

COMSATS University Islamabad

Attock Campus

Department of Mathematics

Assignment # 03

Class: BSM-IV
Subject: Set Topology
Instructor: Dr. Atiq ur Rehman
Due Date: 30-04-2025
Course Code: MTH251
Marks: 25

Name:		Reg:	BSM
Question # 1: Define base for a topolog	ical space and gi	ve an example	
Question # 2: Define subbase. Let $X = \mathcal{A} = \{\{a\}, \{b, c\}, \{c, d\}\}$ be class of subset \mathcal{A} and then write that topology.			

Question # 3: Let \mathcal{B} be a base for a topology τ on X and let \mathcal{B}^* be a class of open sets containing \mathcal{B} . Show that \mathcal{B}^* is also a base for τ .

Question # 4: Let $X = \{a, b, c, d\}$ and $Y = \{x, y, z, w\}$ and $f: X \to Y$ be a function defined in the given diagram. Then write

(i)
$$f[\{a,d\}] = \dots$$

(ii)
$$f[\{b,d\}] = \dots$$

(iii)
$$f^{-1}[\{x\}] = \dots$$

(iv)
$$f^{-1}[\{x, z, w\}] = \dots$$

Question # 5: Let $g: \mathbb{R} \to \mathbb{R}$ be a function defined as $g(x) = x^2$. Then write

(i)
$$g(-2) = \dots$$

(ii)
$$g(\pi) = \dots$$

(iii)
$$g[\{-1,2\}] = \dots$$

(iv)
$$g[\{-2,2\}] = \dots$$

(v)
$$g[(1,2)] = \dots$$

(vi)
$$g[(-5,2)] = \dots$$

(vii)
$$g[-1,2] =$$
.....

(viii)
$$g^{-1}(4) = \dots$$

(ix)
$$g^{-1}[\{4\}] = \dots$$

(x)
$$g^{-1}[\{-2\}] = \dots$$

(xi)
$$g^{-1}[\{0,2,4,9\}] = \dots$$

(xii)
$$g^{-1}[(0,4)] = \dots$$

(xiv)
$$g^{-1}[(-2,-1)] = \dots$$

(xiii)
$$g^{-1}[(1,5)] = \dots$$

(xv)
$$g^{-1}[0,25] = \dots$$