Solution: Let $\overrightarrow{\mathrm{A}}$ be a vector whose magnitude is 2
\& let $\overrightarrow{\mathrm{r}}=5 \mathrm{i}+3 \mathrm{j}+2 \mathrm{k}$
According to given condition, \vec{A} be a vector whose magnitude is 2 is parallel to \vec{r} vector is written as,

$$
\begin{aligned}
\vec{A} & =|\vec{A}| \cdot \hat{r} \\
& =|\vec{A}| \cdot \frac{\vec{r}}{r} \\
& =(2) \cdot \frac{5 i+3 j+2 k}{\sqrt{(5)^{2}+(3)^{2}+(2)^{2}}} \\
& =(2) \cdot \frac{5 i+3 j+2 k}{\sqrt{25+9+4}} \\
& =\frac{10 i+6 j+4 k}{\sqrt{38}} \\
\vec{A} & =\frac{10}{\sqrt{38}} \mathrm{i}+\frac{6}{\sqrt{38}} \mathrm{j}+\frac{4}{\sqrt{38}} \mathrm{k}
\end{aligned}
$$

Q\#13:Find a vector whose magnitude is that of the vector $i-3 j+9 k$ and is in the direction of vector
$4 i-3 j+k$.
Solution: Let $\overrightarrow{\mathrm{A}}=i-3 j+9 k \quad ; \quad \overrightarrow{\mathrm{B}}=4 i-3 j+k$
Let $\overrightarrow{\mathrm{R}}$ be the required vector whose magnitude is that of the vector $\overrightarrow{\mathrm{A}}$ in the direction of $\overrightarrow{\mathrm{B}}$.

$$
\begin{aligned}
\overrightarrow{\mathrm{R}} & =|\overrightarrow{\mathrm{A}}| \cdot \widehat{\mathrm{B}} \\
& =|\overrightarrow{\mathrm{A}}| \cdot \frac{\vec{B}}{\mathrm{~B}} \\
& =\sqrt{(1)^{2}+(-3)^{2}+(9)^{2}} \cdot \frac{4 \mathrm{i}-3 \mathrm{j}+\mathrm{k}}{\sqrt{(4)^{2}+(-3)^{2}+(1)^{2}}} \\
& =\sqrt{1+9+81} \cdot \frac{4 \mathrm{i}-3 \mathrm{j}+\mathrm{k}}{\sqrt{16+9+1}} \\
& =\sqrt{91} \cdot \frac{4 \mathrm{i}-3 \mathrm{j}+\mathrm{k}}{\sqrt{26}}=\sqrt{\frac{91}{26}}(4 \mathrm{i}-3 \mathrm{j}+\mathrm{k}) \\
& =\sqrt{\frac{7}{2}}(4 \mathrm{i}-3 \mathrm{j}+\mathrm{k}) \\
\overrightarrow{\mathrm{R}} & =4 \sqrt{\frac{7}{2}} \mathrm{i}-3 \sqrt{\frac{7}{2}} \mathrm{j}+\sqrt{\frac{7}{2}} \mathrm{k}
\end{aligned}
$$

Q\#14: (i) if vectors $3 i+j-k$ and $\lambda i-4 j+4 k$ are parallel, find the value of λ.
(ii)If vectors $3 i+6 j+k$ and $i-m j+\frac{1}{3} k$ are parallel, find the value of m.
(i) if vectors $3 i+j-k$ and $\lambda i-4 j+4 k$ are parallel, find the value of λ.

Solution: Let $\quad \overrightarrow{\mathrm{a}}=3 i+j-k \quad \& \quad \overrightarrow{\mathrm{~b}}=\lambda i-4 j+4 k$
Since $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ are parallel, therefore their directional components are proportional as

$$
\frac{3}{\lambda}=\frac{1}{-4}=\frac{-1}{4} \Rightarrow \frac{3}{\lambda}=\frac{1}{-4} \quad \Rightarrow 3(-4)=\lambda \quad \Rightarrow \lambda=-12
$$

(ii)If vectors $3 i+6 j+k$ and $i-m j+\frac{1}{3} k$ are parallel, find the value of m.

