Lecture 29: Discrete Mathematics

Objectives

The main aim of the lecture is to define the notion of

- factorial function.
- permutations.
- permutations with repetition.

References:

- S. Lipschutz and M. Lipson, Schaum's Outlines Discrete Mathematics, Third Edition, McGraw-Hil, 2007.
- K.H. Rosen, Discrete Mathematics and its Application, MeGraw-Hill, 6th edition. 2007.
- K.A. Ross, C.R.B. Wright, Discrete Mathematics, Prentice Hall. New Jersey, 2003.
- https://www.freepik.com/ (for background image)

Factorial Function

Let n be a non-negative integer. For positive integer n, the product of the positive integers less that equal to n is called n factorial denoted by $n!$. Also, conventionally we define $0!=1$.

Namely:

$$
n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot(n-2)(n-1) n=n(n-1)(n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1
$$

Accordingly, $1!=1$ and $n!=n(n-l)!$.

Permutations

Any arrangement of a set of n objects in a given order is called a permutation of the object (taken all at a time). Any arrangement of any $r \leq n$ of these objects in a given order is called an " r-permutation" or "a permutation of the n objects taken r at a time."
Consider, for example, the set of letters A, B, C, D. Then:
(i) $B D C A, D C B A$, and $A C D B$ are permutations of the four letters (taken all at a time).
(ii) $B A D, A C B, D B C$ are permutations of the four letters taken three at a time.
(iii) $A D, B C, C A$ are permutations of the four letters taken two at a time.

We usually are interested in the number of such permutations without listing them.
The number of permutations of n objects taken r at a time will be denoted by $P(n, r)$ (other texts may use ${ }_{n} P^{r}, P_{n, r}$, or $\left.(n)_{r}\right)$.
The following theorem applies.
Theorem: $\quad P(n, r)=n(n-1)(n-2) \cdots(n-r+1)=\frac{n!}{(n-r)!}$
We emphasize that there are r factors in $n(n-1)(n-2) \cdots(n-r+1)$.

Example

Find the number m of permutations of six objects, say, A, B, C, D, E, F, taken three at a time. In other words, find the number of "three-letter words" using only the given six letters without repetition. Let us represent the general three-letter word by the following three positions:

$$
\square,-\square
$$

The first letter can be chosen in 6 ways; following this the second letter can be chosen in 5 ways; and, finally, the third letter can be chosen in 4 ways.
Write each number in its appropriate position as follows:

$$
6,5,4
$$

By the Product Rule there are $m=6 \cdot 5 \cdot 4120$ possible three-letter words without repetition from the six letters.
Namely, there are 120 permutations of 6 objects taken 3 at a time. This agrees with the formula in Theorem given above:

$$
P(6,3)=6 \cdot 5 \cdot 4=120 .
$$

Consider now the special case of $P(n, r)$ when $r=n$. We get the following result.

Corollary

There are n ! permutations of n objects (taken all at a time).

For example, there are $3!=6$ permutations of the three letters A, B, C. These are: $\mathrm{ABC}, \mathrm{ACB}, \mathrm{BAC}, \mathrm{BCA}, \mathrm{CAB}, \mathrm{CBA}$.

Permutations with Repetitions

Frequently we want to know the number of permutations of a multiset, that is, a set of objects some of which are alike. We will let

$$
P\left(n ; n_{1}, n_{2}, \ldots, n_{r}\right)
$$

denote the number of permutations of n objects of which n_{1} are alike, n_{2} are alike, \ldots, n_{r} are alike. The general formula follows:

Theorem: $P\left(n ; n_{1}, n_{2}, \ldots, n_{r}\right)=\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}$.
We indicate the proof of the above theorem by a particular example. Suppose we want to form all possible five-letter "words" using the letters from the word " $B A B B Y$." Now there are $5!=120$ permutations of the objects $B_{1}, A, B_{2}, B_{3}, Y$, where the three B 's are distinguished. Observe that the following six permutations

$$
B_{1} B_{2} B_{3} A Y, B_{2} B_{1} B_{3} A Y, B_{3} B_{1} B_{2} A Y, B_{1} B_{3} B_{2} A Y, B_{2} B_{3} B_{1} A Y, B_{3} B_{2} B_{1} A Y
$$

produce the same word when the subscripts are removed.

The 6 comes from the fact that there are $3!=3 \cdot 2 \cdot 1=6$ different ways of placing the three B 's in the first three positions in the permutation. This is true for each set of
three positions in which the B 's can appear. Accordingly, the number of different five-letter words that can be formed using the letters from the word " $B A B B Y$ " is:

$$
P(5 ; 3)=\frac{5!}{3!}=20
$$

Example:

Find the number m of seven-letter words that can be formed using the letters of the word
"BENZENE."

We seek the number of permutations of 7 objects of which 3 are alike (the three E 's), and 2 are alike (the two N 's). Thus

$$
\begin{aligned}
m= & P(7 ; 3,2)=\frac{7!}{3!2!}=\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot 2 \cdot 1} \\
& =420 . \\
& =\ldots \ldots \\
& \text { THANKS FOR YOUR ATTENTION }
\end{aligned}
$$

