Metric Spaces

Written by : SHAHZAD AHMAD KHAN LECTURER (Mathematics) G.C.KOT SULTAN (LAYYAH)

2, 22 23

Real Valued Function

Let $f: A \rightarrow R$ be a function. Clearly domain of f is A, in other words f is defined on A. Since co-domain of f is R, we can say that f is real valued function.

Metric

Let X be a non-empty set and R be a real numbers.

Let $d: X \times X \to \mathbb{R}$ be a function

Then "d" is called "metric" on X, if "d" satisfies each of the following four conditions;

 $(M_{1}) \qquad d(x_{1}, x_{2}) \geq 0 \qquad \forall x_{1}, x_{2} \in X$

- $(M_2) \qquad d(x_1, x_2) = 0 \iff x_1 = x_2 \qquad \forall x_1, x_2 \in X$
- (M_3) $d(x_1, x_2) = d(x_2, x_1)$ $\forall x_1, x_2 \in X$ (Symmetric Property)
- $(M_{A}) \quad d(x_{1}, x_{2}) + d(x_{2}, x_{3}) \ge d(x_{1}, x_{3}) \quad \forall x_{1}, x_{2}, x_{3} \in X \quad (\text{Triangular Inequality})$

If "d" is a "metric" on X then the pair (X, d) is called metric space.

Note

The non-negative real number $d(x_1, x_2)$ is called distance between points x_1 and x_2 in the metric "d".

Usual Metric on R

Let $d: R \times R \to R$ be a metric on R given by $d(x_1, x_2) = |x_1 - x_2|$ Then "d" is called a usual metric on R and (R, d) is called usual metric space.

Usual Metric on R^2

Let $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ be a metric on \mathbb{R}^2 given by

$$d(P_1, P_2) \leq d[(x_1, y_1), (x_2, y_2)] = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Then "d" is called a usual metric on R^2 and (R^2, d) is usual metric space.

Usual Metric on R³

Let $d: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ be a metric on \mathbb{R}^3 given by

 $d[(x_1, y_1, z_1), (x_2, y_2, z_2)] = \sqrt{(x_1 - x_1)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$ Then "d" is called a usual metric on R^3 and (R^3, d) is usual metric space.

Note (

When we say that R is a metric space without giving a metric on R then it is assumed that metric on R is "usual metric". Similarly we take the case of R^2 and R^3 .

Example

Let X be the set of all towns marked on a plane geographically map and let $d(x_1, x_2)$ be the length of the shortest rout from town x_1 to x_2 . Show that "d" is a metric on X.

Solution

Here function $d: X \times X \rightarrow R$ is defined as $d(x_1, x_2)$ =Length of shortest route fronttown x_1 to x_2 . Since (Length of shortest route from town X_1 to $x_2 \ge 0$ (M_{1}) $d(x_1, x_2) \ge 0$ **.** . Let $d(x_1, x_2) = 0 \Rightarrow$ Length of shortest route from town x_1 to $x_2 = 0$ (M_2) $\Rightarrow x_1 = x_2$ Let $x_1 = x_2 \implies$ Length of shortest route from town x_1 to $x_2 = 0$ $\Rightarrow d(x_1, x_2) = 0$ Since $d(x_1, x_2)$ = Length of shortest route from town x_1 to x_2 . (M_3) = Length of shortest route from town x_2 to x_1 $= d(x_2, x_1)$ Let $x_1, x_2, x_3 \in X$ (M_4) Then x_1, x_2, x_3 are non-collinear or collinear If x_1, x_2, x_3 are non-collinear, then they for m_2 a triangle and we know that sum of length of two sides of a triangle **IS** always greater than the third side. $d(x_1, x_2) + d(x_2, x_3) > d(x_1, x_3)$ ----- (i) ... Let x_1, x_2, x_3 are collinear. Then $d(x_1, x_2) + d(x_2, x_3) = d(x_1, x_3) - \dots$ (ii) From (i) and (ii), we get $d(x_1, x_2) + d(x_2, x_3) \ge d(x_1, x_3)$

Hence "d" is a metric on X.

Example

Let X = R be the set of all real number: and let $d: R \times R \to R$ be defined by $d(x_1, x_2) = |x_1 - x_2|$ denotes the absolute value of the number $x_1 - x_2$. Show that (R, d) is a metric space.

> | = 0.= 0

Solution

 $\rightarrow R$ is defined as

Here function
$$d: R \times R \rightarrow R$$
 is define
 $d(x_{1i}, x_2) = |x_1 - x_2|$
(M₁) Since $|x_1 - x_2| \ge 0$
 $\therefore \quad d(x_1, x_2) \ge 0$
(M₂) Let $d(x_1, x_2) = 0 \Rightarrow |x_1 - x_2| = 0$
 $\Rightarrow \quad x_1 - x_2 = 0$
 $\Rightarrow \quad x_1 = x_2$
Let $x_1 = x_2 \Rightarrow x_1 - x_2 = 0$
 $\Rightarrow \quad d(x_1, x_2) = 0$

Thus $d(x_1, x_2) = 0 \iff x_1 = x_2$

(M₃) Since
$$d(x_1, x_2) = |x_1 - x_2|$$

 $= |-(x_2 - x_1)|$
 $= |x_2 - x_1|$
 $= d(x_2, x_1)$
(M₄) Since $d(x_1, x_2) = |x_1 - x_2|$
 $d(x_2, x_3) = |x_2 - x_3|$
 $d(x_1, x_3) = |x_1 - x_3|$
Now $d(x_1, x_3) = |x_1 - x_3|$
 $= |x_1 - x_2 + x_2 - x_3|$
 $\leq |x_1 - x_2| + |x_2 - x_3|$
 $= d(x_1, x_2) + d(x_2, x_3)$

Thus(R, d) is a metric space.

Example

Let $X = R^2$ be a set of all ordered pairs(x, y); $x, y \in R$. Let $P_1(x_1, y_1), P_2(x_2, y_2) \in \mathbb{R}^2$. Show that the non-negative real valued function "d" defined by $d(P_1, P_2) = |x_1 - x_2| + |y_1 - y_2|$ is a metric on R^2 Solution

;3)

Here function $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ is defined as $d(P_1, P_2) = |x_1 - x_2| + |y_1 - y_2|$ Since $|x_1 - x_2| + |y_1 - y_2| \ge 0$ (M_1) $\therefore d(P_1, P_2) \ge 0$ Let $d(P_1, P_2) = 0 \implies |x_1 - x_2| + |y_1 - y_2| = 0$ (M_2) $\Rightarrow |x_1 - x_2| = 0, |y_1 - y_2| = 0$ $\Rightarrow x_1 - x_2 = 0, y_1 - y_2 = 0$ $\Rightarrow x_1 = x_2, y_1 = y_2$ $\Rightarrow (x_1, y_1) = (x_2, y_2)$ $\Rightarrow P_1 = P_2$ Let $P_1 = P_2 \implies (x_1, y_1) = (x_2, y_2)$ $\Rightarrow x_1 = x_2, \quad y_1 = y_2$ $\Rightarrow x_1 - x_2 = 0, y_1 - y_2 = 0$ $\Rightarrow |x_1 - x_2| = 0, |y_1 - y_2| = 0$ $\Rightarrow ||x_1 - x_2| + |y_1 - y_2| = 0$ $\Rightarrow d(P_1, P_2) = 0$ Thus $d(P_1, P_2) = 0 \iff P_1 = P_2$ Since $d(P_1, P_2) = |x_1 - x_2| + |y_1 - y_2|$ (M_3) $= |-(x_2 - x_1)| + |-(y_2 - y_1)|$ $= |x_2 - x_1| + |y_2 - y_1|$ $= d(P_2, P_1)$ Since $d(P_1, P_2) = |x_1 - x_2| + |y_1 - y_2|$ (M_4) $d(P_2, P_3) = |x_2 - x_3| + |y_2 - y_3|$ $d(P_1, P_3) = |x_1 - x_3| + |y_1 - y_3|$

3

Since $d(P_1, P_3) = |x_1 - x_3| + |y_1 - y_3|$

$$= |x_1 - x_2 + x_2 - x_3| + |y_1 - y_2 + y_2 - y_3|$$

$$\leq |x_1 - x_2| + |x_2 - x_3| + |\mathbf{y}_1 - y_2| + |y_2 - y_3|$$

$$= |x_1 - x_2| + |y_1 - y_2| + |z_2 - x_3| + |y_2 - y_3|$$

$$= d(P_1, P_2) + d(P_2, P_3)$$

Hence "d" is metric on R^2 .

<u>Example</u>

Let $X = R^2$ be a set of all ordered pairs(x, y); $x, y \in R$. Let $P_1(x_1, y_1), P_2(x_2, y_2) \in \mathbb{R}^2$. Show that the non-negative real valued function"d" defined by $d(P_1, P_2) = max(|x_1 - x_2| + |y_1 - y_2|)$ is a metric on R^2 .