Solution: Let $\overrightarrow{\mathrm{a}}=3 i+6 j+k \quad \& \quad \overrightarrow{\mathrm{~b}}=\boldsymbol{i}-\boldsymbol{m j}+\frac{1}{3} k$
Since \vec{a} and \vec{b} are parallel, therefore their directional components are proportional as

$$
\begin{aligned}
& \frac{3}{1}=\frac{6}{-m}=\frac{1}{\left(\frac{1}{3}\right)} \\
& \frac{3}{1}=\frac{6}{-m}=\frac{3}{1} \quad \Rightarrow \frac{3}{1}=\frac{6}{-m} \quad \Rightarrow \quad m=(-6) / 3 \quad \Rightarrow m=-2
\end{aligned}
$$

Q\#15: Show that the vectors $4 \mathrm{i}-6 \mathrm{j}+9 \mathrm{k}$ and $-6 \mathrm{i}+9 \mathrm{j}-\frac{27}{2} \mathrm{k}$ are collinear.
Solution: Let $\quad \vec{a}=4 i-6 j+9 k \quad \& \quad \vec{b}=-6 i+9 j-\frac{27}{2} k$
Multiplying $\overrightarrow{\mathrm{b}}$ with $\frac{-2}{3}$

$$
\begin{aligned}
& \frac{-2}{3} \vec{b}=\frac{-2}{3}\left(-6 i+9 j-\frac{27}{2} k\right) \\
& \frac{-2}{3} \vec{b}=4 i-6 j+9 k \\
& \frac{-2}{3} \vec{b}=\vec{a} \quad \text { or } \quad \vec{a}=\frac{-2}{3} \vec{b}
\end{aligned}
$$

This shows that vectors $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ are collinear. $(\overrightarrow{\mathrm{a}}=\lambda \overrightarrow{\mathrm{b}})$
Q\#16:Three vectors of magnitude $a, 2 a, 3 a$, meet in point and their direction are along the diagonals of adjacent faces of a cube . Determine their resultant and direction cosines.

Solution: Let \boldsymbol{i}, j, k be the unit vectors represented by along $\overrightarrow{\mathrm{OA}}, \overrightarrow{\mathrm{OB}}$ and $\overrightarrow{\mathrm{OC}}$ and given vectors $\overrightarrow{\mathrm{a}}, 2 \overrightarrow{\mathrm{a}}, 3 \vec{a}$ acting along the diagonal of faces of a cube $\overrightarrow{\mathrm{ON}}, \overrightarrow{\mathrm{OM}}$ and $\overrightarrow{\mathrm{OL}}$ making an angle of 45^{0} with x, y, z-axis.

$$
\begin{align*}
& \overrightarrow{\mathrm{a}}=\boldsymbol{a} \cos 45^{\circ} j+a \sin 45^{0} k=\frac{\mathrm{a}}{\sqrt{2}} \mathrm{j}+\frac{\mathrm{a}}{\sqrt{2}} \boldsymbol{k} \tag{i}\\
& 2 \overrightarrow{\mathrm{a}}=2 \boldsymbol{a} \cos 45^{\circ} \boldsymbol{i}+2 \boldsymbol{a} \sin 45^{\circ} \boldsymbol{k}=\frac{2 \mathrm{a}}{\sqrt{2}} j+\frac{2 \mathrm{a}}{\sqrt{2}} \boldsymbol{k} . \\
& 3 \overrightarrow{\mathrm{a}}=3 \boldsymbol{a} \cos 45^{\circ} \boldsymbol{i}+3 \boldsymbol{a} \sin 45^{\circ} j=\frac{3 \mathrm{a}}{\sqrt{2}} \mathrm{i}+\frac{3 \mathrm{a}}{\sqrt{2}} \boldsymbol{j} .
\end{align*}
$$

\qquad
Let $\overrightarrow{\mathrm{r}}$ be the resultant of $\overrightarrow{\mathrm{a}}, 2 \overrightarrow{\mathrm{a}}$ and $3 \vec{a}$.then

