Lectures Handout (Volume 1)

Course Title: Convex Analysis
Course Code: MTH424

Definition 1: Continuity

A function $f: I \rightarrow \mathbb{R}$, where I is interval in \mathbb{R}, is said to be continuous at point $x_{0} \in I$ if for all $\varepsilon>0$, there exists $\delta>0$ such that

$$
\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon \text { whenever }\left|x-x_{0}\right|<\delta
$$

A function f is said to be continuous on I if it is continuous on each point of I.

Definition 2: Uniform Continuity

A function $f: I \rightarrow \mathbb{R}$, where I is an interval in \mathbb{R}, is said to be uniformly continuous on I if for all $\varepsilon>0$ and $x, y \in I$, there exists $\delta>0$ such that

$$
|f(x)-f(y)|<\varepsilon \text { whenever }|x-y|<\delta
$$

From the definition of uniform continuity, one can derive the following remark:

Remark 3: Uniform Continuity Implies Continuity

If a function f is uniformly continuous on I, then it is continuous on I.

Theorem 4

If $f: I \rightarrow \mathbb{R}$ is convex on I, then f is continuous on I°, where I° represents interior of I.

Proof

Let $[a, b] \subseteq I^{\circ}$. We choose $\varepsilon>0$ so that $a-\varepsilon$ and $b+\varepsilon$ belong to I. As f is convex, therefore it is bounded on closed interval $[a-\varepsilon, b+\varepsilon]$. So assume m and
M are the lower and upper bounds of f on $[a-\varepsilon, b+\varepsilon]$ respectively.
If x, y are different points of $[a, b]$, set

$$
z=y+\frac{\varepsilon}{|y-x|}(y-x) \text { and } \lambda=\frac{|y-x|}{\varepsilon+|y-x|} .
$$

As $\frac{y-x}{|y-x|}= \pm 1$, therefore $z \in[a-\varepsilon, b+\varepsilon]$.
Now take

$$
\begin{aligned}
\lambda z+(1-\lambda) x & =\frac{|y-x|}{\varepsilon+|y-x|}\left(y+\frac{\varepsilon(y-x)}{|y-x|}\right)+\left(1-\frac{|y-x|}{\varepsilon+|y-x|}\right) x \\
& =\frac{|y-x|}{\varepsilon+|y-x|}\left(\frac{y|y-x|+\varepsilon(y-x)}{|y-x|}\right)+\left(\frac{\varepsilon+|y-x|-|y-x|}{\varepsilon+|y-x|}\right) x \\
& =\frac{1}{\varepsilon+|y-x|}(y|y-x|+\varepsilon(y-x)+\varepsilon x) \\
& =\frac{1}{\varepsilon+|y-x|}(y|y-x|+\varepsilon y) \\
& =\frac{1}{\varepsilon+|y-x|}(y(|y-x|+\varepsilon))=y
\end{aligned}
$$

that is we have that $y=\lambda z+(1-\lambda) x$, so we have

$$
\begin{aligned}
f(y) & =f(\lambda z+(1-\lambda) x) \\
& \leq \lambda f(z)+(1-\lambda) f(x) \quad \text { as } f \text { is convex } \\
& =\lambda f(z)-\lambda f(x)+f(x)
\end{aligned}
$$

This implies

$$
\begin{aligned}
f(y)-f(x) & \leq \lambda(f(z)-f(x)) \\
& \leq \lambda(M-m) \\
& =\frac{|y-x|}{\varepsilon+|y-x|}(M-m) \\
& <\frac{M-m}{\varepsilon}|y-x| \\
& =K|y-x|, \text { where } K:=\frac{(M-m)}{\varepsilon} .
\end{aligned}
$$

That is

$$
f(y)-f(x)<K|y-x| .
$$

Since this is true for any $x, y \in[a, b]$, we conclude that

$$
|f(y)-f(x)|<K|y-x|
$$

Now if $\varepsilon_{1}>0$, the above expression gives us

$$
|f(y)-f(x)|<\varepsilon_{1}, \quad \text { whenever }|y-x|<\delta:=\frac{\varepsilon_{1}}{K} .
$$

Thus f is uniformly continuous on $[a, b]$ and hence f is continuous on $[a, b]$.
Since a and b are arbitrary, therefore f is continuous on interior I° of I.

