Lectures Handout (Volume 1) Course Title: Convex Analysis Course Code: MTH424

Definition 1: Continuity

A function $f : I \to \mathbb{R}$, where *I* is interval in \mathbb{R} , is said to be continuous at point $x_0 \in I$ if for all $\varepsilon > 0$, there exists $\delta > 0$ such that

 $|f(x) - f(x_0)| < \varepsilon$ whenever $|x - x_0| < \delta$.

A function *f* is said to be continuous on *I* if it is continuous on each point of *I*.

Definition 2: Uniform Continuity

A function $f : I \to \mathbb{R}$, where I is an interval in \mathbb{R} , is said to be uniformly continuous on *I* if for all $\varepsilon > 0$ and $x, y \in I$, there exists $\delta > 0$ such that

 $|f(x) - f(y)| < \varepsilon$ whenever $|x - y| < \delta$.

From the definition of uniform continuity, one can derive the following remark:

Remark 3: Uniform Continuity Implies Continuity

If a function *f* is uniformly continuous on *I*, then it is continuous on *I*.

Theorem 4

If $f : I \to \mathbb{R}$ is convex on *I*, then *f* is continuous on I° , where I° represents interior of *I*.

Proof

Let $[a, b] \subseteq I^{\circ}$. We choose $\varepsilon > 0$ so that $a - \varepsilon$ and $b + \varepsilon$ belong to *I*. As *f* is convex, therefore it is bounded on closed interval $[a - \varepsilon, b + \varepsilon]$. So assume *m* and

M are the lower and upper bounds of *f* on $[a - \varepsilon, b + \varepsilon]$ respectively. If x, y are different points of [a, b], set

$$z = y + rac{arepsilon}{|y-x|} (y-x) ext{ and } \lambda = rac{|y-x|}{arepsilon+|y-x|}$$

As $\frac{y-x}{|y-x|} = \pm 1$, therefore $z \in [a - \varepsilon, b + \varepsilon]$.

Now take

$$\begin{split} \lambda z + (1 - \lambda)x &= \frac{|y - x|}{\varepsilon + |y - x|} \left(y + \frac{\varepsilon(y - x)}{|y - x|} \right) + \left(1 - \frac{|y - x|}{\varepsilon + |y - x|} \right) x \\ &= \frac{|y - x|}{\varepsilon + |y - x|} \left(\frac{y|y - x| + \varepsilon(y - x)}{|y - x|} \right) + \left(\frac{\varepsilon + |y - x| - |y - x|}{\varepsilon + |y - x|} \right) x \\ &= \frac{1}{\varepsilon + |y - x|} \left(y|y - x| + \varepsilon(y - x) + \varepsilon x \right) \\ &= \frac{1}{\varepsilon + |y - x|} \left(y|y - x| + \varepsilon y \right) \\ &= \frac{1}{\varepsilon + |y - x|} \left(y \left(|y - x| + \varepsilon \right) \right) = y, \end{split}$$

that is we have that $y = \lambda z + (1 - \lambda)x$, so we have

$$f(y) = f(\lambda z + (1 - \lambda) x)$$

$$\leq \lambda f(z) + (1 - \lambda) f(x) \text{ as } f \text{ is convex}$$

$$= \lambda f(z) - \lambda f(x) + f(x).$$

This implies

$$f(y) - f(x) \leq \lambda (f(z) - f(x))$$

$$\leq \lambda (M - m)$$

$$= \frac{|y - x|}{\varepsilon + |y - x|} (M - m)$$

$$< \frac{M - m}{\varepsilon} |y - x|$$

$$= K |y - x|, \text{ where } K := \frac{(M - m)}{\varepsilon}$$

That is

$$f(y) - f(x) < K |y - x|.$$

Since this is true for any $x, y \in [a, b]$, we conclude that

$$\left| f\left(y\right) - f\left(x\right) \right| < K \left|y - x\right|$$

Now if $\varepsilon_1 > 0$, the above expression gives us

$$|f(y) - f(x)| < \varepsilon_1$$
, whenever $|y - x| < \delta := \frac{\varepsilon_1}{K}$.

Thus *f* is uniformly continuous on [a, b] and hence *f* is continuous on [a, b].

Since *a* and *b* are arbitrary, therefore *f* is continuous on interior I° of *I*.

Definition 5: Increasing Function

A function $f : I \to \mathbb{R}$ is said to be *increasing* if for any $x, y \in I$ such that x < y, there holds the inequality

$$f(x) \le f(y). \tag{1}$$

A function is said to be *strictly increasing* on *I* if strict inequality holds in (1).

Definition 6: Left & Right Derivatives

Let $f : I \to \mathbb{R}$ be a function. The left and right derivatives of f at $x \in I$ are defined as follows:

$$f'_{-}(x) = \lim_{y \uparrow x} \frac{f(y) - f(x)}{y - x}$$
$$f'_{+}(x) = \lim_{y \downarrow x} \frac{f(y) - f(x)}{y - x}.$$

Theorem 7

If $f : I \to \mathbb{R}$ is convex, then $f'_{-}(x)$ and $f'_{+}(x)$ exist and are increasing on I°

Proof

Consider four points $w, x, y, z \in I^{\circ}$ such that

$$w < x < y < z$$
.