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{a}}+3 \overrightarrow{\mathrm{a}} \\
& \overrightarrow{\mathrm{r}}=\frac{\mathrm{a}}{\sqrt{2}} \mathrm{j}+\frac{\mathrm{a}}{\sqrt{2}} k+\frac{2 \mathrm{a}}{\sqrt{2}} \mathrm{i}+\frac{2 \mathrm{a}}{\sqrt{2}} k+\frac{3 \mathrm{a}}{\sqrt{2}} \mathrm{i}+\frac{3 \mathrm{a}}{\sqrt{2}} j
\end{aligned}
$$

$\therefore \quad \vec{r}=\frac{5 \mathrm{a}}{\sqrt{2}} \mathrm{i}+\frac{4 \mathrm{a}}{\sqrt{2}} j+\frac{3 \mathrm{a}}{\sqrt{2}} \mathrm{k}$

$$
\begin{aligned}
& |\overrightarrow{\mathrm{r}}|=\sqrt{\left(\frac{5 \mathrm{a}}{\sqrt{2}}\right)^{2}+\left(\frac{4 \mathrm{a}}{\sqrt{2}}\right)^{2}+\left(\frac{3 \mathrm{a}}{\sqrt{2}}\right)^{2}}=\sqrt{\frac{25 \mathrm{a}^{2}}{2}+\frac{16 \mathrm{a}^{2}}{2}+\frac{9 \mathrm{a}^{2}}{2}}=\sqrt{\frac{25 \mathrm{a}^{2}+16 \mathrm{a}^{2}+9 \mathrm{a}^{2}}{2}}=\sqrt{\frac{50 \mathrm{a}^{2}}{2}}=\sqrt{25 \mathrm{a}^{2}} \\
& |\overrightarrow{\mathrm{r}}|=5 a
\end{aligned}
$$

Direction cosines of vector $\overrightarrow{\mathrm{r}}$ are

$$
\frac{\left(\frac{5 a}{\sqrt{2}}\right)}{5 a}, \frac{\left(\frac{4 a}{\sqrt{2}}\right)}{5 a}, \frac{\left(\frac{3 a}{\sqrt{2}}\right)}{5 a} \quad \Rightarrow \quad \frac{1}{\sqrt{2}}, \frac{4}{5 \sqrt{2}}, \quad \frac{3}{5 \sqrt{2}}
$$

Q\#17: Find the angles which the vector $\overrightarrow{\mathrm{a}}=3 \mathrm{i}-6 \mathrm{j}+2 \mathrm{k}$ makes with the coordinate axes.
Solution: Let vector \vec{a} makes makes an angle α, β and γ with x, y and z-axes.
Given vector $\quad \vec{a}=3 i-6 j+2 k$

$$
\begin{aligned}
& |\vec{a}|=\sqrt{(3)^{2}+(-6)^{2}+(2)^{2}}=\sqrt{9+36+4}=\sqrt{49} \\
& |\vec{a}|=7 \quad \text { and } \mathrm{a}_{\mathrm{x}}=3, \mathrm{a}_{\mathrm{y}}=-6, \mathrm{a}_{\mathrm{z}}=2
\end{aligned}
$$

By using direction cosines
$\boldsymbol{C o s} \alpha=\frac{a_{x}}{|\vec{a}|}=\frac{3}{7} \Rightarrow \alpha=\cos ^{-1}\left(\frac{3}{7}\right) \quad \Rightarrow \quad \alpha=71.8^{0}$
$\operatorname{Cos} \beta=\frac{\mathrm{a}_{\mathrm{y}}}{|\vec{a}|}=\frac{-6}{7} \Rightarrow \beta=\cos ^{-1}\left(\frac{-6}{7}\right) \Rightarrow \beta=149^{\circ}$
$\boldsymbol{\operatorname { C o s }} \gamma=\frac{\mathrm{a}_{\mathrm{y}}}{|\vec{a}|}=\frac{2}{7} \Rightarrow \gamma=\cos ^{-1}\left(\frac{2}{7}\right) \Rightarrow \gamma=73.3^{0}$

Q\#18: Prove that the sum of three vectors determined by the diagonal of the three faces of a cube passing through the same corner, the vector being directed from the corner, is twice the vector determined by the diagonal of the cube passing through the same corner.