Definition 5: Increasing Function

A function $f: I \rightarrow \mathbb{R}$ is said to be increasing if for any $x, y \in I$ such that $x<y$, there holds the inequality

$$
\begin{equation*}
f(x) \leq f(y) \tag{1}
\end{equation*}
$$

A function is said to be strictly increasing on I if strict inequality holds in (1).

Definition 6: Left \& Right Derivatives

Let $f: I \rightarrow \mathbb{R}$ be a function. The left and right derivatives of f at $x \in I$ are defined as follows:

$$
\begin{aligned}
f_{-}^{\prime}(x) & =\lim _{y \uparrow x} \frac{f(y)-f(x)}{y-x} \\
f_{+}^{\prime}(x) & =\lim _{y \downarrow x} \frac{f(y)-f(x)}{y-x} .
\end{aligned}
$$

Theorem 7

If $f: I \rightarrow \mathbb{R}$ is convex, then $f_{-}^{\prime}(x)$ and $f_{+}^{\prime}(x)$ exist and are increasing on I°

Proof

Consider four points $w, x, y, z \in I^{\circ}$ such that

$$
w<x<y<z
$$

Also let P, Q, R and S be the corresponding points on the graph of f.

Then we have

slope $\overline{P Q} \leqslant$ slope $\overline{P R} \leqslant$ slope $\overline{Q R} \leqslant$ slope $\overline{Q S} \leqslant$ slope $\overline{R S}$

Consider

$$
\text { slope } \overline{Q R} \leqslant \text { slope } \overline{R S},
$$

this gives

$$
\begin{equation*}
\frac{f(y)-f(x)}{y-x} \leqslant \frac{f(z)-f(y)}{z-y} \tag{2}
\end{equation*}
$$

when Q moves towards R, then $x \uparrow y$ and when S moved towards R then $z \downarrow y$. As f is continuous on I°, therefore when $x \uparrow y$, then $f_{-}^{\prime}(y)$ exists and when $z \downarrow y$ then $f_{+}^{\prime}(y)$ exists.

Also from (2), one can conclude

$$
\begin{equation*}
f_{-}^{\prime}(y) \leqslant f_{+}^{\prime}(y) \text { for all } y \in I^{\circ} \tag{3}
\end{equation*}
$$

Now we consider

$$
\text { slope } \overline{P Q} \leqslant \text { slope } \overline{Q R},
$$

that is

$$
\frac{f(x)-f(w)}{x-w} \leqslant \frac{f(y)-f(x)}{y-x}
$$

When x decreased toward w and x increased toward y, we get

$$
\begin{equation*}
f_{+}^{\prime}(w) \leqslant f_{-}^{\prime}(y) \text { for all } w<y . \tag{4}
\end{equation*}
$$

Using (3) and (4), we have for all $w<y$,

$$
f_{-}^{\prime}(w) \leqslant f_{+}^{\prime}(w) \leqslant f_{-}^{\prime}(y) \leqslant f_{+}^{\prime}(y)
$$

So we have proved that for $w<y$,

$$
f_{-}^{\prime}(w) \leqslant f_{-}^{\prime}(y)
$$

and

$$
f_{+}^{\prime}(w) \leqslant f_{+}^{\prime}(y)
$$

This implies f_{-}^{\prime} and f_{+}^{\prime} are increasing.

Remark 8

If $f: I \rightarrow \mathbb{R}$ is strictly convex, then $f_{-}^{\prime}(x)$ and $f_{+}^{\prime}(x)$ exist and are strictly increasing on I°.

Review

- Assume that the function f is differentiable on interval I. Then f is increasing on I if and only if $f^{\prime}(x) \geq 0$ for all $x \in I$.
- Assume that the function f is differentiable on interval I. Then f is strictly increasing on I if and only if $f^{\prime}(x)>0$ for all $x \in I$.
- Suppose f is differentiable on (a, b). Then f is convex [strictly convex] if, and only if, f^{\prime} is increasing [strictly increasing] on (a, b).