Also let P, Q, R and S be the corresponding points on the graph of f.

Then we have

slope $\overline{PQ} \leqslant$ slope $\overline{PR} \leqslant$ slope $\overline{QR} \leqslant$ slope $\overline{QS} \leqslant$ slope \overline{RS}

Consider

slope
$$\overline{QR} \leqslant$$
 slope \overline{RS} ,

this gives

$$\frac{f(y) - f(x)}{y - x} \leqslant \frac{f(z) - f(y)}{z - y}$$
(2)

when *Q* moves towards *R*, then $x \uparrow y$ and when *S* moved towards *R* then $z \downarrow y$. As *f* is continuous on *I*°, therefore when $x \uparrow y$, then $f'_{-}(y)$ exists and when $z \downarrow y$ then $f'_{+}(y)$ exists.

Also from (2), one can conclude

$$f'_{-}(y) \leqslant f'_{+}(y) \text{ for all } y \in I^{\circ}.$$
 (3)

Now we consider

slope
$$\overline{PQ} \leqslant$$
 slope \overline{QR} ,

that is

$$\frac{f(x) - f(w)}{x - w} \leqslant \frac{f(y) - f(x)}{y - x}$$

When *x* decreased toward *w* and *x* increased toward *y*, we get

$$f'_{+}(w) \leqslant f'_{-}(y) \text{ for all } w < y.$$
(4)

Using (3) and (4), we have for all w < y,

$$f_{-}^{\prime}(w)\leqslant f_{+}^{\prime}(w)\leqslant f_{-}^{\prime}(y)\leqslant f_{+}^{\prime}(y),$$

So we have proved that for w < y,

$$f_{-}'(w) \leqslant f_{-}'(y)$$

and

$$f'_{+}(w) \leqslant f'_{+}(y).$$

This implies f'_{-} and f'_{+} are increasing.

Remark 8

If $f : I \to \mathbb{R}$ is strictly convex, then $f'_{-}(x)$ and $f'_{+}(x)$ exist and are strictly increasing on I° .

Review

- Assume that the function f is differentiable on interval I. Then f is increasing on I if and only if $f'(x) \ge 0$ for all $x \in I$.
- Assume that the function *f* is differentiable on interval *I*. Then *f* is strictly increasing on *I* if and only if *f*′(*x*) > 0 for all *x* ∈ *I*.
- Suppose *f* is differentiable on (*a*, *b*). Then *f* is convex [strictly convex] if, and only if, *f'* is increasing [strictly increasing] on (*a*, *b*).

Theorem 9

Let *f* is twice differentiable on (a, b). Then *f* is convex on (a, b) iff $f''(x) \ge 0$ for all $x \in (a, b)$. If f''(x) > 0 for all $x \in (a, b)$, then *f* is strictly convex on (a, b).

Exercises 1. Prove that a function e^x is convex on $(-\infty, \infty)$.

- 2. Prove that a function sin *x* is convex on interval $[\pi, 2\pi]$.
- 3. Find the value of *p* for which x^p is convex on $(0, \infty)$.

In the following theorem, we prove that sum of two convex functions is convex.

Theorem 10

If $f : I \to \mathbb{R}$ and $g : I \to \mathbb{R}$ are convex then f + g is convex on I.

ProofSince f and g are convex therefore for $x, y \in I$ and $\lambda \in (0, 1)$ $f(\lambda x + (1 - \lambda) y) \leq \lambda f(x) + (1 - \lambda) f(y)$ and $g(\lambda x + (1 - \lambda) y) \leq \lambda g(x) + (1 - \lambda) g(y)$.(6)Now we consider $(f + g)(\lambda x + (1 - \lambda) y) = f(\lambda x + (1 - \lambda) y) + g(\lambda x + (1 - \lambda) y)$ $\leq \lambda f(x) + (1 - \lambda) f(y) + \lambda g(x) + (1 - \lambda) g(y)$ $= \lambda (f(x) + g(x)) + (1 - \lambda) (f(y) + g(y))$ $= \lambda (f + g)(x) + (1 - \lambda) (f + g)(y)$.Hence (f + g) is convex on I.

In the similar way, one can prove the following:

Definition 12: Line of Support

A function *f* defined on *I* has support at $x_0 \in I$ if there exists a function

$$A(x) = f(x_0) + m(x - x_0)$$

such that $A(x) \leq f(x)$ for every $x \in I$.

The graph of the support function A is called a line of support for f at x_0 .

Theorem 13

A function $f : (a, b) \to \mathbb{R}$ is convex if and only if there is at least one line of support for *f* at each $x_0 \in (a, b)$.

Proof

Suppose *f* is convex and $x_0 \in (a, b)$. Then f'_- , f'_+ exist and $f'_-(x_0) \leq f'_+(x_0)$ for all $x_0 \in (a, b)$.

