Lecture 07: Discrete Mathematics

Objectives

The main aim of the lecture is to define the notion of

- Order pair
- Product of sets
- Relation
- Inverse relation

References:

- S. Lipschutz and M. Lipson, Schaum's Outlines Discrete Mathematics, Third Edition, McGraw-Hil, 2007.
- K.H. Rosen, Discrete Mathematics and its Application, MeGraw-Hill, 6th edition. 2007.
- K.A. Ross, C.R.B. Wright, Discrete Mathematics, Prentice Hall. New Jersey, 2003.

An ordered pair of elements a and b, where a is designated as the first element and b as the second element, is denoted by (a, b). In particular,

$$
(a, b)=(c, d)
$$

if and only if $a=c$ and $b=d$. Thus $(a, b) \neq(b, a)$ unless $a=b$. This contrasts with sets where the order of elements is irrelevant; for example, $\{3,5\}=\{5,3\}$.

Product of Sets:

Consider two arbitrary sets A and B. The set of all ordered pairs (a, b) where $a \in A$ and $b \in B$ is called the product, or Cartesian product, of A and B. A short designation of this product is $A \times B$, which is read " A cross B." By definition,

$$
A \times B=\{(a, b) \mid a \in A \text { and } b \in B\}
$$

One frequently writes A^{2} instead of $A \times A$.

EXAMPLE Let $A=\{1,2\}$ and $B=\{a, b, c\}$. Then

$$
\begin{aligned}
& A \times B=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c)\} \\
& B \times A=\{(a, 1),(b, 1),(c, 1),(a, 2),(b, 2),(c, 2)\}
\end{aligned}
$$

Also, $A \times A=\{(1,1),(1,2),(2,1),(2,2)\}$

EXAMPLE $\quad \mathbf{R}$ denotes the set of real numbers and so $\mathbf{R}^{2}=\mathbf{R} \times \mathbf{R}$ is the set of ordered pairs of real numbers. The reader is familiar with the geometrical representation of \mathbf{R}^{2} as points in the plane as in Fig. 2-1. Here each point P represents an ordered pair (a, b) of real numbers and vice versa; the vertical line through P meets the x-axis at a, and the horizontal line through P meets the y-axis at $b . \mathbf{R}^{2}$ is frequently called the Cartesian plane.

The idea of a product of sets can be extended to any finite number of sets. For any sets $A_{1}, A_{2}, \ldots, A_{n}$, the set of all ordered n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where $a_{1} \in A_{1}, a_{2} \in A_{2}, \ldots, a_{n} \in A_{n}$ is called the product of the sets A_{1}, \ldots, A_{n} and is denoted by

$$
A_{1} \times A_{2} \times \cdots \times A_{n} \quad \text { or } \quad \prod_{i=1}^{n} A_{1}
$$

Just as we write A^{2} instead of $A \times A$, so we write A^{n} instead of $A \times A \times \cdots \times A$, where there are n factors all equal to A. For example, $\mathbf{R}^{3}=\mathbf{R} \times \mathbf{R} \times \mathbf{R}$ denotes the usual three-dimensional space.

Definition Let A and B be sets. A binary relation or, simply, relation from A to B is a subset of $A \times B$.
Suppose R is a relation from A to B. Then R is a set of ordered pairs where each first element comes from A and each second element comes from B. That is, for each pair $a \in A$ and $b \in B$, exactly one of the following is true:
(i) $(a, b) \in R$; we then say " a is R-related to b ", written $a R b$.
(ii) $(a, b) \notin R$; we then say " a is not R-related to b ", written $a R$ ' .

If R is a relation from a set A to itself, that is, if R is a subset of $A^{2}=A \times A$, then we say that R is a relation on A.
The domain of a relation R is the set of all first elements of the ordered pairs which belong to R, and the range is the set of second elements.

EXAMPLE

(a) $A=(1,2,3)$ and $B=\{x, y, z\}$, and let $R=\{(1, y),(1, z),(3, y)\}$. Then R is a relation from A to B since R is a subset of $A \times B$. With respect to this relation,

$$
1 R y, 1 R z, 3 R y, \quad \text { but } \quad 1 R^{\prime} x, 2 R^{\prime} x, 2 R^{\prime} y, 2 R^{\prime} z, 3 R^{\prime} x, 3 R z
$$

The domain of R is $\{1,3\}$ and the range is $\{y, z\}$.
(b) Set inclusion \subseteq is a relation on any collection of sets. For, given any pair of set A and B, either $A \subseteq B$ or $A \nsubseteq B$.
(c) A familiar relation on the set \mathbf{Z} of integers is " m divides n." A common notation for this relation is to write $m \mid n$ when m divides n. Thus $6 \mid 30$ but $7 \nmid 25$.
(d) Consider the set L of lines in the plane. Perpendicularity, written " \perp," is a relation on L. That is, given any pair of lines a and b, either $a \perp b$ or $a \not \perp b$. Similarly, "is parallel to," written " $\|$," is a relation on L since either $a \| b$ or $a \forall b$.

Inverse Relation

Let R be any relation from a set A to a set B. The inverse of R, denoted by R^{-1}, is the relation from B to A which consists of those ordered pairs which, when reversed, belong to R; that is,

$$
R^{-1}=\{(b, a) \mid(a, b) \in R\}
$$

For example, let $A=\{1,2,3\}$ and $B=\{x, y, z\}$. Then the inverse of

$$
R=\{(1, y),(1, z),(3, y)\} \quad \text { is } \quad R^{-1}=\{(y, 1),(z, 1),(y, 3)\}
$$

Clearly, if R is any relation, then $\left(R^{-1}\right)^{-1}=R$. Also, the domain and range of R^{-1} are equal, respectively, to the range and domain of R. Moreover, if R is a relation on A, then R^{-1} is also a relation on A.

