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Definition 1: Continuity

A function f : I → R, where I is interval in R, is said to be continuous at point

x0 ∈ I if for all ε > 0, there exists δ > 0 such that

| f (x)− f (x0)| < ε whenever |x − x0| < δ.

A function f is said to be continuous on I if it is continuous on each point of I.

Definition 2: Uniform Continuity

A function f : I → R, where I is an interval in R, is said to be uniformly contin-

uous on I if for all ε > 0 and x, y ∈ I, there exists δ > 0 such that

| f (x)− f (y)| < ε whenever |x − y| < δ.

From the definition of uniform continuity, one can derive the following remark:

Remark 3: Uniform Continuity Implies Continuity

If a function f is uniformly continuous on I, then it is continuous on I.

Theorem 4

If f : I → R is convex on I, then f is continuous on I◦, where I◦ represents

interior of I.

Proof

Let [a, b] ⊆ I◦. We choose ε > 0 so that a − ε and b + ε belong to I. As f is

convex, therefore it is bounded on closed interval [a − ε, b + ε]. So assume m and



M are the lower and upper bounds of f on [a − ε, b + ε] respectively.

If x, y are different points of [a, b], set

z = y +
ε

|y − x| (y − x) and λ =
|y − x|

ε + |y − x| .

As
y − x
|y − x| = ±1, therefore z ∈ [a − ε, b + ε].

Now take

λz + (1 − λ)x =
|y − x|

ε + |y − x|

(
y +

ε(y − x)
|y − x|

)
+

(
1 − |y − x|

ε + |y − x|

)
x

=
|y − x|

ε + |y − x|

(
y|y − x|+ ε(y − x)

|y − x|

)
+

(
ε + |y − x| − |y − x|

ε + |y − x|

)
x

=
1

ε + |y − x| (y|y − x|+ ε(y − x) + εx)

=
1

ε + |y − x| (y|y − x|+ εy)

=
1

ε + |y − x| (y (|y − x|+ ε)) = y,

that is we have that y = λz + (1 − λ)x, so we have

f (y) = f (λz + (1 − λ) x)

≤ λ f (z) + (1 − λ) f (x) as f is convex

= λ f (z) − λ f (x) + f (x) .

This implies

f (y)− f (x) ≤ λ ( f (z)− f (x))

≤ λ (M − m)

=
|y − x|

ε + |y − x| (M − m)

<
M − m

ε
|y − x|

= K |y − x| , where K :=
(M − m)

ε
.
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That is

f (y)− f (x) < K |y − x| .

Since this is true for any x, y ∈ [a, b] , we conclude that

| f (y)− f (x)| < K |y − x|

Now if ε1 > 0, the above expression gives us

| f (y)− f (x)| < ε1, whenever |y − x| < δ :=
ε1

K
.

Thus f is uniformly continuous on [a, b] and hence f is continuous on [a, b].

Since a and b are arbitrary, therefore f is continuous on interior I◦ of I.

Definition 5: Increasing Function

A function f : I → R is said to be increasing if for any x, y ∈ I such that x < y,

there holds the inequality

f (x) ≤ f (y). (1)

A function is said to be strictly increasing on I if strict inequality holds in (1).

Definition 6: Left & Right Derivatives

Let f : I → R be a function. The left and right derivatives of f at x ∈ I are

defined as follows:

f ′− (x) = lim
y↑x

f (y)− f (x)
y − x

f ′+ (x) = lim
y↓x

f (y)− f (x)
y − x

.

Theorem 7

If f : I → R is convex, then f ′− (x) and f ′+ (x) exist and are increasing on I◦
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Proof

Consider four points w, x, y, z ∈ I◦ such that

w < x < y < z.

Also let P, Q, R and S be the corresponding points

on the graph of f .

Then we have

slope PQ ⩽ slope PR ⩽ slope QR ⩽ slope QS ⩽ slope RS

Consider

slope QR ⩽ slope RS,

this gives

f (y)− f (x)
y − x

⩽
f (z)− f (y)

z − y
(2)

when Q moves towards R, then x ↑ y and when S moved towards R then z ↓ y.

As f is continuous on I◦, therefore when x ↑ y, then f
′
−(y) exists and when z ↓ y

then f
′
+(y) exists.

Also from (2), one can conclude

f
′
−(y) ⩽ f

′
+(y) for all y ∈ I◦. (3)

Now we consider

slope PQ ⩽ slope QR,

that is
f (x)− f (w)

x − w
⩽

f (y)− f (x)
y − x

.

When x decreased toward w and x increased toward y, we get

f
′
+(w) ⩽ f

′
−(y) for all w < y. (4)
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Using (3) and (4), we have for all w < y,

f
′
−(w) ⩽ f

′
+(w) ⩽ f

′
−(y) ⩽ f

′
+(y),

So we have proved that for w < y,

f
′
−(w) ⩽ f

′
−(y)

and

f
′
+(w) ⩽ f

′
+(y).

This implies f
′
− and f

′
+ are increasing.

Remark 8

If f : I → R is strictly convex, then f ′− (x) and f ′+ (x) exist and are strictly in-

creasing on I◦.

Review

• Assume that the function f is differentiable on interval I. Then f is increas-

ing on I if and only if f ′(x) ≥ 0 for all x ∈ I.

• Assume that the function f is differentiable on interval I. Then f is strictly

increasing on I if and only if f ′(x) > 0 for all x ∈ I.

• Suppose f is differentiable on (a, b). Then f is convex [strictly convex] if,

and only if, f ′ is increasing [strictly increasing] on (a, b).