1 > - 0

Solution

Here function $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ is defined as

$$d(P_1, P_2) = max (|x_1 - x_2| + |y_1 - y_2|)$$

M₁) Since
$$max(|x_1 - x_2| + |y_1 - y_2|) \ge 0$$

$$(:: |x_1 - x_2| \ge 0 \& |y_1 - y_2| \ge 0)$$

 $\therefore d(P_1, P_2) \ge 0$

 $= d(P_2, P_1)$

5
(M4) Since
$$d(P_1, P_2) = max (|x_1 - x_2| \neq |y_1 - y_2|) = |x_1 - x_2|$$
 (Say)
 $d(P_2, P_3) = max (|x_2 - x_3| \neq |y_2 - y_3|) = |x_2 - x_3|$ (Say)
 $d(P_1, P_3) = max (|x_1 - x_3| \neq |y_1 - y_3|) = |x_1 - x_2|$ (Say)
Now $d(P_1, P_3) = |x_1 - x_3|$
 $= |x_1 - x_2| + |x_2 - x_3|$
 $= |x_1 - x_2| + |x_2 - x_3|$
 $= d(P_1, P_2) + d(P_2, P_3)$
(We can get the same results in the remaining cases.)
Hence "d" is metric on R^2 .
Example
Let $X = R$ be a set of all ordered pairs (x, y) ; $x, y \in R$. Let,
 $P_1(x_1, y_1), P_2(x_2, y_2) \in R^3$. Show that the non-negative real valued
function "d" defined by $d(P_1, P_2) = [(x_1 - x_2)^2 + (y_1 - y_2)^2]^{\frac{1}{2}}$ is a metric
on R^2 .
Solution
Here function d: $R^3 \times R^3 \to R$ is defined as
 $d(P_1, P_2) = [(x_1 - x_2)^2 + (y_1 - y_2)^2]^{\frac{1}{2}} = 0$
 $\therefore d(P_1, P_2) \ge 0$ $\Rightarrow [(x_1 - x_2)^2 + (y_1 - y_2)^2]^{\frac{1}{2}} = 0$
 $\Rightarrow (x_1 - x_2)^2 + (y_1 - y_2)^2 = 0$
 $\Rightarrow (x_1 - x_2)^2 = (y_1 - y_2)^2 = 0$
 $\Rightarrow (x_1 - x_2)^2 = 0, (y_1 - y_2)^2 = 0$
 $\Rightarrow (x_1 - x_2)^2 = 0, (y_1 - y_2)^2 = 0$
 $\Rightarrow (x_1 - x_2)^2 = 0, (y_1 - y_2)^2 = 0$
 $\Rightarrow (x_1 - x_2)^2 = 0, (y_1 - y_2)^2 = 0$
 $\Rightarrow (x_1 - x_2)^2 = 0, (y_1 - y_2)^2 = 0$
 $\Rightarrow (x_1 - x_2)^2 = 0, (y_1 - y_2)^2 = 0$
 $\Rightarrow (x_1 - x_2)^2 = 0, (y_1 - y_2)^2 = 0$
 $\Rightarrow (x_1 - x_2)^2 = 0, (y_1 - y_2)^2 = 0$
 $\Rightarrow (x_1 - x_2)^2 = 0, (y_1 - y_2)^2 = 0$
 $\Rightarrow (x_1 - x_2)^2 + (y_1 - y_2)^2 = 0$
 $\Rightarrow (x_1 - x_2)^2 + (y_1 - y_2)^2 = 0$
 $\Rightarrow (x_1 - x_2)^2 + (y_1 - y_2)^2 = 0$
 $\Rightarrow (x_1 - x_2)^2 + (y_1 - y_2)^2 = 0$
 $\Rightarrow (x_1 - x_2)^2 + (y_1 - y_2)^2 = 0$
 $\Rightarrow (x_1 - x_2)^2 + (y_1 - y_2)^2 = 0$
 $\Rightarrow (x_1 - x_2)^2 + (y_1 - y_2)^2 = 0$
 $\Rightarrow ((x_1 - x_2)^2 + (y_1 - y_2)^2 = 0$
 $\Rightarrow ((x_1 - x_2)^2 + (y_1 - y_2)^2 = 0$
 $\Rightarrow ((x_1 - x_2)^2 + (y_1 - y_2)^2 = 0$
 $\Rightarrow ((x_1 - x_2)^2 + (y_1 - y_2)^2 = 0$

• ١

Since
$$d(P_1, P_2) = [(x_1 - x_2)^2 + (y_1 - y_2)^2]^{\frac{1}{2}}$$

 $= [\{-(x_2 - x_1)\}^2 + \{-(y_2 - y_1)\}^2]^{\frac{1}{2}}$
 $= [(x_2 - x_1)^2 + (y_2 - y_1)^2]^{\frac{1}{2}}$
 $= d(P_2, P_1)$

Let $P_1(x_1, y_1), P_2(x_2, y_2), P_3(x_3, y_3) \in \mathbb{R}^2$ then P_1, P_2, P_3 are collinear (M_4) or non-collinear.

If P_1 , P_2 , P_3 are collinear, then

 $d(P_1, P_2) + d(P_2, P_3) = d(P_1, P_3) - \dots (1)$

If P_1, P_2, P_3 are non-collinear, then they form a triangle and we know that, we know that sum of length of $+ \sqrt{2}0$ sides of a triangle is always greater than the third side. Available at

www.mathcity.or

:. $d(P_1, P_2) + d(P_2, P_3) > d(P_1, P_3)$ ----- (2) From (1) & (2) we get,

$$d(P_1, P_2) + d(P_2, P_3) \ge d(P_1, P_3)$$

Hence "d" is metric on R^2 .

Example

 (M_3)

Let $X = R^3$ be a set of all ordered $p_{irs}(x, y)$; $x, y \in R$. Let $P_1(x_1, y_1), P_2(x_2, y_2) \in R^3$. Show that the non negative real valued function "d" defined by $d(P_1, P_2) = [(x_1 - x_2)^2 + (y_1 - y_2)^2]^{\frac{1}{2}}$ is a metric +(2-2)2 on $R^{\mathbf{3}}$.

Solution

Here function $d: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ is defined as

$$d(P_1, P_2) = [(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2]^{\frac{1}{2}}$$

Since $[(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2]^{\frac{1}{2}} \ge 0$ (M_{1}) \therefore $d(P_1, P_2) \ge 0$

$$(M_2) \quad \text{Let } d(P_1, P_2) = 0 \implies [(x_1 - x_2)^2 + (y_1 - y_1)^2 + (z_1 - z_2)^2]^{\frac{1}{2}} = 0$$

$$\implies (x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2 = 0$$

$$\implies (x_1 - x_2)^2 = 0, (y_1 - y_2)^2 = 0, (z_1 - z_2)^2 = 0$$

$$\implies x_1 - x_2 = 0, \quad y_1 - y_2 = 0, \quad z_1 - z_2 = 0$$

$$\implies x_1 = x_2, \quad y_1 = y_2 \qquad z_1 = z_2$$

$$\implies (x_1, y_1, z_1) = (x_2, y_2, z_2)$$

$$\implies P_1 = P_2$$

Let
$$P_1 = P_2 \Rightarrow (x_1, y_1, z_1) = (x_2, y_2, z_2)$$

 $\Rightarrow x_1 = x_2, y_1 = y_2, z_1 = z_2$
 $\Rightarrow x_1 - x_2 = 0, y_1 - y_2 = 0, z_1 - z_2 = 0$
 $\Rightarrow (x_1 - x_2)^2 = 0, (y_1 - y_2)^2 = 0, (z_1 - z_2)^2 = 0$
 $\Rightarrow (x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2 = 0$
 $\Rightarrow [(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2]^{\frac{1}{2}} = 0$
 $\Rightarrow d(P_1, P_2) = 0$
(M₃) Since $d(P_1, P_2) = [(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2]^{\frac{1}{2}}$
 $= [\{-(x_2 - x_1)\}^2 + \{-(y_2 - y_1)\}^2 + \{-(z_2 - z_1)\}^2]^{\frac{1}{2}}$
 $= [(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]^{\frac{1}{2}}$
 $= d(P_2, P_1)$
(M₄) Let $P_1(x_1, y_1, z_1), P_2(x_2, y_2, z_2), P_3(x_3, y_3, z_3) \in R^3$ then P_1, P_2, P_3 are

7

 (M_4)

collinear or non-collinear. If P_1, P_2, P_3 are collinear, then

 $d(P_1, P_2) + d(P_2, P_3) = d(P_1, P_3)$ ------(1)

If P_1, P_2, P_3 are non-collinear, then they form a triangle and we know that, we know that sum of length of two sides of a triangle is always greater than the third side.

 $d(P_1, P_2) + d(P_2, P_3) > d(P_1, P_3)$ ------(2) :.

From (1) & (2) we get,

$$d(P_1, P_2) + d(P_2, P_3) \ge d(P_1, P_3)$$

Hence "d" is metric on R^{3} .

Example

Show that every non-empty set can be given a metric and hence can be converted into metric space.

510 Solution

Let X be any non-empty set.

Let $d_{\circ}: X \times X \to R$ be defined by

$$d_{\circ}(x_1, x_2) = \begin{cases} 0 & \text{if } x_1 = x_2 \\ 1 & \text{if } x_1 \neq x_2 \end{cases}$$

We shall prove that d_{\circ} is a metric on X.

(M₁) Here
$$d_{\circ}(x_1, x_2) \ge 0$$
 (: $d_{\circ}(x_1, x_2) = 0$ or $d_{\circ}(x_1, x_2) = 1$)

(M₂) Let
$$d_{\circ}(x_1, x_2) = 0 \implies x_1 = x_2$$
 (By definition)

Let
$$x_1 = x_2 \implies d_{\circ}(x_1, x_2) = 0$$
 (By definition)

 $d_{\circ}(x_1, x_2) = 0 \iff x_1 = x_2$ Thus

(M₃) (i) Let
$$d_o(x_1, x_2) = 0 \Rightarrow x_1 = x_2$$
 (By definition)
 $\Rightarrow x_2 = x_1$
 $\Rightarrow d_o(x_2, x_1) = 0$
(ii) Let $d_o(x_1, x_2) = 1 \Rightarrow x_1 \neq x_2$ (By definition)
 $\Rightarrow x_2 \neq x_1$ (By definition)
 $\Rightarrow x_2 \neq x_1$ (By definition)
 $\Rightarrow d_o(x_2, x_1) = 1$
Hence in both the cases $d_o(x_1, x_2) = d_o(z_0, x_1)$
(M₄) Let $x_1, x_2, x_3 \in X$
(i) Let $x_1 = x_2 = x_3$ then $d_o(x_1, x_2) = 0$
 $\& d_o(x_2, x_3) = 0$
 $also d_o(x_1, x_3) = 0$
 $\therefore d(x_1, x_2) + d(x_2, x_3) = d(x_1, x_3)$
(ii) Let $x_1 \neq x_2 \neq x_3$ then $d_o(x_1, x_2) = 1$
 $\& d_o(x_2, x_3) = 1$
 $also d_o(x_1, x_3) = 1$
 $\therefore d(x_1, x_2) + d(x_2, x_3) > d(x_1, x_3)$

 $\therefore \quad d(x_1, x_2) + d(x_2, x_3) > d(x_1, x_3)$ Similar type of verification in all remaining cases leads us to the conclusion that $d(x_1, x_2) + d(x_2, x_3) \ge d(x_1, x_3) \quad \forall \ \chi_1, x_2, x_3 \in X$

Hence (X, d_{\circ}) is a metric space.

