Lecture 12: Discrete Mathematics

Course Title: Discrete Mathematics

Course Code: MTH211

Class: BSM-II

Objectives

The main aim of the lecture is to discuss

- *transitive relation on a set with examples.*
- equivalence relation on a set with examples.

References:

- S. Lipschutz and M. Lipson, Schaum's Outlines Discrete Mathematics, Third Edition, McGraw-Hil, 2007.
- K.H. Rosen, Discrete Mathematics and its Application, MeGraw-Hill, 6th edition. 2007.
- K.A. Ross, C.R.B. Wright, Discrete Mathematics, Prentice Hall. New Jersey, 2003.

Transitive Relations

A relation *R* on a set *A* is transitive if whenever *aRb* and *bRc* then *aRc*, that is, if whenever $(a, b), (b, c) \in R$ then $(a, c) \in R$.

Thus *R* is not transitive if there exist *a*, *b*, $c \in R$ such that $(a, b), (b, c) \in R$ but $(a, c) \not\in R$.

Example 1

Consider the following five relations on the set $A = \{1, 2, 3, 4\}$:

 $R_{1} = \{(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)\}$ $R_{2} = \{(1, 1)(1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$ $R_{3} = \{(1, 3), (2, 1)\}$ $R_{4} = \emptyset, \text{ the empty relation}$ $R_{5} = A \times A, \text{ the universal relation}$

The relation R_3 is not transitive since $(2, 1), (1, 3) \in R_3$ but $(2, 3) \not\in R_3$. All the other relations are transitive.

Example 2

Consider the following five relations:

(1) Relation \leq (less than or equal) on the set \mathbb{Z} of integers.

(2) Set inclusion \subseteq on a collection *C* of sets.

(3) Relation \perp (perpendicular) on the set *L* of lines in the plane.

(4) Relation \parallel (parallel) on the set *L* of lines in the plane.

(5) Relation | of divisibility on the set \mathbb{N} of positive integers.

(Recall x | y if there exists z such that xz = y.)

The relations \leq , \subseteq , and | are transitive, but certainly not \perp . Also, since no line is parallel to itself, we can have $a \parallel b$ and $b \parallel a$, but $a \parallel a$. Thus \parallel is not transitive.

Equivalence Relations

Consider a nonempty set S. A relation R on S is an equivalence relation if R is reflexive, symmetric, and transitive.

That is, *R* is an equivalence relation on *S* if it has the following three properties:

- (1) For every $a \in S$, aRa.
- (2) If aRb, then bRa.
- (3) If aRb and bRc, then aRc.

Examples 3

The relation "=" of equality on any set *S* is an equivalence relation; that is: (1) a = a for every $a \in S$. (2) If a = b, then b = a. (3) If a = b, b = c, then a = c.

Examples 4

The relation set inclusion \subseteq on a collection *C* of sets is not an equivalence relation. It is reflexive and transitive, but it is not symmetric since $A \subseteq B$ does not imply $B \subseteq A$.

Example 5

Let *m* be a fixed positive integer. Two integers *a* and *b* are said to be congruent modulo *m*, written $a \equiv b \pmod{m}$

if *m* divides a - b. For example, for the modulus m = 4, we have $11 \equiv 3 \pmod{4}$ and $22 \equiv 6 \pmod{4}$, since 4 divides $11 - 3 \equiv 8$ and 4 divides $22 - 6 \equiv 16$. This relation of congruence modulo *m* is an important equivalence relation.

→ THANKS FOR YOUR ATTENTION