Solution: Let a cube whose length of each side is ' a '. $\overrightarrow{\mathrm{OL}}, \overrightarrow{\mathrm{OM}}$ and $\overrightarrow{\mathrm{ON}}$ are the diagonal of the faces of cube and $\overrightarrow{\mathrm{OP}}$ be the diagonal of cube passing through point O.

We have to prove $\overrightarrow{\mathrm{OL}}+\overrightarrow{\mathrm{OM}}+\overrightarrow{\mathrm{ON}}=2 \overrightarrow{\mathrm{OP}}$
From figure $P(a, a, a), A(a, 0,0), B(0, a, 0), C(0,0, a)$,
$L(a, 0, a), M(0, a, a)$ and $N(a, a, 0)$.
The diagonal of the unit cube is $\overrightarrow{\mathrm{OP}}$

Then $\quad \overrightarrow{\mathrm{OP}}=$ P.vof P-P.v of $O=P(a, a, a)-O(0,0,0)=a i+a j+a k$
The diagonal of three faces of a cube are $\overrightarrow{\mathrm{OL}}, \overrightarrow{\mathrm{OM}}$ and $\overrightarrow{\mathrm{ON}}$.
Then

$$
\begin{equation*}
\overrightarrow{\mathrm{OL}}=P . v \text { of } L-P . v \text { of } O=L(a, 0, a)-O(0,0,0)=a i+0 j+a k=a i+a k . \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\overrightarrow{\mathrm{OM}}=P . v \text { of } M-P . v \text { of } O=M(0, a, a)-O(0,0,0)=0 i+a j+a k=a j+a k \tag{iiii}
\end{equation*}
$$

$$
\begin{equation*}
\overrightarrow{\mathrm{ON}}=P . v \text { of } N-P . v \text { of } O=N(a, a, 0)-O(0,0,0)=a i+a j+0 k=a i+a j \tag{iv}
\end{equation*}
$$

According to given condition, adding (ii),(iii) and (iv)

$$
\begin{aligned}
& \overrightarrow{\mathrm{OL}}+\overrightarrow{\mathrm{OM}}+\overrightarrow{\mathrm{ON}}=a i+a k+a j+a k+a i+a j=2 a i+2 a j+2 a k=2(a i+a j+a k) \\
& \overrightarrow{\mathrm{OL}}+\overrightarrow{\mathrm{OM}}+\overrightarrow{\mathrm{ON}}=2 \overrightarrow{\mathrm{OP}} \quad \text { Hence proved. }
\end{aligned}
$$

Q\#19: (i) Find direction cosines of line joining the points $(3,2,-4)$ and $(1,-1,2)$.
(ii)Prove that the points $-4 a+6 b+10 c, 2 a+4 b+6 c$ and $14 a-2 c$ are collinear.
(i) Find direction cosines of line joining the points $(3,2,-4)$ and $(1,-1,2)$.

Solution: Given points $\mathrm{A}(3,2,-4)$ and $\mathrm{B}(1,-1,2)$.
Let vector \vec{a} makes an angle α, β and γ with x, y and z-axes.

$$
\begin{aligned}
\overrightarrow{\mathrm{a}} & =\overrightarrow{\mathrm{AB}}=\boldsymbol{P} \cdot \boldsymbol{v} \boldsymbol{s} \text { of } \boldsymbol{B}-\boldsymbol{P} . \boldsymbol{v} \text { 's of } \boldsymbol{A}=\mathrm{B}(1,-1,2)-\mathrm{A}(3,2,-4) \\
& =(1-3) \mathrm{i}+(-1-2) \mathrm{j}+(2+4) \mathrm{k} \\
\overrightarrow{\mathrm{a}} & =-2 \mathrm{i}-3 \mathrm{j}+6 \mathrm{k} \\
& |\overrightarrow{\mathrm{a}}|=\sqrt{(-2)^{2}+(-3)^{2}+(6)^{2}}=\sqrt{4+9+36}=\sqrt{49} \\
& |\overrightarrow{\mathrm{a}}|=7 \quad \text { and } \mathrm{a}_{\mathrm{x}}=-2, \mathrm{a}_{\mathrm{y}}=-3, \mathrm{a}_{\mathrm{z}}=6
\end{aligned}
$$