Note

Let X be any non-empty set. Let $d_{\circ}: X \times X \to \mathbb{R}$ be defined by

$$d_{\circ}(x_1, x_2) = \begin{cases} 0 & \text{if } x_1 = x_2 \\ 1 & \text{if } x_1 \neq x_2 \end{cases}$$

Then d_{\circ} is called discrete metric on X.

Question

Let C be the set of all complex numbers and let $d: C \times C \rightarrow R$ be defined by $d(z_1, z_2) = |z_1 - z_2| d$ is a metric on **C** Solution

Here function $d: \mathbb{C} \times \mathbb{C} \to R$ is defined as $d(z_1, z_2) = |z_1 - z_2|$

 $\begin{array}{ll} (\mathsf{M}_1) & \text{Since } |z_1 - z_2| \ge 0 \\ & \therefore & d(z_1, z_2) \ge 0 \end{array}$

(M₂) Let
$$d(z_1, z_2) = 0 \implies |z_1 - z_2| = 0$$

 $\implies z_1 - z_2 = 0$
 $\implies z_1 - z_2 = 0$

8

Let
$$z_1 = z_2 \Rightarrow z_1 - z_2 = 0$$

 $\Rightarrow d(z_1, z_2) = 0$
Thus $d(z_1, z_2) = 0 \Rightarrow z_1 = z_2$
(M₃) Since $d(z_1, z_2) = |z_1 - z_2|$
 $= |-(z_2 - z_1)|$
 $= |z_2 - z_1|$
 $d(z_2, z_2) = |z_1 - z_2|$
 $d(z_1, z_2) = |z_1 - z_2|$
 $d(z_1, z_2) = |z_1 - z_2|$
 $d(z_1, z_2) = |z_1 - z_2|$
 $= |z_1 - z_2 + z_2 - z_3|$
 $= |z_1 - z_2 + z_2 - z_3|$
 $= |z_1 - z_2 + z_2 - z_3|$
Thus $d(z_1, z_2) = |z_1 - z_2|$
 $= d(z_1, z_2) + d(z_2, z_3)$
Thus (C, d) is a metric space.
New $d'(x_1, x_2) = min(1, d(x_1, x_2))$ is d' a metric on X ?
Solution
Here function $d': X \times X \to R$ be given by
 $d'(x_1, x_2) = min(1, d(x_1, x_2))$
(M₁) Since min $(1, d(x_1, x_2)) = 0$
 $\therefore d'(x_1, x_2) = 0 \Rightarrow min(1, d(x_1, x_2)) = 0$
 $z_1 = z_2 \Rightarrow d(z_1, x_2) = 0$
Thus $d'(x_1, x_2) = 0 \Rightarrow min(1, d(x_1, x_2)) = 0$
Thus $d'(x_1, x_2) = 0 \Rightarrow min(1, d(x_1, x_2)) = 0$
Thus $d'(x_1, x_2) = 0 = min(1, d(x_1, x_2)) = 0$
 $= d'(x_1, x_2) = 0$
Thus $d'(x_1, x_2) = 0 \Rightarrow min(1, d(x_1, x_2)) = 0$
 $= min(1, d(x_1, x_2)) = 0$
Thus $d'(x_1, x_2) = 0 \Rightarrow min(1, d(x_1, x_2)) = 0$
 $= min(1, d(x_1, x_2)) = 0$
Thus $d'(x_1, x_2) = min(1, d(x_1, x_2))$
(M₃) Since $d'(x_1, x_2) = min(1, d(x_1, x_2))$
 $= min(1, d(x_2, x_1)) \Rightarrow d$ is metric on X .
 $= d'(x_2, x_1)$
(M₄) Since $d'(x_1, x_2) = min(1, d(x_1, x_2)) = d(x_1, x_2)$ (Say)
 $d'(x_1, x_2) = min(1, d(x_1, x_2)) = d(x_1, x_2)$ (Say)
 $d'(x_1, x_2) = min(1, d(x_1, x_2)) = d(x_1, x_3)$ (Say)
 $d'(x_1, x_2) + d'(x_2, x_3) \ge d'(x_1, x_3)$
 $= d'(x_1, x_2)$
We get he same result in the remaining cases.
 A' is a metric on X .

$$\begin{array}{l} \underbrace{ \begin{array}{l} \textbf{Question} \\ \text{Let} (X_1, d_1) \text{ and} (X_2, d_2) \text{ be two metric space:} \\ \text{Define } d''[(x_1, x_2), (y_1, y_2)] = \sum_{i=1}^{2} d_i(x_i, y_i) \cdot \mathbf{Ig} d' \text{ a metric on } X_1 \times X_2. \end{array}} \\ \begin{array}{l} \textbf{Solution} \\ \text{Here function } d': X_1 \times X_2 \rightarrow R \text{ is defined as} \\ d''[(x_1, x_2), (y_1, y_2)] = \sum_{i=1}^{2} d_i(X_i, y_i) \\ = d_i(X_1, y_i) + d_2(X_2, y_2) \geq 0 \\ & : \quad d_i(x_1, y_1) = 0, (d_2(X_2, y_2) \geq 0) \\ & : \quad d_i(x_1, y_1) \geq 0, (d_2(X_2, y_2) \geq 0) \\ & : \quad d_i(x_1, y_2), (y_1, y_2)) \geq 0 \\ \end{array} \\ \begin{array}{l} (M_2) \text{ Let } d'((x_1, x_2), (y_1, y_2)) \geq 0 \\ \Rightarrow d_1(x_1, y_1) = 0, d_2(X_2, y_2) = 0 \\ \Rightarrow d_1(x_1, y_1) = 0, d_2(X_2, y_2) = 0 \\ \Rightarrow d_1(x_1, y_1) = 0, d_2(X_2, y_2) = 0 \\ \Rightarrow x_1 = y_1, \quad x_2 = y_2 \\ & : \quad d_i(X_2, y_2) = (X_1, X_2) = (X_2, Y_2) = 0 \\ & \Rightarrow d_1(X_1, y_1) = 0, d_2(X_2, y_2) = 0 \\ & \Rightarrow d_1(X_1, y_1) = 0, d_2(X_2, y_2) = 0 \\ & \Rightarrow d_1(X_1, y_2) = (X_1, X_2) = (X_2, Y_2) \\ \text{Let } (x_1, x_2) = (y_1, y_2) \Rightarrow x_1 = y_1, \quad x_2 = y_2 \\ & \Rightarrow d_1(X_1, y_1) = 0, d_2(X_2, y_2) = 0 \\ & \Rightarrow d_1(X_1, y_1) + d_2(X_2, y_2) = 0 \\ & \Rightarrow d_1(X_1, y_1) + d_2(X_2, y_2) = 0 \\ & \Rightarrow d_1(X_1, y_1) + d_2(X_2, y_2) = 0 \\ & \Rightarrow d'((x_1, x_2), (y_1, y_2)) = 0 \Rightarrow (x_1, x_1) = (y_1, y_2) \\ \end{array} \\ \begin{array}{l} (M_3) \text{ Since } d'((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(X_2, y_2) \\ & = d_1((y_1, y_2), (x_1, x_2)) \\ & d'((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(Y_2, y_2) \\ & = d_1((y_1, y_2), (x_1, x_2)) \\ \end{array} \\ \begin{array}{l} (M_4) \text{ Since } d'((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(Y_2, x_2) \\ & = d_1((y_1, y_2), (x_1, x_2)) \\ & d_1((y_1, y_2), (x_1, x_2)) = d_1(x_1, y_1) + d_2(y_2, x_2) \\ & = d_1((y_1, y_1) + d_2(y_2, x_2) \\ & = d_1((y_1, y_1) + d_2(y_2, x_2) \\ & = d_1(x_1, y_1) + d_2(y$$

Ouestion Let (X_1, d_1) and (X_2, d_2) be two metric spaces. Let $d''[(x_1, x_2), (y_1, y_2)] = max (d_1(x_1, y_1), d_2(x_2, y_2)).$ Is d'' a metric on $X_1 \times X_2$. Solution Here function $d'': X_1 \times X_2 \to R$ is defined as $d''[(x_1, x_2), (y_1, y_2)] = max \left(d_1(x_1, y_1), d_2(x_2, y_2) \right)$ Since $max(d_1(x_1, y_1) + d_2(x_2, y_2) \ge 0)$ $(M_1)^{-1}$ $d_1(x_1, y_1) \ge 0, \quad d_2(x_2, y_2) \ge 0$.. \therefore d_1, d_2 are metrics on X_1 and X_2 respectively :. $d''((x_1, x_2), (y_1, y_2)) \ge 0$. (M_2) Let $d''((x_1, x_2), (y_1, y_2)) = 0 \implies max(d_1(x_1, y_1), d_2(x_2, y_2)) = 0$ $\Rightarrow d_1(x_1, y_1) = 0, \quad d_2(x_2, y_2) = 0$ $\Rightarrow \quad x_1 = y_1, \qquad x_2 = y_2$ (:: d_1 , d_2 are metrics on X_1 , X_2 respectively) $\Rightarrow (x_1, x_2) = (y_1, y_2)^{\top}$ $x_1 = y_1, \qquad x_2 = y_2$ Let $(x_1, x_2) = (y_1, y_2)$ ⇒ $d_1(x_1, y_1) = 0, \quad d_2(x_2, y_2) = 0$ ⇒ (:: d_1, d_2 are metrics on X_1, X_2 respectively) $max(d_1(x_1, y_1), d_2(x_2, y_2)) = 0$ ⇒ $\Rightarrow d''((x_1, x_2), (y_1, y_2)) = 0$ $d''((x_1, x_2), (y_1, y_2)) = 0 \iff (x_1, x_2) = (y_1, y_2).$ (M₃) Since $d''[(x_1, x_2), (y_1, y_2)] = max(d_1(x_1, y_1), d_2(x_2, y_2))$ $= max (d_1(y_1, x_1), d_2(y_2, x_2))$ $(: d_1, d_2 \text{ are metrics on } X_1, X_2 \text{ respectively})$ $= d''((y_1, y_2), (x_1, x_2))$ (M₄) Let $d''[(x_1, x_2), (y_1, y_2)] = max(d_1(x_1, y_1), d_2(x_2, y_2)) = d_1(x_1, y_1)$ (Say) $d''[(y_1, y_2), (z_1, z_2)] = max (d_1(y_1, z_1), d_2(y_2, z_2)) = d_1(y_1, z_1)$ (Say) $d''[(x_1, x_2), (z_1, z_2)] = max (d_1(x_1, z_1), d_2(x_2, z_2)) = d_1(x_1, z_1)$ (Say) Since d_1 is a metric on X_1 . : $d_1(x_1, y_1) + d_1(y_1, z_1) \ge d_1(x_1, z_1)$ $\Rightarrow d''[(x_1, x_2), (y_1, y_2)] + d''[(y_1, y_2), (z_1, z_2)] \ge d''[(x_1, x_2), (z_1, z_2)]$ (We get the same result in the remaining cases.) d'' is a metric on $X_1 \times X_2$.