Theorem 9

Let f is twice differentiable on (a, b). Then f is convex on (a, b) iff $f^{\prime \prime}(x) \geq 0$ for all $x \in(a, b)$. If $f^{\prime \prime}(x)>0$ for all $x \in(a, b)$, then f is strictly convex on (a, b).

Exercises 1. Prove that a function e^{x} is convex on $(-\infty, \infty)$.
2. Prove that a function $\sin x$ is convex on interval $[\pi, 2 \pi]$.
3. Find the value of p for which x^{p} is convex on $(0, \infty)$.

In the following theorem, we prove that sum of two convex functions is convex.

Theorem 10

If $f: I \rightarrow \mathbb{R}$ and $g: I \rightarrow \mathbb{R}$ are convex then $f+g$ is convex on I.

Proof

Since f and g are convex therefore for $x, y \in I$ and $\lambda \in(0,1)$

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
g(\lambda x+(1-\lambda) y) \leq \lambda g(x)+(1-\lambda) g(y) . \tag{6}
\end{equation*}
$$

Now we consider

$$
\begin{aligned}
(f+g)(\lambda x+(1-\lambda) y) & =f(\lambda x+(1-\lambda) y)+g(\lambda x+(1-\lambda) y) \\
& \leq \lambda f(x)+(1-\lambda) f(y)+\lambda g(x)+(1-\lambda) g(y) \\
& =\lambda(f(x)+g(x))+(1-\lambda)(f(y)+g(y)) \\
& =\lambda(f+g)(x)+(1-\lambda)(f+g)(y) .
\end{aligned}
$$

Hence $(f+g)$ is convex on I.

In the similar way, one can prove the following:

Theorem 11

If $f: I \rightarrow \mathbb{R}$ is convex and $\alpha \geq 0$, then αf is convex on I.

Definition 12: Line of Support

A function f defined on I has support at $x_{0} \in I$ if there exists a function

$$
A(x)=f\left(x_{0}\right)+m\left(x-x_{0}\right)
$$

such that $A(x) \leq f(x)$ for every $x \in I$.
The graph of the support function A is called a line of support for f at x_{0}.

Theorem 13

A function $f:(a, b) \rightarrow \mathbb{R}$ is convex if and only if there is at least one line of support for f at each $x_{0} \in(a, b)$.

Proof

Suppose f is convex and $x_{0} \in(a, b)$. Then $f_{-}^{\prime}, f_{+}^{\prime}$ exist and $f_{-}^{\prime}\left(x_{0}\right) \leq f_{+}^{\prime}\left(x_{0}\right)$ for all $x_{0} \in(a, b)$.

Choose $m \in\left[f_{-}^{\prime}\left(x_{0}\right), f_{+}^{\prime}\left(x_{0}\right)\right]$. Then we have

$$
\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \geq m \text { for } x>x_{0}
$$

and

$$
\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \leq m \text { for } x<x_{0}
$$

That is, we have

$$
\begin{align*}
& f(x)-f\left(x_{0}\right) \geq m\left(x-x_{0}\right) \text { for all } x \in(a, b), \\
\Rightarrow \quad & f(x) \geq f\left(x_{0}\right)+m\left(x-x_{0}\right) \text { for all } x \in(a, b) \tag{7}
\end{align*}
$$

If we consider $A(x)=f\left(x_{0}\right)+m\left(x-x_{0}\right)$ be support function at $x_{0} \in(a, b)$, then from (7), we have

$$
f(x) \geq A(x) \text { for all } x \in(a, b)
$$

This proves that f has a line of support at each $x_{0} \in(a, b)$.
Conversely, suppose that f has a line of support at each point of (a, b) and $A(x)$
define above be support function, then

$$
A(x) \leq f(x) \text { for all } x \in(a, b)
$$

Let $x, y \in(a, b)$ and $x_{0}=\lambda x+(1-\lambda) y, \lambda \in[0,1]$, then

$$
A\left(x_{0}\right)=f\left(x_{0}\right)-m\left(x_{0}-x_{0}\right)=f\left(x_{0}\right) .
$$

