Lecture 11: Discrete Mathematics

Course Title: Discrete Mathematics

Course Code: MTH211

Class: BSM-II

Objectives

The main aim of the lecture is to discuss

- *Types of relations.*
- *Reflexive, symmetric and antisymmetric.*
- *Give some examples related to these.*

References:

- S. Lipschutz and M. Lipson, Schaum's Outlines Discrete Mathematics, Third Edition, McGraw-Hil, 2007.
- K.H. Rosen, Discrete Mathematics and its Application, MeGraw-Hill, 6th edition. 2007.
- K.A. Ross, C.R.B. Wright, Discrete Mathematics, Prentice Hall. New Jersey, 2003.

Types of Relations:

Here we discusses a number of important types of relations defined on a set A.

Reflexive Relations

A relation *R* on a set *A* is reflexive if *aRa* for every $a \in A$, that is, if $(a, a) \in R$ for every $a \in A$. Thus *R* is not reflexive if there exists $a \in A$ such that $(a, a) \not\in R$.

Example 1

Consider the following five relations on the set $A = \{1, 2, 3, 4\}$:

 $\mathbf{R}_1 = \{(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)\}$

 $\mathbf{R}_2 = \{(1, 1)(1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$

$$\mathbf{R}_3 = \{(1, 3), (2, 1)\}$$

 $R_4 = \emptyset$, the empty relation

 $R_5 = A \times A$, the universal relation

Since *A* contains the four elements 1, 2, 3, and 4, a relation *R* on *A* is reflexive if it contains the four pairs (1, 1), (2, 2), (3, 3), and (4, 4). Thus only R_2 and the universal relation $R_5 = A \times A$ are reflexive. Note that R_1 , R_3 , and R_4 are not reflexive since, for example, (2, 2) does not belong to any of them.

Example 2

Consider the following five relations:

- (1) Relation \leq (less than or equal) on the set \mathbb{Z} of integers.
- (2) Set inclusion \subseteq on a collection *C* of sets.
- (3) Relation \perp (perpendicular) on the set *L* of lines in the plane.
- (4) Relation \parallel (parallel) on the set *L* of lines in the plane.
- (5) Relation | of divisibility on the set \mathbb{N} of positive integers. (Recall $x \mid y$ if there exists z such that xz = y.)

The relation (3) is not reflexive since no line is perpendicular to itself. Also (4) is not reflexive since no line is parallel to itself. The other relations are reflexive; that is, $x \le x$ for every $x \in \mathbb{Z}$, $A \subseteq A$ for any set $A \in C$, and $n \mid n$ for every positive integer $n \in \mathbb{N}$.

Symmetric Relations

A relation *R* on a set *A* is symmetric if whenever *aRb* then *bRa*, that is, if whenever $(a, b) \in R$ then $(b, a) \in \mathbb{R}$.

A relation *R* is not symmetric if there exists *a*, *b* \in *A* such that (*a*, *b*) \in *R* but (*b*, *a*) $\not\in$ *R*. **Example 3**

Consider the following five relations on the set $A = \{1, 2, 3, 4\}$:

 $R_{1} = \{(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)\}$ $R_{2} = \{(1, 1)(1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$ $R_{3} = \{(1, 3), (2, 1)\}$ $R_{4} = \emptyset, \text{ the empty relation}$ $R_{5} = A \times A, \text{ the universal relation}$ A relation R_{1} is not symmetric since $(1, 2) \in R_{1}$ but $(2, 1) \not \in R_{1}$. R_{3} is not symmetric since $(1, 3) \in R_{3}$ but $(3, 1) \not \in R_{3}$.

The other relations are symmetric.

Example 4

Consider the following five relations:

- (1) Relation \leq (less than or equal) on the set \mathbb{Z} of integers.
- (2) Set inclusion \subseteq on a collection *C* of sets.
- (3) Relation \perp (perpendicular) on the set *L* of lines in the plane.
- (4) Relation \parallel (parallel) on the set *L* of lines in the plane.
- (5) Relation | of divisibility on the set \mathbb{N} of positive integers.

(Recall x | y if there exists z such that xz = y.)

The relation \perp is symmetric since if line *a* is perpendicular to line *b* then *b* is perpendicular to *a*. Also, \parallel is symmetric since if line *a* is parallel to line *b* then *b* is parallel to line *a*. The other relations are not symmetric.

For example:

 $3 \le 4$ but $4 \le 3$; $\{1, 2\} \subseteq \{1, 2, 3\}$ but $\{1, 2, 3\} \not\subseteq \{1, 2\}$; and $2 \mid 6$ but $6 \nmid 2$.

Antisymmetric Relations

A relation *R* on a set *A* is antisymmetric if whenever *aRb* and *bRa* then a = b, that is, if $a \neq b$ and *aRb* then $b \not R a$.

Thus, *R* is not antisymmetric if there exist distinct elements *a* and *b* in *A* such that *aRb* and *bRa*.

Example 5

Consider the following five relations on the set $A = \{1, 2, 3, 4\}$:

 $\mathbf{R}_1 = \{(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)\}$

 $\mathbf{R}_2 = \{(1, 1)(1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$

$$\mathbf{R}_3 = \{(1, 3), (2, 1)\}$$

 $R_4 = \emptyset$, the empty relation

 $R_5 = A \times A$, the universal relation

A relation R_2 is not antisymmetric since (1, 2) and (2, 1) belong to R_2 , but $1 \neq 2$. Similarly, the universal relation R_3 is not antisymmetric. All the other relations are antisymmetric.

Example 6

Consider the following five relations:

- (1) Relation \leq (less than or equal) on the set \mathbb{Z} of integers.
- (2) Set inclusion \subseteq on a collection *C* of sets.
- (3) Relation \perp (perpendicular) on the set *L* of lines in the plane.
- (4) Relation \parallel (parallel) on the set *L* of lines in the plane.
- (5) Relation | of divisibility on the set \mathbb{N} of positive integers.

(Recall x | y if there exists z such that xz = y.)

The relation \leq is antisymmetric since whenever $a \leq b$ and $b \leq a$ then a = b. Set inclusion \subseteq is antisymmetric since whenever $A \subseteq B$ and $B \subseteq A$ then A = B. Also, divisibility on \mathbb{N} is antisymmetric since whenever $m \mid n$ and $n \mid m$ then m = n. (Note that divisibility on \mathbb{Z} is not antisymmetric since $3 \mid -3$ and $-3 \mid 3$ but $3 \neq -3$.) The relations \perp and \parallel are not antisymmetric.

Remark

The properties of being symmetric and being antisymmetric are not negatives of each other. For example, the relation $R = \{(1, 3), (3, 1), (2, 3)\}$ is neither symmetric nor antisymmetric. On the other hand, the relation $R' = \{(1, 1), (2, 2)\}$ is both symmetric and antisymmetric.

THANKS FOR YOUR ATTENTION