Let (X, d) be a metric space and let $d': X \times X \to R$ be given by $d'(x_1, x_2) = \frac{d(x_1, x_2)}{1 + d(x_1, x_2)}$. Prove that d' is metric on X. Solution Here function $d': X \times X \to R$ be defined by $d'(x_1, x_2) = \frac{d(x_1, x_2)}{1 + d(x_1, x_2)}$ (M₁) Since $\frac{d(x_1, x_2)}{1 + d(x_1, x_2)} \ge 0$ $\therefore \quad d(x_1, x_2) \ge 0$ $\therefore \quad d \text{ is a metric on } X$. $\therefore \quad d'(x_1, x_2) \ge 0$ (M₂) Let $d'(x_1, x_2) = 0 \Rightarrow \frac{d(x_1, x_2)}{1 + d(x_1, x_2)} = 0$ $\Rightarrow \quad d(x_1, x_2) = 0$

 $\Rightarrow x_1 = x_2 \quad (\because d \text{ is } \land \text{ metric on } X.)$ Let $x_1 = x_2 \quad \Rightarrow \quad d(x_1, x_2) = 0 \quad (\because d \text{ is a metric on } X.)$ $\Rightarrow \quad \frac{d(x_1, x_2)}{1 + d(x_1, x_2)} = 0$ $\Rightarrow \quad d'(x_1, x_2) = 0$

Thus
$$d'(x_1, x_2) = 0 \iff x_1 = x_2$$

(M₃) Since $d'(x_1, x_2) = \frac{d(x_1, x_2)}{1 + d(x_1, x_2)} \qquad : \quad cd \quad is metric on \mathcal{H}
 $= \frac{d(x_2, x_1)}{1 + d(x_2, x_1)}$
 $= d'(x_2, x_1)$$

(M₄) Since
$$d'(x_1, x_2) = \frac{d(x_1, x_2)}{1 + d(x_1, x_2)}$$

 $d'(x_2, x_3) = \frac{d(x_2, x_3)}{1 + d(x_2, x_3)}$
 $d'(x_1, x_3) = \frac{d(x_1, x_3)}{1 + d(x_1, x_3)}$

Now $d'(x_1, x_2) + d'(x_2, x_3) = \frac{d(x_1, x_2)}{1 + d(x_1, x_2)} + \frac{d(\mathbf{x}_2, x_3)}{1 + d(x_2, x_3)}$ $\geq \frac{d(x_1, x_2)}{1 + d(x_1, x_2) + d(x_2, \mathbf{x}_4)} + \frac{d(x_2, x_3)}{1 + d(x_1, x_2) + d(x_2, x_3)}$ $= \frac{d(x_1, x_2) + d(x_2, x_3)}{1 + d(x_1, x_2) + d(x_2, \mathbf{x}_4)}$ $\therefore d'(x_1, x_2) + d'(x_2, x_3) \geq \frac{d(x_1, x_3)}{1 + d(x_1, x_3)} \left(\begin{array}{c} \vdots & d(x_1, \mathbf{x}_2) + d(x_2, \mathbf{x}_3) \\ \vdots & d \text{ is a metric on } X. \end{array} \right)$ $= d'(x_1, x_3)$

 \therefore d' is a metric on X.

Ouestion

Let X = R and $d(x_1, x_2) = |x_1| + |x_2|$. Show that d is not a metric on R. Solution

Let $d(x_1, x_2) = 0 \implies |x_1| + |x_2| = 0$ $\Rightarrow |x_1| = 0, \quad |x_2| = 0$ $\Rightarrow \quad x_1 = 0, \qquad x_2 = 0$ $\Rightarrow x_1 = x_2$ Let $x_1 = x_2 \implies |x_1| = |x_2|$ \Rightarrow $|x_1| + |x_2| = |x_2| + |x_2|$ (Adding $|x_2|$ both sides) $\Rightarrow d(x_1, x_2) = 2|x_2|$ $\Rightarrow d(x_1, x_2) = 0$ if $|x_2| = 0$ i.e. $d(x_1, x_2)$ is not always zero.

 \therefore *d* is not a metric on *X*.

Question

Let X = R and $d(x_1, x_2) = max(|x_1|, |x_2|)$. Show that d is not a metric on R.

Solution

 $\overline{f} \text{Let } d(x_1, x_2) = 0 \implies max(|x_1|, |x_2|) = 0$ $\Rightarrow |x_1| = 0, \quad |x_2| = 0$ $\Rightarrow \quad x_1 = 0, \qquad x_2 = 0$ $\Rightarrow x_1 = x_2$ Let $x_1 = x_2 \implies |x_1| = |x_2|$ $\Rightarrow max(|x_1|, |x_2|) = |x_2|$ $\Rightarrow d(x_1, x_2) = 0$ if $|x_2| = 0$ i.e. $d(x_1, x_2)$ is not always zero.

Thus d is not a metric on X.

Question

Let (X, d) be a metric space and let $d'': X \times X \to R$ be given by $d''(x_1, x_2) = \frac{1 - d(x_1, x_2)}{1 + d(x_1, x_2)}$. Prove that d'' is metric on X.

Solution

Let $d''(x_1, x_2) = 0 \implies \frac{1 - d(x_1, x_2)}{1 + d(x_1, x_2)} = 0$ $\Rightarrow \quad 1 - d(x_1, x_2) = 0$ \Rightarrow $d(x_1, x_2) = 1$ $\Rightarrow x_1 \neq x_2$ \therefore *d* is a metric on *X* and $d(x_1, x_2) = 0 \iff x_1 = x_2$

Thus $d''(x_1, x_2) = 0 \Rightarrow x_1 = x_2$

Thus d'' is not a metric on X.

OPEN SPHERE

<u>Open sphere</u>

Let (X, d) be a metric space. Let $x_o \in X$ and r > 0, then open sphere with centre at x_o and radius equal to r is denoted by $S_r(x_o)$ and is defined as $S_r(x_o) = \{x | x \in X, d(x, x_o) < r\}$

> Available at www.mathcity.

<u>Note</u>

(i) Let $X = \{x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$ and r > 0

Then by definition of open sphere $S_r(x_0) = \{x_0, x_1, x_6\}$

- (ii) $S_r(x_\circ) \subseteq X$
- (iii) $S_r(x_{\circ}) \neq \phi$
- (iv) Here we shall study the open spheres of the following shapes.
 - (a) Open interval (b) Open disc (c) Open ball

The shape of an open sphere depends upon the metric space (X, d). **Example**

Let R be the metric space. Let $x_0 = 1$, $r = \frac{1}{2}$. Find $S_1(1)$.

Solution

Here metric space is (R, d), where metric $d: R \times R \to R$ is defined as $d(x_1, x_2) = |x_1 - x_2|$ We know that $S_r(x_o) = \{x | x \in X, \ d(x, x_o) < r\}$ Put X = R, $x_o = 1$, $r = \frac{1}{2}$ $\therefore S_{\frac{1}{2}}(1) = \{x | x \in R, \ d(x, 1) < \frac{1}{2}\}$ $= \{x | x \in R, \ |x - 1| < \frac{1}{2}\}$ $= \{x | x \in R, \ x - 1 < \frac{1}{2}, \ x - 1 > -\frac{1}{2}\}$ $= \{x | x \in R, \ x < 1 + \frac{1}{2}, \ x > 1 - \frac{1}{2}\}$ $= \{x | x \in R, \ \frac{1}{2} < x < \frac{3}{2}\}$ $=] \frac{1}{2}, \frac{3}{2}[$ Open sphere in this case is an open interval. $\frac{1}{2}$ $\frac{1}{2}$ $x \in S$ Note

An open sphere in a usual metric space R is always an "open interval". **Example**

Let the metric space be R^2 and let $P_\circ = (a, b)$ and r = 1. Find $S_r(P_\circ)$. Solution

Here metric space is (R, d), where metric $d: R \times R \to R$ is defined as $d[(x_1, y_1), (x_2, y_2)] = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ We know that $S_r(P_\circ) = \{ P | P \in X, \ d(P, P_\circ) < r \}$ Put $X = R^2$, $P_\circ = (a, b)$, P = (x, y), r = 1

$$S_{1}(a,b) = \{ (x,y) | (x,y) \in \mathbb{R}^{2}, d((x,y), (a,b)) < 1 \}$$

= $\{ (x,y) | (x,y) \in \mathbb{R}^{2}, \sqrt{(x-a)^{2} + (y-b)^{2}} < 1 \}$
= $\{ (x,y) | (x,y) \in \mathbb{R}^{2}, (x-a)^{2} + (y-b)^{2} < 1 \}$

This is an open disc with centre at (a, b) and radius 1.

Note

An open sphere in a usual metric space R^2 is always an "open disc". **Example**

Let the metric space be R^2 and d_1 be the metric on R^2 defined by $d_1(P_1, P_2) = |x_1 - x_2| + |y_1 - y_2|$.

Let $P_{\circ} = (0, 0)$ and $r = \frac{1}{\sqrt{2}}$. Find $S_r(x_{\circ})$.

