Lecture 13: Discrete Mathematics

Course Title: Discrete Mathematics Course Code: MTH211 Class: BSM-II

Objectives

The main aim of the lecture is to define the notion of

- equivalence relation,
- partial ordering relation,
- n-array relations and
- related problems.

References:

- S. Lipschutz and M. Lipson, Schaum's Outlines Discrete Mathematics, Third Edition, McGraw-Hil, 2007.
- K.H. Rosen, Discrete Mathematics and its Application, MeGraw-Hill, 6th edition. 2007.
- K.A. Ross, C.R.B. Wright, Discrete Mathematics, Prentice Hall. New Jersey, 2003.

Equivalence Relation:

Consider a nonempty set S. A relation R on S is an *equivalence relation* if R is reflexive, symmetric, and transitive. That is, R is an equivalence relation on S if it has the following three properties:

(1) For every $a \in S$, aRa. (2) If aRb, then bRa. (3) If aRb and bRc, then aRc.

The general idea behind an equivalence relation is that it is a classification of objects which are in some way "alike." In fact, the relation "=" of equality on any set S is an equivalence relation; that is:

(1) a = a for every $a \in S$. (2) If a = b, then b = a. (3) If a = b, b = c, then a = c.

EXAMPLE

- (a) Let L be the set of lines and let T be the set of triangles in the Euclidean plane.
 - (i) The relation "is parallel to or identical to" is an equivalence relation on L.
 - (ii) The relations of congruence and similarity are equivalence relations on T.
- (b) The relation \subseteq of set inclusion is not an equivalence relation. It is reflexive and transitive, but it is not symmetric since $A \subseteq B$ does not imply $B \subseteq A$.

(c) Let m be a fixed positive integer. Two integers a and b are said to be congruent modulo m, written

$$a \equiv b \pmod{m}$$

if m divides a - b. For example, for the modulus m = 4, we have

$$11 \equiv 3 \pmod{4}$$
 and $22 \equiv 6 \pmod{4}$

since 4 divides 11 - 3 = 8 and 4 divides 22 - 6 = 16. This relation of congruence modulo m is an important equivalence relation.

Partial Ordering Relations:

A relation R on a set S is called a *partial ordering* or a *partial order* of S if R is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a *partially ordered set* or *poset*.

EXAMPLE

- (a) The relation ⊆ of set inclusion is a partial ordering on any collection of sets since set inclusion has the three desired properties. That is,
 - (1) $A \subseteq A$ for any set A.
 - (2) If $A \subseteq B$ and $B \subseteq A$, then A = B.
 - (3) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
- (b) The relation \leq on the set **R** of real numbers is reflexive, antisymmetric, and transitive. Thus \leq is a partial ordering on **R**.
- (c) The relation "a divides b," written $a \mid b$, is a partial ordering on the set **N** of positive integers. However, "a divides b" is not a partial ordering on the set **Z** of integers since $a \mid b$ and $b \mid a$ need not imply a = b. For example, $3 \mid -3$ and $-3 \mid 3$ but $3 \neq -3$.

n-Ary Relations

All the relations discussed above were binary relations. By an *n*-ary relation, we mean a set of ordered n-tuples. For any set S, a subset of the product set S^n is called an n-ary relation on S. In particular, a subset of S^3 is called a *ternary relation* on S.

EXAMPLE

- (a) Let L be a line in the plane. Then "betweenness" is a ternary relation R on the points of L; that is, $(a, b, c) \in R$ if b lies between a and c on L.
- (b) The equation $x^2 + y^2 + z^2 = 1$ determines a ternary relation T on the set \mathbf{R} of real numbers. That is, a triple (x, y, z) belongs to T if (x, y, z) satisfies the equation, which means (x, y, z) is the coordinates of a point in \mathbf{R}^3 on the sphere S with radius 1 and center at the origin O = (0, 0, 0).

Problems:

See the first reference given on start of the presentation (Chapter 2: Page 34) Please consider the following solved problems:

2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.9, 2.10, 2.14, 2.15, 2.18, 2.19

Also see the Supplementary Problems at page 40.

"thankyoufor your Affention .)"