\&

Direction cosines:

$$
\operatorname{Cos} \alpha=\frac{a_{x}}{|\vec{a}|}=\frac{-2}{7} \quad: \quad \operatorname{Cos} \beta=\frac{a_{y}}{|\vec{a}|}=\frac{-3}{7} \quad \therefore \quad \operatorname{Cos} \gamma=\frac{a_{z}}{|\vec{a}|}=\frac{6}{7}
$$

(ii)Prove that the points $-4 a+6 b+10 c, 2 a+4 b+6 c$ and $14 a-2 c$ are collinear.

Solution: Let $A(-4 a+6 b+10 c), B(2 a+4 b+6 c)$ and $C(14 a-2 c)$ be three points.
Take A be the initial point of B and C.
Now $\quad \overrightarrow{\mathrm{AB}}=$ P. v's of B - P. v's of A

$$
\begin{aligned}
& =(2 a+4 b+6 c)-(-4 a+6 b+10 c)=2 a+4 b+6 c+4 a-6 b-10 c \\
& =6 a-2 b-4 c
\end{aligned}
$$

$\overrightarrow{\mathrm{AC}}=\mathrm{P} . \mathrm{v}^{\prime} \mathrm{s}$ of $\mathrm{C}-\mathrm{P} . \mathrm{v}^{\prime} \mathrm{s}$ of

$$
\begin{aligned}
& =(14 a-2 c)-(-4 a+6 b+10 c)=14 a-2 c+4 a-6 b-10 c \\
& =18 a-6 b-12 c \\
\overrightarrow{\mathrm{AC}} & =3(6 a-2 b-4 c) \\
\overrightarrow{\mathrm{AC}} & =3 \overrightarrow{\mathrm{AB}}
\end{aligned}
$$

According to above condition, this shows that the given points are collinear .

Q\#20: Find the value of x and y. If $x \vec{a}-5 \overrightarrow{\mathrm{~b}}=3 \overrightarrow{\mathrm{a}}+y \overrightarrow{\mathrm{~b}}$. where $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ are two collinear vectors.
Solution: Given statement $\quad x \vec{a}-5 \vec{b}=3 \vec{a}+y \vec{b}$
Comparing coefficients of vector $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ from both sides

$$
x=3 \text { and } y=-5
$$

Q\#21: Under what condition do the vectors $5 \mathrm{x} \mathrm{i}-\mathrm{y} \mathrm{j}+\mathrm{zk}$ and $\mathrm{xi}-6 \mathrm{j}+\mathrm{k}$ have same magnitude?
Solution: Let $\vec{a}=5 \mathrm{xi}-\mathrm{yj}+\mathrm{zk} \quad \boldsymbol{\&} \quad \overrightarrow{\mathrm{b}}=\mathrm{xi}-6 \mathrm{j}+\mathrm{k}$
According to given condition $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ have same magnitude

$$
\begin{aligned}
|\overrightarrow{\mathrm{a}}| & =|\overrightarrow{\mathrm{b}}| \\
\sqrt{(5 \mathrm{x})^{2}+(-\mathrm{y})^{2}+(\mathrm{z})^{2}} & =\sqrt{(\mathrm{x})^{2}+(-6)^{2}+(1)^{2}} \\
\sqrt{25 \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}} & =\sqrt{\mathrm{x}^{2}+36+1} \\
\sqrt{25 \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}} & =\sqrt{\mathrm{x}^{2}+37}
\end{aligned}
$$

Taking square on both sides

$$
\begin{aligned}
25 x^{2}+y^{2}+z^{2} & =x^{2}+37 \\
25 x^{2}+y^{2}+z^{2}-x^{2}-37 & =0
\end{aligned}
$$

$$
24 x^{2}+y^{2}+z^{2}-37=0 \quad \text { This is the required condition. }
$$