Solution

Here metric space is (R^2, d_1) , where metric $d_1: R^2 \times R^2 \rightarrow R$ is defined as $d_1[(x_1, y_1), (x_2, y_2)] = |x_1 - x_2| + |x_1 - x_2|$ We know that $S_r(P_\circ) = \{P | P \in X, \ d(P, P_\circ) < r\}$ Put $X = R^2, \ P_\circ = (0,0), \ P = (x, y), \ r = \frac{1}{\sqrt{2}}$

$$S_{\frac{1}{\sqrt{2}}}(0,0) = \left\{ (x,y) | (x,y) \in \mathbb{R}^{2}, \ d_{1}((x,y),(0,0)) < \frac{1}{\sqrt{2}} \right\}$$

$$= \left\{ (x,y) | (x,y) \in \mathbb{R}^{2}, \ |x-0| + |y-0| < \frac{1}{\sqrt{2}} \right\}$$

$$= \left\{ (x,y) | (x,y) \in \mathbb{R}^{2}, \ |x| + |y| < \frac{1}{\sqrt{2}} \right\} - End$$

$$= \left\{ (x,y) | (x,y) \in \mathbb{R}^{2}, \ \pm x \pm y < \frac{1}{\sqrt{2}} \right\}$$

$$= \left\{ (x,y) | (x,y) \in \mathbb{R}^{2}, \ \frac{x}{\pm \frac{1}{\sqrt{2}}} \pm \frac{y}{\pm \frac{1}{\sqrt{2}}} < 1 \right\}$$

This is an open square with x-intercepts $\frac{1}{\sqrt{2}}$, $-\frac{1}{\sqrt{2}}$ and y-intercepts $\frac{1}{\sqrt{2}}$, $-\frac{1}{\sqrt{2}}$

<u>Example</u>

Let (X, d_{\circ}) be a discrete metric space. Let $x_{c} \in X$ and r > 0

Find $S_r(x_{\circ})$, when (i) $r \leq 1$ (ii) r > 1Solution

Here metric space is (X, d_{\circ}) , where $d_{\circ}: X \times X \to R$ is defined by

$$d_{\circ}(x_1, x_2) = \begin{cases} 0 & \text{if } x_1 = x_2 \\ 1 & \text{if } x_1 \neq x_2 \end{cases}$$

We know that

$$S_r(x_{\circ}) = \{ x | x \in X, \ d(x, x_{\circ}) < r \} - ----- (1)$$

<u>When *r* ≤ 1</u>

If $x \neq x_{\circ}$ then from equation (1) we g t 1 < r (False)

If $x = x_{\circ}$ then from equation (1) we get $\circ < r$ (True)

Thus $S_r(x_{\circ}) = \{ x | x \in X, x = x_{\circ} \} = \{ x_{\circ} \}$

When r > 1

If $x \neq x_{\circ}$ then from equation (1) we g t 1 < r (True) If $x = x_{\circ}$ then from equation (1) we g t 0 < r (True) Thus $S_r(x_{\circ}) = \{ x | x \in X, x = x_{\circ} \text{ or } \chi \neq x_{\circ} \}$ $= \{ x | x \in X, x = x_{\circ} \} \cup \{ c | x \in X, x \neq x_{\circ} \}$ $= \{ x_{\circ} \} \cup X - \{ x_{\circ} \}$ = X

Note

From above example we conclude that

- (i) An open sphere with radius less than or e ual to 1 in a discrete metric space is always singleton.
- (ii) An open sphere with radius greater than in a discrete metric space is always the full space *X*.

Ouestion

Let C be the set of all complex numbers and let $d: C \times C \rightarrow R$ be defined by $d(z_1, z_2) = |z_1 - z_2|$. Find $S_r(x_0)$ when $x_0 = 1$, r = 0.01Solution

The given metric space is (C, d), where $d: C \times C \rightarrow R$ be defined by

$$d(z_{1}, z_{2}) = |z_{1} - z_{2}|$$
Now $S_{r}(x_{\circ}) = \{x | x \in X, \ d(x, x_{\circ}) < r\}$
Put $X = C$, $x_{\circ} = 1$ $r = 0.01$
 $\therefore S_{0.01}(1) = \{x | x \in C, \ d(x, 1) < 0.01\}$
 $= \{x | x \in C, \ |x - 1| < 0.01\}$ (1) $/x - 1/2 \ 0.01$
 $f(x - i) \neq 0.01$
Since $\cdot x \in C$ $\therefore x = a + ib$
 $\Rightarrow x - 1 = a + ib - 1$
 $\Rightarrow x - 1 = (a - 1) + ib$
 $\Rightarrow |x - 1| = \sqrt{(a - 1)^{2} + b^{2}}$
 $\therefore (1) \Rightarrow S_{0.01}(1) = \{(a + ib)|(a + ib) \in C, \ \sqrt{(a - 1)^{2} + b^{2}} < 0.01\}$
 $= \{(a + ib)|(a + ib) \in C, (a - 1)^{2} + (b - 0)^{2} < (.01)^{2}\}$

This is an open disc with centre at (1,0) and radius equal to 0.01.

Question

Let *d* be a metric on *X* and let $d': X \times X \rightarrow R$ be given by $d'(x_1, x_2) = min(1, d(x_1, x_2))$. Describe $S_r(x_0)$.

Solution

Here given metric space is (X, d'), where $d': X \times X \rightarrow R$ be given by

$$d'(x_1, x_2) = \min(1, d(x_1, x_2))$$

$$S_r(x_{\circ}) = \{ x | x \in X, d'(x, x_{\circ}) < r \}$$

 $= \{ x | x \in X, \min (1, d(x_1, x_2)) < r \}$

This is the required open sphere.

Question

Let (X, d) be a metric space and let $d': X \times X \to R$ be given by $d'(x_1, x_2) = \frac{d(x_1, x_2)}{1 + d(x_1, x_2)}$. Describe $S_r(x_\circ)$.

Solution

Now

Here given metric space is (X, d'), where $d': X \times X \to R$ be given by

$$d'(x_1, x_2) = \frac{d(x_1, x_2)}{1 + d(x_1, x_2)}$$
$$S_r(x_o) = \{ x | x \in X, \ d'(x, x_o) < r \}$$
$$= \{ x | x \in X, \ \frac{d(x_1, x_2)}{1 + d(x_1, x_2)} < r \}$$

This is the required open sphere.

Theorem

Let x_1, x_2 be any two distinct points of a **r** stric space X. Prove that there exist two open spheres $S_{r_1}(x_1)$ and $S_{-2}(x_2)$ in X such that $S_{r_1}(x_1) \cap S_{r_2}(x_2) = \phi$

2¹⁸

Proof Let $S_{r_1}(x_1)$ and $S_{r_2}(x_2)$ be two open spheres with centers x_1 and x_2 and radii r_1 and r_2 respectively. Let $d(x_1, x_2) = r_1 + r_2$ We are to prove that $S_{r_2}(x_2)$ $S_{r_1}(x_1) \cap S_{r_2}(x_2) = \phi$ X We shall prove it by contradiction method. $S_{r_1}(x_1) \cap S_{r_2}(x_2) \neq \phi$ Suppose Let $x \in S_{r_1}(x_1) \cap S_{r_2}(x_2)$ \Rightarrow $x \in S_{r_1}(x_1)$ and $x \in S_{r_2}(x_2)$ \Rightarrow $d(x, x_1) < r_1$ and $d(x, x_2) < r_2$ (11 X, d) Since $r_1 + r_2 = d(x_1, x_2) \le d(x_1, x) + d(x, \chi_2)$ bet $\chi_1 \ dx_2 \ be any two$ $<math>Pts \ q \ a \ metric \ space \ X$ \therefore d is a metric on X. let Sr(7,) at Sr(X,) be any x2 open spheres m X $\Rightarrow \quad r_1 + r_2 \le d(x_1, x) + d(x, x_2)$ To prove $S_{r}(X_{1}) \cap S_{\chi}(X_{1}) = \emptyset$ $\Rightarrow \quad r_1 + r_2 < r_1 + r_2$ [By (1)] let XES, (X1) NS, (X) Thus by trians le mequality It is impossible. Thus our supposition $S_{r_1}(x_1) \cap S_{r_2}(x_2) \neq \phi$ i wrong. Then $d(x_1, x_1) \leq d(x_1, x) + d(x_1, x_1)$ Hence $S_{r_1}(x_1) \cap S_{r_2}(x_2) = \phi$ AtR2 E AtA2 $: \mathcal{O}(\mathbf{x}_1, \mathbf{x}_2) = \mathbf{n}_1 + \mathbf{n}_2 - \mathbf{O}$ This our supposition Syl(x,) (\$, (x,)) DAWOOD MATH STUD' (CENTRE = 0

NEAR G.P.O LAYYAH Available at www.mathcity.org

 $\delta r_i(X_1) \cap \delta r_i(X_2) = \phi$

10 wrong # \$

A subset Il of a metric space (X,d) is called an for eveny19 x E H there exists a real wo, such that XES.(X) = H open set Numbér OPEN SET

Open Set

Let (X, d) be a metric space. Let $U \subseteq X$. The U is called an open set, if for each $x \in U$, $\exists r > 0$, such that $S_r(x) \subseteq U$.

i.e. U is called an open set, if each point of U is the centre of some open sphere, which is contained in U.

U is an open set.

Example

Let R be a usual metric space (The ordinary real number line) and let U=]0, 1[, then show that U is open.

Solution

Here metric space is (R, d), where $d: R \times R \rightarrow R$ is given by

$$d(x_{1}, x_{2}) = |x_{1} - x_{2}|$$
Let $x_{\circ} \in U, r$. Let $r > 0$
Then $S_{r}(x_{\circ}) = \{x | x \in R, \ d(x, x_{\circ}) < r\}$
 $i = \{x | x \in R, \ |x - x_{\circ}| < r\}$
 $= \{x | x \in R, \ |x - x_{\circ}| < r\}$

$$= \{x \mid x \in P, x < x, x < r, x < r, r < r < r\}$$

$$= \{ x | x \in R, \ x_{\circ} - r < x < x_{\circ} + r \}$$

$$=]x_{\circ} - r, x_{\circ} + r[$$

We can find a value of r for which $S_r(x_\circ) =]x_\circ - r, x_\circ + r[\subseteq U=]0,1[$ Thus U=]0,1[is an open set.

Note

In the above example if we take $x_{\circ} = 0.99$. Let r = 0.001

Then $S_{0.001}(0.99) =]0.99 - 0.001, 0.99 + 0.001[= |0.981, 0.991[\subseteq]0, 1[$

$$F(x) = \frac{1}{2}$$

$$F(x)$$

Theorem

Every non-empty subset of a discrete metric space is open.

Proof

Let (X, d_{\circ}) be a discrete metric space.

Let $U \subseteq X$ such that $U \neq \phi$

We shall prove that U is an open set.

Let $x_{\circ} \in U$.

