COMSATS University Islamabad

Attock Campus

Department of Mathematics

Assignment # 04

Class: BSM-VIII
Subject: Convex Analysis
Instructor: Dr. Atiq ur Rehman

Due Date: 11-6-2025 Course Code: MTH424 Marks: 20

Note:

• Submit hardcopy of the assignment.

Question # 1: Please include the following statement, followed by your signature:

I affirm that I have completed this assignment independently, without collaboration or sharing of information with any other classmate.

Question # 2: Let $f: I \to \mathbb{R}$ and $g: J \to \mathbb{R}$, where $range(f) \subseteq J$. If f, g are convex and g is increasing, then the composite function $g \circ f$ is convex on I.

Question # 3: Let $f_{\alpha}: I \to \mathbb{R}$ be an arbitrary family of convex functions and let $f(x) = \sup_{\alpha} f_{\alpha}(x)$. If $J = [x \in I : f(x) < \infty]$ is non-empty then J is an interval and f is convex on J.

Question # 4: If $f_n: I \to \mathbb{R}$ is a sequence of convex functions converging to a finite limit function f on I, then f is convex on I.

Question # 5: If $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ are both non-negative, decreasing and convex functions, then h(x) = f(x)g(x) is also non-negative, decreasing and convex on I.

Question # 6: The class of log-convex functions on an interval *I* is closed under multiplication.

Question # 7: The class of log-convex functions on an interval *I* is closed under addition.