Now

$$
\begin{aligned}
f\left(x_{0}\right) & =A\left(x_{0}\right) \\
& =A(\lambda x+(1-\lambda) y) \\
& =f\left(x_{0}\right)+m\left(\lambda x+(1-\lambda) y-x_{0}\right) \\
& =[\lambda+(1-\lambda)] f\left(x_{0}\right)+m\left[\lambda x+(1-\lambda) y-\{\lambda+(1-\lambda)\} x_{0}\right] \\
& =\lambda\left[f\left(x_{0}\right)+m\left(x-x_{0}\right)\right]+(1-\lambda)\left[f\left(x_{0}\right)+m\left(y-x_{0}\right)\right] \\
& =\lambda A(x)+(1-\lambda) A(y) \\
& \leq \lambda f(x)+(1-\lambda) f(y) .
\end{aligned}
$$

That is, we have proved that

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) \text { for all } x \in(a, b), \lambda \in[0,1]
$$

Hence f is convex on (a, b).

Remark 14

In previous theorem, we take $f_{-}^{\prime}\left(x_{0}\right) \leq m \leq f_{+}^{\prime}\left(x_{0}\right)$. If the function f is differentiable on (a, b), then we have

$$
f_{-}^{\prime}\left(x_{0}\right)=f_{+}^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)
$$

Hence $A(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ will be line of support of f at x_{0}.
For example: If $f(x)=e^{x}$ for $x \in \mathbb{R}$, then

$$
A(x)=e+e(x-1)=e x
$$

is support function for e^{x} at point $x=1$.

It can also be written as $y=e x$ or $e x-y=0$.
In the similar way, what about support function of e^{x} at $x=0$?

Review

- A function f defined on I has support at $x_{0} \in I$ if there exists a function

$$
A(x)=f\left(x_{0}\right)+m\left(x-x_{0}\right)
$$

such that $A(x) \leq f(x)$ for every $x \in I$.

- A function $f:(a, b) \rightarrow \mathbb{R}$ is convex if and only if there is at least one line of support for f at each $x_{0} \in(a, b)$.
- From the proof of theorem stated in above clause, we have $f_{-}^{\prime}\left(x_{0}\right) \leq m \leq$ $f_{+}^{\prime}\left(x_{0}\right)$ for line of support at point x_{0}. If the function f is differentiable on (a, b), then $m=f^{\prime}\left(x_{0}\right)$.

Exercise: Find the line of supports for the function defined below at $x=1$.

$$
f(x)= \begin{cases}x^{2}, & x \geq 1 \\ x, & x<1\end{cases}
$$

Solution. A function

$$
A(x)=f\left(x_{0}\right)+m\left(x-x_{0}\right)
$$

is line of support at $x=x_{0}$, where $m \in\left[f_{-}^{\prime}\left(x_{0}\right), f_{+}^{\prime}\left(x_{0}\right)\right]$.
So we have

$$
\begin{aligned}
& f_{-}^{\prime}(x)=1 \quad \text { and } \quad f_{+}^{\prime}(x)=2 x . \\
\Rightarrow & f_{-}^{\prime}(1)=1 \quad \text { and } \quad f_{+}^{\prime}(1)=2 .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& A(x)=f(1)+m(x-1), \quad \text { where } \quad m \in[1,2], \\
\Rightarrow \quad & A(x)=1+m(x-1), \quad \text { where } \quad m \in[1,2] .
\end{aligned}
$$

Remark 15

If we are asked to find the line of support at $x=2$ for the function f defined above, that is, for function

$$
f(x)=\left\{\begin{array}{lc}
x^{2}, & x \geq 1 \\
x, & x<1
\end{array}\right.
$$

We see, the function is differentiable at $x=2$, so $m=f^{\prime}(2)=4$. Thus, we have

$$
\begin{aligned}
A(x) & =f(2)+m(x-2), \\
\Rightarrow \quad A(x) & =4+4(x-2), \\
\Rightarrow \quad A(x) & =4 x-4 .
\end{aligned}
$$

is required line of support.

References:

- A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York, 1973.
- C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications, A Contemporary Approach, Springer, New York, 2006.
- Thanks for unknown developer for background image (search web).