Let 0 < r < 1

Then

 $S_r(x_{\circ}) = \{ x | x \in X, \ d(x, x_{\circ}) < r \}$

 $= \{ x_{\circ} \}.$

The open sphere in a discrete metric space, whose radius is less

then 1, is always singleton. take centre
Since
$$S_r(x_o) = \{x_o\} \subseteq U$$
 D Centre point

U is an open set.

Example

Let R be a usual metric space (The ordinary real number line) and let $U = \{0\}$, then show that U is open.

Solution

Here metric space is (R, d), where $d: R \times R \rightarrow R$ is given by

$$d(x_1, x_2) = |x_1 - x_2|$$

 $U = \{ 0 \}$ Here

Let $x_{\circ} = 0 \in U$, Let r > 0Then $S_r(0) = \{x | x \in R, d(x, 0) < r\}$ $= \{ x | x \in R, |x - 0| < r \}$ $= \{x | x \in R, |x| < r\}$ $= \{x | x \in R, x < r, x > -r\}$ $= \{x | x \in R, -r < x < r\}$ =] - r , + r[

We can find a value of r for which $S_r(0) =] - r$, $+r[\not\subseteq U = \{ 0 \}$ Thus $U = \{ 0 \}$ is not an open set.

Theorem

Let (X, d) be a metric space, then

Union of any collection { U_{α} : $\alpha \in I$ } of ϕ pen sets is open. (i)

22

Intersection of finite number of open sets is open. (ii)

(iii) The Whole space X and the empty set ϕ are both open. Proof

Let { $U_{\alpha} : \alpha \in I$ } be any collection of open sets in (*X*, *d*). (i)

We are to prove that, $\bigcup_{\alpha \in I} U_{\alpha}$ is an open set.

Let $x \in \bigcup_{\alpha \in I} U_{\alpha}$

Then $x \in U_{\alpha}$ for some $\alpha \in I$

Since each U_{α} is an open set therefore there $e_{\mathbf{x}}$ ist r > 0

Such that $S_r(x) \subseteq U_\alpha$ for some $\alpha \in I$

- $\Rightarrow S_r(x) \subseteq \bigcup_{\alpha \in I} U_{\alpha}$
- $\Rightarrow \bigcup_{\alpha \in I} U_{\alpha}$ is an open set.

Let { $U_{\alpha} : \alpha = 1, 2, ..., n$ } be finite collectic **n** of open sets in (*X*, *d*). **(ii)**

We are to prove that $\bigcap_{\alpha = 1} U_{\alpha}$ is an open set.

Let	$x \in \bigcap_{\alpha = 1}^{n} U_{\alpha}$	ζ
⇒	$x \in U_{\alpha}$	$\forall \alpha = 1, 2, \dots, n$

Since each U_{α} is an open set therefore there exist r > 0

Such that $S_{r_{\alpha}}(x) \subseteq U_{\alpha} \quad \forall \ \alpha = 1, 2, ..., n$

Let $r = min \{r_1, r_2, r_3, \dots, r_n\}$

 $S_r(x) \subseteq S_{r_\alpha}(x) \subseteq U_\alpha \quad \forall \ \alpha = 1, 2, \dots, n$ Then $\Rightarrow \quad S_r(x) \subseteq U_\alpha \quad \forall \ \alpha = 1, 2, \dots, n$ $\Rightarrow \quad S_r(x) \subseteq \bigcap_{\alpha = 1}^{n} U_{\alpha}$ ⇒

 $\bigcap_{\alpha = 1} U_{\alpha} \text{ is an open set.}$

(iii) To show that empty set ϕ is an open set, we have to show that each point in ϕ is the centre of some open sphere which is contained in ϕ . But since there is no point in ϕ , the condition is automatically satisfied.

Hence ϕ is an open set.

Since every open sphere centered at a point of *X* is contained in *X*. \therefore X is an open set.

An open sphere in a metric space (X, d) is an open set.

Proof

open spheres.

Proof

Let (X, d) be a metric space. Let $U \subseteq X$. We have to prove that

U is an open set \Leftrightarrow U is the union of open spheres.

We suppose that U is an open set. Since U is open therefore each point of U is the centre of some open sphere which is contained in U. Thus U is the union of open spheres.

Conversely suppose that U is the union of open spheres. Thus U is the union of open sets (: Open spheres in metric space are open sets.)

Since the union of any number of open sets in a metric space is an open set. Thus U is an open set.

IneoremLet X be a metric space and let $\{x_o\}$ be a syngleton subset of X.
Then $X - \{x_o\}$ is open.**Proof**
Let $x \in X - \{x_o\}$
Let $d(x, x_o) = r$ ------ (1)
We shall prove that
 $S_r(x) \subseteq X - \{x_o\}$
Let $x' \in S_r(x)$
 $\Rightarrow d(x', x) < r$ ------- (2)

 $\Rightarrow d(x, x') \neq d(x, x_{\circ}) \quad [: d \text{ is a metric on } X. \text{ So } d(x', x) = d(x, x')]$ $\Rightarrow x' \neq x_{\circ}$

$$\Rightarrow x' \notin \{x_{\circ}\}$$

$$\Rightarrow \qquad x' \in X - \{x_{\circ}\}$$

From (1) and (2) we get

 \Rightarrow $d(x', x) \neq d(x, x_{\circ})$

Since $x' \in S_r(x) \implies x' \in X - \{x_\circ\}$

 $\therefore \quad S_r(x) \subseteq X - \{x_\circ\}$

Since every point x of $X - \{x_o\}$ is the centre of some open ophen contained in $X - \{x_o\}$.

'Hence $X - \{x_o\}$ is an open set.

Question >>>B

Can a finite subset of a metric space be open? <u>Solution</u>

We know that

(i) If (X, d_{\circ}) is a discrete metric space, then every subset of X is open. Therefore a finite subset of a metric space is **o**pen.

(ii) If (R, d) is a usual metric space then $\{0\} \subseteq R$, is not open.

Therefore a finite subset {0} of *R* is not open.

Thus in general, we can say that, finite subs**e**t of a metric space may or may not open.

Metric Topology

The topology determined by a metric is called "metric topology".

Check in Past Paper-25

Theorem

T is a collection of all open sets in a metric space (X, d), then T is a topology on X.

OR

A "metric space" is a topological space.

Proof

Let χ be the collection of all open sets in a metric space (X, d). We are to prove that, T is a topology on X.

$$(T_1) \qquad \text{Let } U_{\alpha} \in T \quad \forall \ \alpha \in I$$

 $\Rightarrow \quad \bigvee_{\alpha} \text{ is an open set. } \forall \ \alpha \in I$

$$\Rightarrow \quad \alpha \in U_{\alpha} \text{ is open.}$$

(: Union of any number of open sets is open.)

$$\bigcup_{\alpha \in I} U_{\alpha} \in T$$

$$(T_2)$$

⇒

 \Rightarrow

 $\forall \alpha = 1, 2, \dots n$ $\Rightarrow \cap U_{\alpha} \text{ is an open set.}$

$$\alpha = 1$$

Let $U_{\alpha} \in T$

(:: Intersection of finite number of open sets is open.)

$$\bigcap_{\alpha = 1}^{n} U_{\alpha} \in \mathbf{T} \qquad (By \text{ definition of } \mathbf{T})$$

(T₃) Since ϕ , X both are open.

(By definition of T) $\phi, X \in \mathbb{T}$...

Thus T is a topology on X.

i.e. (X, T) is a topological space.

This shows that a "metric space" \is a "topological space" whose topology is "metric topology".

Theorem

Every non-empty set can be given a metric topology.

Proof

We know that

Every non-empty set can be given a metric and can be converted into (i) metric space.

Therefore a finite subset of a nietric space is open.

Every "metric space" is a "topological space" whose topology is a (ii) "metric topology".

Thus from (i) and (ii) we conclude that every non-empty set can be given a metric topology.

CLOSED SE T

Closed Set

X-F

. . .

Let (X, d) be a metric space. Let $F \subseteq X$.

Then F is closed
$$\Leftrightarrow$$
 $F' = X - F$ is open
le comp librari

Example

Tin E

Let X = R be the metric space and let A = [a, b], where $a, b \in R$, & a < b. Show that A is closed set.

Solution

The given metric space is (R, d), where $d: R \times R \rightarrow R$ is given by

In order to prove *A* is closed; we will have **b** prove that *A*' is open.

Let
$$x' \in A' \implies x' \in L_a \cup R_b$$

 $\implies x' \in L_a$ or $x' \in R_b$
Case-I If $x' \in L_a$ then $x' < a$
Let $d(x', a) = r$
 $\implies |x' - a| = r$
 $\implies x' - a = -r \implies x' < a$
 $\implies x' + r = a$ (1)
Now $S_r(x') = \{x|x \in R, d(x, x') < r\}$
 $= \{x|x \in R, |x - x'| < r\}$
 $= \{x|x \in R, x - x' < r, x - x' > -r\}$
 $= \{x|x \in R, x - x' < r, x - x' > -r\}$
 $= \{x|x \in R, x - x' < r, x - x' > -r\}$
 $= \{x|x \in R, x - x' < r, x - x' > -r\}$
 $= \{x|x \in R, x' - r < x < x' + r\}$
 $=]x' - r, x' + r[$
 $=]x' - r, a[$ [By (1)]
Thus $S_r(x') =]x' - r, a] \subseteq L_a \subseteq L_a \cup R_b = A'$
i.e. $S_r(x') \subseteq A'$
Hence in this case A' is open.

Hence in this case A' is open.

Let
$$d(x', b) = r$$

$$\Rightarrow |x' - b| = r$$

$$\Rightarrow x' - b = r \quad \because x' > b$$

$$\Rightarrow x' - r = b \qquad (2)$$
Now $S_r(x') = \{x | x \in R, d(x, x') < r\}$

$$= \{x | x \in R, |x - x'| < r\}$$

$$= \{x | x \in R, x - x' < r, x - x' > -r\}$$

$$= \{x | x \in R, x < x' + r, x > x' - r\}$$

$$= \{x | x \in R, x' - r < x < x' + r\}$$

$$=]x' - r, x' + r[$$

$$=]b, x' + r[[By (2)]$$

$$(x_0, x') = [By (2)]$$

Thus $S_r(x') = b$, $x' + r [\subseteq R_b \subseteq L_a \cup R_b = A']$ i.e. $S_r(x') \subseteq A'$

Hence in this case A' is also open.

Since in both the cases A' is open. Therefore A is closed set.

