Lecture 17: Discrete Mathematics

Course Title: Discrete Mathematics

Course Code: MTH211

Class: BSM-II

Objectives

The main aim of the lecture is to

- *define Big-O notation,*
- *define little-o notation,*
- define little-omega notation, and
- *give examples and related results.*

References:

- S. Lipschutz and M. Lipson, Schaum's Outlines Discrete Mathematics, Third Edition, McGraw-Hil, 2007.
- K.H. Rosen, Discrete Mathematics and its Application, MeGraw-Hill, 6th edition. 2007.
- K.A. Ross, C.R.B. Wright, Discrete Mathematics, Prentice Hall. New Jersey, 2003.
- https://en.wikipedia.org/wiki/Big_O_notation

Big O Notation (also written as "big oh")

Definition: Let f(x) and g(x) be arbitrary functions defined on \mathbb{R} or a subset of \mathbb{R} . We say "f(x) is of order g(x)," or "f(x) is Big-O of g(x)" if there exists a real number k and a positive constant C such that, for all x > k, we have

 $|f(x)| \le C|g(x)|.$

Notation: It is written
$$f(x) = O(g(x))$$
 or $f \in O(g)$

For example,

\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$

$$7x^2 - 9x + 4 = O(x^2)$$
 and
 $8x^3 - 576x^2 + 832x - 248 = O(x^3)$

Little o Notation (also written as "little oh")

Definition: Let f(x) and g(x) be arbitrary functions defined on \mathbb{R} or a subset of \mathbb{R} . We say "f(x) is little-o of g(x)," if for every positive ε there exists a real number k such that, for all x > k, we have $|f(x)| < \varepsilon |g(x)|$.

Notation: It is written as f(x) = o(g(x)) or $f \in o(g)$.

For example, one has

()) ())

9) 9)

597 597

9) 9)

()) ())

9) 9)

$$2x = o(x^2)$$
 and $\frac{1}{x} = o(1)$

Note that, as g(x) is nonzero, or at least becomes nonzero beyond a certain point, the

relation f(x) = o(g(x)) is equivalent to $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$ (by using the definition of limit of function).

- 3 -

Difference between big-O and little-o:

The difference between the earlier definition for the big-O notation and the present definition of little-o, is that while the former has to be true for *at least one* constant *C*, the latter must hold for *every* positive constant ε , however small. In this way, little-o notation makes a *stronger statement* than the corresponding big-O notation: every function that is little-o of *g* is also big-O of *g*, but not every function that is big-O of *g* is also little-o of *g*.

For example,

(); ();

 $2x^2 = O(x^2)$ but $2x^2 \neq o(x^2)$.

- 5 -

Little-Omega Notation

It is the inverse of the little-o notation.

Definition: Let f(x) and g(x) be arbitrary functions defined on \mathbb{R} or a subset of \mathbb{R} . We say "f(x) is little-omega of g(x)," if g(x) = o(f(x)) or $g \in o(f)$.

Notation: It is written as $f(x) = \omega(g(x))$ or $f \in \omega(g)$.

For example, one has

()) ())

93 93

9) 9)

9) 9)

```
x^2 = \omega(x) and x = \omega(1).
```

Remarks: 1. Note that $f(x) = \omega(g(x))$ if and only if g(x) = o(f(x)).

```
2. Also note that if f(x) = \omega(g(x)) then \lim_{x \to \infty} \frac{g(x)}{f(x)} = 0.
```

3. The above three notations are part of the notation known as "*asymptotic notation*" in the literature.

Thanks for your attention.