Theorem 9

Let f is twice differentiable on (a, b). Then f is convex on (a, b) iff f ′′(x) ≥ 0 for

all x ∈ (a, b). If f ′′(x) > 0 for all x ∈ (a, b), then f is strictly convex on (a, b).

Exercises 1. Prove that a function ex is convex on (−∞, ∞).

2. Prove that a function sin x is convex on interval [π, 2π].

3. Find the value of p for which xp is convex on (0, ∞).
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In the following theorem, we prove that sum of two convex functions is convex.

Theorem 10

If f : I → R and g : I → R are convex then f + g is convex on I.

Proof

Since f and g are convex therefore for x, y ∈ I and λ ∈ (0, 1)

f (λx + (1 − λ) y) ≤ λ f (x) + (1 − λ) f (y) (5)

and

g (λx + (1 − λ) y) ≤ λg (x) + (1 − λ) g (y) . (6)

Now we consider

( f + g) (λx + (1 − λ) y) = f (λx + (1 − λ) y) + g (λx + (1 − λ) y)

≤ λ f (x) + (1 − λ) f (y) + λg (x) + (1 − λ) g (y)

= λ ( f (x) + g (x)) + (1 − λ) ( f (y) + g (y))

= λ ( f + g) (x) + (1 − λ) ( f + g) (y) .

Hence ( f + g) is convex on I.

In the similar way, one can prove the following:

Theorem 11

If f : I → R is convex and α ≥ 0, then α f is convex on I.
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Definition 12: Line of Support

A function f defined on I has support at x0 ∈ I if there exists a function

A(x) = f (x0) + m(x − x0)

such that A(x) ≤ f (x) for every x ∈ I.

The graph of the support function A is called a line of support for f at x0.

Theorem 13

A function f : (a, b) → R is convex if and only if there is at least one line of

support for f at each x0 ∈ (a, b).

Proof

Suppose f is convex and x0 ∈ (a, b). Then f ′−, f ′+ exist and f ′−(x0) ≤ f ′+(x0) for

all x0 ∈ (a, b).

Choose m ∈ [ f ′−(x0), f ′+(x0)]. Then we have

f (x)− f (x0)

x − x0
≥ m for x > x0

and
f (x)− f (x0)

x − x0
≤ m for x < x0.

That is, we have

f (x)− f (x0) ≥ m(x − x0) for all x ∈ (a, b),

⇒ f (x) ≥ f (x0) + m(x − x0) for all x ∈ (a, b) (7)

If we consider A(x) = f (x0) + m(x − x0) be support function at x0 ∈ (a, b), then

from (7), we have

f (x) ≥ A(x) for all x ∈ (a, b).

This proves that f has a line of support at each x0 ∈ (a, b).

Conversely, suppose that f has a line of support at each point of (a, b) and A(x)
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define above be support function, then

A(x) ≤ f (x) for all x ∈ (a, b).

Let x, y ∈ (a, b) and x0 = λx + (1 − λ)y, λ ∈ [0, 1], then

A(x0) = f (x0)− m(x0 − x0) = f (x0).

Now

f (x0) = A(x0)

= A(λx + (1 − λ)y)

= f (x0) + m(λx + (1 − λ)y − x0)

= [λ + (1 − λ)] f (x0) + m[λx + (1 − λ)y − {λ + (1 − λ)}x0]

= λ[ f (x0) + m(x − x0)] + (1 − λ)[ f (x0) + m(y − x0)]

= λA(x) + (1 − λ)A(y)

≤ λ f (x) + (1 − λ) f (y).

That is, we have proved that

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y) for all x ∈ (a, b), λ ∈ [0, 1].

Hence f is convex on (a, b).

Remark 14

In previous theorem, we take f ′−(x0) ≤ m ≤ f ′+(x0). If the function f is differen-

tiable on (a, b), then we have

f ′−(x0) = f ′+(x0) = f ′(x0).

Hence A(x) = f (x0) + f ′(x0)(x − x0) will be line of support of f at x0.

For example: If f (x) = ex for x ∈ R, then

A(x) = e + e(x − 1) = ex

is support function for ex at point x = 1.
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It can also be written as y = ex or ex − y = 0.

In the similar way, what about support function of ex at x = 0?

Review

• A function f defined on I has support at x0 ∈ I if there exists a function

A(x) = f (x0) + m(x − x0)

such that A(x) ≤ f (x) for every x ∈ I.

• A function f : (a, b) → R is convex if and only if there is at least one line of

support for f at each x0 ∈ (a, b).

• From the proof of theorem stated in above clause, we have f ′−(x0) ≤ m ≤
f ′+(x0) for line of support at point x0. If the function f is differentiable on

(a, b), then m = f ′(x0).

Exercise: Find the line of supports for the function defined below at x = 1.

f (x) =

x2, x ≥ 1;

x, x < 1.

Solution. A function

A(x) = f (x0) + m(x − x0)

is line of support at x = x0, where m ∈ [ f ′−(x0), f ′+(x0)].

So we have

f ′−(x) = 1 and f ′+(x) = 2x.

⇒ f ′−(1) = 1 and f ′+(1) = 2.

Thus

A(x) = f (1) + m(x − 1), where m ∈ [1, 2],

⇒ A(x) = 1 + m(x − 1), where m ∈ [1, 2].
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Remark 15

If we are asked to find the line of support at x = 2 for the function f defined

above, that is, for function

f (x) =

x2, x ≥ 1;

x, x < 1.

We see, the function is differentiable at x = 2, so m = f ′(2) = 4. Thus, we have

A(x) = f (2) + m(x − 2),

⇒ A(x) = 4 + 4(x − 2),

⇒ A(x) = 4x − 4.

is required line of support.
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