Lecture 15: Discrete Mathematics

Course Title: Discrete Mathematics

Course Code: MTH211

Class: BSM-II

Objectives

The main aim of the lecture is to

- *define floor and ceiling functions,*
- *draw graph of floor and ceiling functions,*
- *define power function.*

References:

- S. Lipschutz and M. Lipson, Schaum's Outlines Discrete Mathematics, Third Edition, McGraw-Hil, 2007.
- K.H. Rosen, Discrete Mathematics and its Application, MeGraw-Hill, 6th edition. 2007.
- K.A. Ross, C.R.B. Wright, Discrete Mathematics, Prentice Hall. New Jersey, 2003.
- The LibreTexts libraries; https://math.libretexts.org/

Real Numbers

In mathematics, a real number is a value of a continuous quantity that can represent a distance along a line. The real numbers include all the rational numbers, such as the integer -5 and the fraction 4/3, and all the irrational numbers, such as $\sqrt{2}$ (1.41421356..., the square root of 2), π (3.1415...).

() ()

Floor and Ceiling Functions

Let *x* be any real number. Then *x* lies between two integers called the floor and the ceiling of *x*. Specifically,

|x|, called the *floor* of x, denotes the greatest integer that does not exceed x.

 $\begin{bmatrix} x \end{bmatrix}$, called the *ceiling* of *x*, denotes the least integer that is not less than *x*.

If x is itself an integer, then $\lfloor x \rfloor = \lceil x \rceil$; otherwise $\lfloor x \rfloor + 1 = \lceil x \rceil$.

Examples:

÷÷÷÷÷÷÷÷÷÷

$$\lfloor 3.14 \rfloor = 3, \lfloor \sqrt{5} \rfloor = 2, \lfloor -\sqrt{5} \rfloor = -3, \lfloor 7 \rfloor = 7,$$

$$\lceil 3.14 \rceil = 4, \lceil \sqrt{5} \rceil = 3, \lceil -\sqrt{5} \rceil = -2, \lceil 7 \rceil = 7.$$

- 3 -

5 5 <u>ی</u> (i) (i) (i) ***

Graph of Floor Function:

9 **S**

() **(**);

S S

S

9

() **S S (**);

S 9

9

S

()

S ۲ ک **S** 5 **(**) <u>ی</u> ۵. <u>ی</u> 🔅 🏟 . **S** S 3 ٠ S 3 ٠ S.

Ş;

S.

,;;

();

\$ \$ \$ \$ \$ 5 S. 9 ***

Graph of Ceiling Functions:

9

S

() **(**); **S S**

S S

()

S () **S**

() **(**); **S (**);

S S ()

\$

\$

. 9) 9)

.

Power Function:

A *power function* is a function that can be represented in the form

 $f(x) = kx^p,$

where k and p are real numbers, and k is known as the *coefficient*.

Examples

\$

()

S

- The constant and identity functions are power functions because they can be written as $f(x) = x^0$, and $f(x) = x^1$ respectively.
- The quadratic and cubic functions are power functions with whole number powers $f(x) = x^2$ and $f(x) = x^3$.
- The square root and cube root functions are power functions with fractional powers because they can be written as $f(x) = x^{\frac{1}{2}}$ and $f(x) = x^{\frac{1}{3}}$.

⇒.....€ Thanks for your attention.