Example

IN

Let R^2 be the metric space.

Let $F = \{ (x, y) | (x, y) \in \mathbb{R}^2, (x - a)^2 + (y - b)^2 \leq 1 \}.$ Show that F is closed set.

Solution

Here given metric space is (R^2, d) where $d: R^2 \times R^2 \rightarrow R$ is

given by $d[(x_1, y_1), (x_2, y_2)] = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ Here $F = \{ (x, y) | (x, y) \in R^2, (x - a)^2 + (y - b)^2 \le 1 \}$ Thus $F' = \{ (x, y) | (x, y) \in R^2, (x - a)^2 + (y - b)^2 > 1 \}$

In order to prove that F is closed, we will show that F' is open.

Let $P' \in F'$. Let $d(P', P_o) = \lambda$ Let $r = \lambda - 1$, clearly r > 0We shall prove that $S_r(P') \subseteq F'$ Let $P \in S_r(P') \Rightarrow d(P, P') < r$ Since d is a metric on \mathbb{R}^2 $\therefore d(P', P) + d(P, P_o) \ge d(P', P_o)$

Gt PEFX 28 : 17 d(PiP) construct an open sphere centred at Pand having $r + d(P, P_{\circ}) > \lambda$ \Rightarrow $d(P, P_{\circ}) > \lambda - r$ ⇒ Applias A Such, Hel dCB, P) = A $d(P, P_{\circ}) > \underline{\lambda - (\lambda - 1)} = 1$ \Rightarrow (1 - (1 - 1))(1 - 1 + 1 = 1) $d(P, P_{\circ}) > 1$ \Rightarrow $P \in F'$ ⇒ take apt PES (P) Since $P \in S_r(P') \Rightarrow P \in F'$ such that d(P, P) L No $S_r(P') \subseteq F'$ *.*.. $\vec{F'}$ is an open set. Jom the post Rs, aith pelp In this way we get weiter triangle *F* is closed set. Form toingle neguly Example Let R^2 be the metric space. Let $A = \{ (x, y) | (x, y) \in \mathbb{R}^2, x^2 + y^2 \leq 1 \}$ be a subset of \mathbb{R}^2 . Is A a closed set in \mathbb{R}^2 ? $\mathcal{A}(\mathcal{P}, \mathcal{P}) \neq \mathcal{A}(\mathcal{P}, \mathcal{P}) \neq \mathcal{A}(\mathcal{P}, \mathcal{P})$ Here given metric space is (R^2, d) where $d: R^2 \times R^2 \to R$ is Solution given by $d[(x_1, y_1), (x_2, y_2)] = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ Here $A = \{ (x, y) | (x, y) \in \mathbb{R}^2, x^2 + y^2 \leq 1 \}$ A = A - Ad(Po, P) CA+(1-1) Thus $A' = \{ (x, y) | (x, y) \in \mathbb{R}^2, x^2 + y^2 > 1 \}$ In order to prove that *A* is closed, we will show that *A* is open. a(Po, P)=1 Let $P' \in A'$. Let $d(P', 0) = \lambda$ PEF A' Let $r = \lambda - 1$, clearly r > 0PES(P') We shall prove that $S_r(P') \subseteq A'$ FCS,(P') Let $P \in S_r(P') \implies d(P, P') < r$ F is chief $S_r(P')$ Since *d* is a metric on \mathbb{R}^2 $\therefore d(P',P) + d(P,O) \ge d(P',O)$ R^2 $\Rightarrow r + d(P, 0) > \lambda \qquad \dots \land \neg d(p', p)$ $\Rightarrow \quad d(P,O) > \lambda - r$ $d(P, O) > \lambda - (\lambda - 1) = 1$ ⇒ d(P, 0) > 1⇒ $P \in A'$ Since $P \in S_r(P') \implies P \in A'$ $S_r(P') \subseteq A'$... \mathcal{A}' is an open set. A is closed set. ⇒

Example Let R be the real line and let $A = \{x | x \in R, 0 \le x < 1\}$, be a subset of R. Show that A is not closed. Solution The given metric space is (R, d), where $d: R \times R \rightarrow R$ is given by $d(x_1, x_2) = |x_1 - x_2|$ $A = \{ x | x \in R, 0 \le x < 1 \}$ Here = [0,1]A' = R - A*.*. $=] - \infty, 0 [\cup [1, \infty]]$ Note that, $1 \in A'$. We take $x_0 = 1$, and r > 0Then $S_r(x_{\circ}) = \{ x | x \in X, d(x, x_{\circ}) < r \}$ Put $x_{\circ} = 1$ and X = R $S_r(1) = \{ x | x \in R, d(x, 1) < r \}$ $= \{ x | x \in R, |x - 1| < r \}$ $= \{ x | x \in R, \ x - 1 < r, \ x - 1 > -r \}$ $= \{ x | x \in R, x < 1 + r, x > 1 - r \}$ $= \{ x | x \in R, 1 - r < x < 1 + r \}$ =]1-r, 1+r[But $S_r(1) =] 1 - r, 1 + r [\nsubseteq A' \quad \forall r > 0$ $S_r(1)$ Thus A' is not open. A is not closed. Theorem A subset U of a metric space is open if and only if X - U is closed. Proof A Subset F F' closed v 4 11 4 Let (X, d) be a metric space. We have to prove that *U* is open \Leftrightarrow *X* – *U* is closed. Suppose Uris an open set. : X-4=4 (X-U)' = (U')'Then = U(Open set) Since (X - U)' is an open set. X - U is a closed set. ... Conversely suppose that X - U is a closed set. Then (X - U)' is an open set. $\therefore X - U = U'$ \Rightarrow (U')' is an Open set. U is an Open set.

Theorem Let X be a metric space. Intersection of any collection $\{F_{\alpha} : \alpha \in I\}$ of closed sets is closed. (i) Union of finite collection $\{F_1, F_2, \dots, F_n\}$ of closed set is closed. (ii) *X* and ϕ are closed. Let $\{F_{\alpha} : \alpha \in I\}$ be any collection of closed sets in (X, d). X and ϕ are closed. (iii) Proof (i) $\Rightarrow \bigcup_{\alpha \in I} F_{\alpha}'$ is open. (: Union of any number of open sets is open) $\Rightarrow \left(\begin{array}{c} \bigcap \\ \alpha \in I \end{array} F_{\alpha} \right)' \text{ is open.} \qquad \because \qquad \begin{array}{c} \bigcup \\ \alpha \in I \end{array} F_{\alpha}' = \left(\begin{array}{c} \bigcap \\ \alpha \in I \end{array} F_{\alpha} \right)' \\ \Rightarrow \qquad \begin{array}{c} \bigcap \\ \alpha \in I \end{array} F_{\alpha} \text{ is closed.} \qquad \qquad \begin{array}{c} \bigcap \\ \alpha \in I \end{array} F_{\alpha} = F_{\alpha} \cap F_{\alpha} \cap F_{\alpha} \\ = F_{\alpha} \cap F_{\alpha} \cap F_{\alpha} \cap F_{\alpha} \\ = F_{\alpha} \cap F_{\alpha} \cap F_{\alpha} \cap F_{\alpha} \\ = F_{\alpha} \cap F_{\alpha} \cap F_{\alpha} \cap F_{\alpha} \\ = F_{\alpha} \cap F_{\alpha} \cap F_{\alpha} \cap F_{\alpha} \\ = F_{\alpha} \cap F_{\alpha} \\ = F_{\alpha} \cap F_{\alpha} \cap F_{\alpha} \\ = F_{\alpha} \cap F_{\alpha} \cap F_{\alpha} \\ = F_{\alpha} \cap F_{\alpha} \\ = F_{\alpha} \cap F_{\alpha} \cap F_{\alpha} \cap F_{\alpha} \\ = F_{\alpha} \cap F_{\alpha} \cap F_{\alpha} \cap F_{\alpha} \\ = F_{\alpha} \cap F_{\alpha} \cap F_{\alpha} \cap F_{\alpha} \cap F_{\alpha} \\ = F_{\alpha} \cap F_{\alpha} \cap F_{\alpha} \cap F_{\alpha} \cap F_{\alpha} \cap F_{\alpha} \\ = F_{\alpha} \cap F_{\alpha} \cap$ (ii) Let { F_{α} : $\alpha = 1, 2, ..., n$ } be any finite colle**et**ion of closed sets in (*X*, *d*). Then F_{α}' is open. $\forall \alpha = 1, 2, ..., n$ $\Rightarrow \bigcap_{\alpha = 1}^{n} F_{\alpha} \text{ is open.} \quad (: \text{ Intersection of finite number of open sets is open)}$ $\Rightarrow \begin{pmatrix} n \\ \cup \\ \alpha = 1 \end{pmatrix}' \text{ is open.} \qquad \because \begin{array}{c} n \\ \cap \\ \alpha = 1 \end{pmatrix} = \begin{pmatrix} n \\ \cup \\ \alpha = 1 \end{pmatrix}'$ $\Rightarrow \bigcup_{\alpha=1}^{n} F_{\alpha}$ is closed. (iii) Since $\phi' = X - \phi = X$ which is open. $\Rightarrow \phi$ is closed. And $X' = X - X = \phi$ which is open. X is closed. ⇒ Question Is N closed in R? Solution Here $N = \{1, 2, 3, \dots, \}$

1e N - (1,2,0,...)

N' = R - N

=] −∞,1 [U] 1,2 [U] 2,3 [U

= Union of open intervals in R

= Union of open sets (:: An open intervals in R is an open set)

= Open set (: Union of any number of open sets is an open set)

Since N' is an open set.

 \Rightarrow N is a closed set.