Choose $m \in [f'_{-}(x_0), f'_{+}(x_0)]$. Then we have

$$\frac{f(x) - f(x_0)}{x - x_0} \ge m \quad \text{for} \quad x > x_0$$

and

$$\frac{f(x) - f(x_0)}{x - x_0} \le m \text{ for } x < x_0.$$

That is, we have

$$f(x) - f(x_0) \ge m(x - x_0) \quad \text{for all} \quad x \in (a, b),$$

$$\Rightarrow \quad f(x) \ge f(x_0) + m(x - x_0) \quad \text{for all} \quad x \in (a, b)$$
(7)

If we consider $A(x) = f(x_0) + m(x - x_0)$ be support function at $x_0 \in (a, b)$, then from (7), we have

 $f(x) \ge A(x)$ for all $x \in (a, b)$.

This proves that *f* has a line of support at each $x_0 \in (a, b)$.

Conversely, suppose that *f* has a line of support at each point of (a, b) and A(x)

define above be support function, then

$$A(x) \le f(x)$$
 for all $x \in (a, b)$.

Let $x, y \in (a, b)$ and $x_0 = \lambda x + (1 - \lambda)y, \lambda \in [0, 1]$, then

$$A(x_0) = f(x_0) - m(x_0 - x_0) = f(x_0).$$

Now

$$\begin{split} f(x_0) &= A(x_0) \\ &= A(\lambda x + (1 - \lambda)y) \\ &= f(x_0) + m(\lambda x + (1 - \lambda)y - x_0) \\ &= [\lambda + (1 - \lambda)]f(x_0) + m[\lambda x + (1 - \lambda)y - \{\lambda + (1 - \lambda)\}x_0] \\ &= \lambda [f(x_0) + m(x - x_0)] + (1 - \lambda)[f(x_0) + m(y - x_0)] \\ &= \lambda A(x) + (1 - \lambda)A(y) \\ &\leq \lambda f(x) + (1 - \lambda)f(y). \end{split}$$

That is, we have proved that

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$
 for all $x \in (a, b), \lambda \in [0, 1]$.

Hence f is convex on (a, b).

Remark 14

In previous theorem, we take $f'_{-}(x_0) \le m \le f'_{+}(x_0)$. If the function f is differentiable on (a, b), then we have

$$f_{-}'(x_0) = f_{+}'(x_0) = f'(x_0).$$

Hence $A(x) = f(x_0) + f'(x_0)(x - x_0)$ will be line of support of f at x_0 . For example: If $f(x) = e^x$ for $x \in \mathbb{R}$, then

$$A(x) = e + e(x - 1) = ex$$

is support function for e^x at point x = 1.

It can also be written as y = ex or ex - y = 0.

In the similar way, what about support function of e^x at x = 0?

Review

• A function *f* defined on *I* has support at $x_0 \in I$ if there exists a function

$$A(x) = f(x_0) + m(x - x_0)$$

such that $A(x) \leq f(x)$ for every $x \in I$.

- A function *f* : (*a*, *b*) → ℝ is convex if and only if there is at least one line of support for *f* at each *x*₀ ∈ (*a*, *b*).
- From the proof of theorem stated in above clause, we have $f'_{-}(x_0) \le m \le f'_{+}(x_0)$ for line of support at point x_0 . If the function f is differentiable on (a, b), then $m = f'(x_0)$.

Exercise: Find the line of supports for the function defined below at x = 1.

$$f(x) = \begin{cases} x^2, & x \ge 1; \\ x, & x < 1. \end{cases}$$

Solution. A function

$$A(x) = f(x_0) + m(x - x_0)$$

is line of support at $x = x_0$, where $m \in [f'_-(x_0), f'_+(x_0)]$.

So we have

$$f'_{-}(x) = 1$$
 and $f'_{+}(x) = 2x$.
 $\Rightarrow f'_{-}(1) = 1$ and $f'_{+}(1) = 2$.

Thus

$$A(x) = f(1) + m(x-1)$$
, where $m \in [1,2]$,
 $\Rightarrow A(x) = 1 + m(x-1)$, where $m \in [1,2]$.

Remark 15

If we are asked to find the line of support at x = 2 for the function f defined above, that is, for function

$$f(x) = \begin{cases} x^2, & x \ge 1; \\ x, & x < 1. \end{cases}$$

We see, the function is differentiable at x = 2, so m = f'(2) = 4. Thus, we have

$$A(x) = f(2) + m(x - 2),$$

$$\Rightarrow A(x) = 4 + 4(x - 2),$$

$$\Rightarrow A(x) = 4x - 4.$$

is required line of support.

References:

- A. W. Roberts and D. E. Varberg, *Convex Functions*, Academic Press, New York, 1973.
- C. P. Niculescu and L. E. Persson, *Convex Functions and Their Applications, A Contemporary Approach*, Springer, New York, 2006.
- Thanks for unknown developer for background image (search web).