قرف كما (X,d) الم سراك سيرك سيس ه فترض كما جسب سرف ع X كا احر مدرك ع X كا من لمتناك بوانت بوكا جرك برا من المراوش من مد مر و مر العلاد. من لمتناك بوانت بوكا جرك برا من المراوش من مد م و ملا ك علاد. A كاكس دومس رميش ILIMIT POINT Limit Point Let (X, d) be a metric space. Let $A \subseteq X$ and $x_{\circ} \in X$. Then x_{\circ} is called limit point of A if each open sphere centered at x_{\circ} contains at least one point of A different from x_{\circ} . $S_{r_1}(x_{\circ})$ $S_{r_2}(x_{\circ})$ $S_{r_2}(x_{\circ})$ $S_{I^2}(x_{\circ})$ $S_{r_1}(x_{\circ})$ $S_{r_1}(x_{\circ})$ A X X X (Fig – 3) $S_{r_3}(x_{\circ})$ $S_{r_3}(x_{\circ})$ (Fig - 2) $(Fig-1) \quad S_{r_3}(x_{\circ})$ In Fig -1, x_{\circ} is a limit point of A. $\ln/\text{Fig} - 2$, *x*, is also a limit point of *A*. In Fig -3, x_{\circ} is not a limit point of A. Гheorem Let (X, d) be a discrete metric space. Let $A \subseteq X$. Then A has no limit point. Proof Consider the discrete metric space (X, d_{\circ}) . Here $d_{\circ}: X \times X \to R$ is defined by $d_{\circ}(x_1, x_2) = \begin{cases} 0 & \text{if } x_1 = x_2 \\ 1 & \text{if } x_2 \neq x_2 \end{cases}$ We have to prove that, $A \subseteq X$ has no limit point. We shall prove it by contradiction method. Suppose $x_{\circ} \in X$ such that x_{\circ} is a limit point of A. Let 0 < r < 1 then $S_r(x_{\circ}) = \{x_{\circ}\}$ ------(1) arphi In a discrete metric space the open sphere with radius less than 1 is always singleton. Here (1) shows that $S_r(x_{\circ})$ contains no point of A different from x_{\circ} . Thus x_{\circ} is not a limit point of A. Hence A has no limit point.

Question

Let *R* be the metric space. Let $A = \{x | x \in \mathbb{R} | x = \frac{1}{n}, n \in N\}$ be a subset of *R*. Show that "0" is a limit point of *A*.

Solution

Here metric space is (R, d), where $d: \mathbf{R} \times R \to R$ be defined by

$$d(x_{1}, x_{2}) = |x_{1} - x_{2}|$$

Here $A = \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \right\}$
Then $S_{r}(0) = \{x | x \in R, \ d(x, 0) < r\}; \quad r > 0$
 $= \{x | x \in R, \ |x - 0| < r\}$
 $= \{x | x \in R, \ |x| < r\}$
 $= \{x | x \in R, \ x < r, \ x > -r\}$
 $= \{x | x \in R, \ -r < x < r\}$
 $=] - r, \ + r[$

Clearly for every r > 0, $S_r(0) =] - r$, +r [contains a point of A different from "0".

Thus "0" is the limit point of *A*.

<u>Question</u>

Let *R* be the metric space. Let $A = \left\{ x | x \in R, x = 1 \text{ or } x = 1 + \frac{1}{n}, n \in N \right\}$ be a subset of *R*. Show that "1" is a limit point of *A*.

Solution

Here metric space is (R, d), where $d: R \times R \to R$ be defined by $d(x_1, x_2) = |x_1 - x_2|$ Here $A = \{x | x \in R, x = 1 \text{ or } x = 1 + \frac{1}{n}, n \in N\}$ $= \{x | x \in R, x = 1\} \cup \{x | x \in R, x = 1 + 1/n, n \in N\}$ $= \{1\} \cup \{2, \frac{3}{2}, \frac{4}{3}, \dots, \dots\}$ $= \{1, 2, \frac{3}{2}, \frac{4}{3}, \dots, \dots\}$ Now $S_r(1) = \{x | x \in R, d(x, 1) < r\}$ $= \{x | x \in R, |x - 1| < r\}$ $= \{x | x \in R, x - 1 < r, x - 1 > -r\}$ $= \{x | x \in R, x < 1 + r, x > 1 - r\}$ $= \{x | x \in R, 1 - r < x < 1 + r\}$ $= \{1 - r, 1 + r\}$

Clearly for every r > 0, $S_r(1) =] 1 - r$, $1 + \gamma$ [contains a point of A different from "1".

Thus "1" is a limit point of A.

Question

Let *R* be the metric space. Let $A = \{x | x \in R, 0 < x < 1\}$ be a subset of *R*. Show that "0" and "1" are the limit point of *A*.

Solution

Here metric space is (R, d), where $d: R \times R \rightarrow R$ be defined by

 $d(x_1, x_2) = |x_1 - x_2|$ Here $A = \{ x | x \in R, \ 0 < x < 1 \}$

=]0,1[

(i) First we shall prove that "0" is the limit point of A.

Now
$$S_r(0) = \{x | x \in R, d(x, 0) < r\}; r > 0$$

 $= \{x | x \in R, |x - 0| < r\}$
 $= \{x | x \in R, |x| < r\}$
 $= \{x | x \in R, x < r, x > -r\}$
 $= \{x | x \in R, -r < x < r\}$
 $= 1 - r + r[$

Clearly for every r > 0, $S_r(0) =] - r$, +r [contains a point of A different from "0".

Thus "0" is a limit point of A.

(ii) Now we shall prove that "1" is the limit point of A.

Now $S_r(1) = \{ x | x \in R, d(x, 1) < r \}$

 $= \{ x | x \in R, |x - 1| < r \}$ = $\{ x | x \in R, x - 1 < r, x - 1 > -r \}$ = $\{ x | x \in R, x < 1 + r, x > 1 - r \}$ = $\{ x | x \in R, 1 - r < x < 1 + r \}$ = $\{ 1 - r, 1 + r [$

Clearly for every r > 0, $S_r(1) =] 1 - r$, 1 + r [contains a point of A different from "1".

Thus "1" is a limit point of A.

Question

Let *R* be the metric space. Describe the limit points of the followings. (a) *N* (b) *Z*

Solution

Here metric space is (R, d), where $d: R \times R \rightarrow R$ be defined by

 $d(x_1, x_2) = |x_1 - x_2|$

(a)

Here $N = \{1, 2, 3, ...\}$

Let $a \in R$ be a limit point of N.

Then $a \in N$ or $a \notin N$

<u>Case – I</u> When $a \in N$

Then
$$S_r(a) = \{ x | x \in R, d(x, a) < r \}; r > 0$$

 $= \{ x | x \in R, |x - a| < r \}$
 $= \{ x | x \in R, x - a < r, x - a > -r \}$
 $= \{ x | x \in R, x < a + r, x > a - r \}$
 $= \{ x | x \in R, a - r < x < a + r \}$
 $=] a - r, a + r [$

Clearly for every r > 0, $S_r(1) =]a - r$, a + r [contains no point of *N* different from "*a*".

· · //

Thus "a" is not the limit point of N.

<u>Case – II</u> When $a \notin N$, we can also prove that "a" is not a limit point of N. Thus N has no limit point.

(b)

Here $Z = \{ \dots, -3, -2, -1, 0, 1, 2, \dots, \}$

Let $a \in R$ be a limit point of Z.

Then $a \in Z$ or $a \notin Z$

<u>Case – I</u> When $a \in Z$

Then $S_r(a) = \{ x | x \in R, d(x, a) < r \}; r > 0$ $= \{ x | x \in R, |x - a| < r \}$ $= \{ x | x \in R, x - a < r, x - a > -r \}$ $= \{ x | x \in R, x < a + r, x > a - r \}$ $= \{ x | x \in R, a - r < x < a + r \}$ =] a - r, a + r [

Clearly for every r > 0, $S_r(1) =]a - r$, a + r[contains no point of *Z* different from "*a*".

Thus "a" is not the limit point of Z.

<u>Case – II</u> When $a \notin Z$, we can also prove that "a" **is** not a limit point of *Z*. Thus *Z* has no limit point.

قرق (b, X) (م) مراك سمس ف اور مرجع ركن ع X Кх 2 2 4 0 2 35 N 2 6 X 8 2 0 0 4 2 35 N 2 6 X 8 2 30 X 4 2 30 X Kees (xo) NEIGHBOURHOOD Nees (xo) NEIGHBOURHOOD

Neighbourhood

Let (X, d) be a metric space. Let $x_{\circ} \in X$. Let $N \subseteq X$. Then N is called a neighbourhood of x_{\circ} , if \exists an open sphere $S_r(x_{\circ})$ such that $x_{\circ} \in S_r(x_{\circ}) \subseteq N$.

Example

Let *R* be the usual metric space. Let $x_{\circ} = 0 \in R$. Show that] - r, r[,]-r, r], [-r, r[, and [-r, r], (r > 0) is a neighbourhood of 0.

Solution

We know that,

In a usual metric space *R*, the open sphere is an open interval.

- Now $0 \in]-r$, $r \subseteq]-r$, $r \subseteq [-r, r \subseteq]-r$ (i) \Rightarrow] - r, r [is a neighbourhood of "0".
- (ii) Now $0 \in [-r, r[\subseteq] r, r]$ Where [-r, r[is an open sphere in R
 - \Rightarrow] r, r] is a neighbourhood of "0".
- (iii) Now $0 \in]-r$, $r \subseteq [-r, r[$ Where]-r, r [is an open sphere in R \Rightarrow [-r, r[is a neighbourhood of "0".
- (iv) Now $0 \in [-r, r] \subseteq [-r, r]$ Where [-r, r] is an open sphere in R \Rightarrow [-r, r] is a neighbourhood of "0".

Theorem

Let (X, d) be a metric space. Let $A \subseteq X$: Let x_0 be a limit point of A. Then every neighbourhood of x_{\circ} contains infinitely many points of A. Proof

Let N be a neighbourhood of x_{\circ} , then \exists an open sphere $S_r(x_{\circ})$

(where r > 0) such that

$$x_{\circ} \in S_r(x_{\circ}) \subseteq N \quad ----- \quad (1)$$

We are to prove that N contains infinite points of A. We prove it by contradiction method.

Suppose *N* contains finite points of *A*.

Then by (1) $S_r(x_{\circ})$ also contains finite points of A.

Suppose $S_r(x_{\circ})$ contains *n* points $x_1, x_2, x_3, \dots, x_n$ of *A*.

Then $A \cap S_r(x_{\circ}) = \{x_1, x_2, x_3, \dots, x_n\}$

Let
$$d(x_0, x_i) = r_i, \quad i = 1, 2, 3, ..., n$$

Let $r' = min(r_1, r_2, r_3, \dots, r_n)$

Clearly $S_{r'}(x_{\circ})$ contains no point of A different from x_{\circ} . This shows that, x_{\circ} is not a limit point of A. This is a contradiction. Hence N contains infinitely many points of A

Available at www.mathcity.org

