Lecture 07: Discrete Mathematics

Course Title: Discrete Mathematics

Course Code: MTH211

Class: BSM-II

Objectives

The main aim of the lecture is to define the notion of

- Order pair
- Product of sets
- Relation
- Inverse relation

References:

- S. Lipschutz and M. Lipson, Schaum's Outlines Discrete Mathematics, Third Edition, McGraw-Hil, 2007.
- K.H. Rosen, Discrete Mathematics and its Application, MeGraw-Hill, 6th edition. 2007.
- K.A. Ross, C.R.B. Wright, Discrete Mathematics, Prentice Hall. New Jersey, 2003.

Order Pair:

An *ordered pair* of elements a and b, where a is designated as the first element and b as the second element, is denoted by (a, b). In particular,

(a,b) = (c,d)

if and only if a = c and b = d. Thus $(a, b) \neq (b, a)$ unless a = b. This contrasts with sets where the order of elements is irrelevant; for example, $\{3, 5\} = \{5, 3\}$.

Product of Sets:

Consider two arbitrary sets A and B. The set of all ordered pairs (a, b) where $a \in A$ and $b \in B$ is called the *product*, or *Cartesian product*, of A and B. A short designation of this product is $A \times B$, which is read "A cross B." By definition,

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$$

One frequently writes A^2 instead of $A \times A$.

- 2 -

EXAMPLE Let $A = \{1, 2\}$ and $B = \{a, b, c\}$. Then

 $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$ $B \times A = \{(a, 1), (b, 1), (c, 1), (a, 2), (b, 2), (c, 2)\}$

Also, $A \times A = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$

EXAMPLE R denotes the set of real numbers and so $\mathbf{R}^2 = \mathbf{R} \times \mathbf{R}$ is the set of ordered pairs of real numbers. The reader is familiar with the geometrical representation of \mathbf{R}^2 as points in the plane as in Fig. 2-1. Here each point *P* represents an ordered pair (a, b) of real numbers and vice versa; the vertical line through *P* meets the *x*-axis at *a*, and the horizontal line through *P* meets the *y*-axis at *b*. \mathbf{R}^2 is frequently called the *Cartesian plane*. The idea of a product of sets can be extended to any finite number of sets. For any sets A_1, A_2, \ldots, A_n , the set of all ordered *n*-tuples (a_1, a_2, \ldots, a_n) where $a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n$ is called the *product* of the sets A_1, \ldots, A_n and is denoted by

$$A_1 \times A_2 \times \cdots \times A_n$$
 or $\prod_{i=1}^n A_1$

Just as we write A^2 instead of $A \times A$, so we write A^n instead of $A \times A \times \cdots \times A$, where there are *n* factors all equal to *A*. For example, $\mathbf{R}^3 = \mathbf{R} \times \mathbf{R} \times \mathbf{R}$ denotes the usual three-dimensional space.

Relation

Definition Let A and B be sets. A *binary relation* or, simply, *relation* from A to B is a subset of $A \times B$.

Suppose *R* is a relation from *A* to *B*. Then *R* is a set of ordered pairs where each first element comes from *A* and each second element comes from *B*. That is, for each pair $a \in A$ and $b \in B$, exactly one of the following is true:

(i) (a, b) ∈ R; we then say "a is R-related to b", written aRb.
(ii) (a, b) ∉ R; we then say "a is not R-related to b", written aRb.

If *R* is a relation from a set *A* to itself, that is, if *R* is a subset of $A^2 = A \times A$, then we say that *R* is a relation *on A*. The *domain* of a relation *R* is the set of all first elements of the ordered pairs which belong to *R*, and the *range* is the set of second elements.

EXAMPLE

(a) A = (1, 2, 3) and $B = \{x, y, z\}$, and let $R = \{(1, y), (1, z), (3, y)\}$. Then R is a relation from A to B since R is a subset of $A \times B$. With respect to this relation,

1Ry, 1Rz, 3Ry, but 1Rx, 2Rx, 2Ry, 2Rz, 3Rx, 3Rz

The domain of *R* is $\{1, 3\}$ and the range is $\{y, z\}$.

- (b) Set inclusion \subseteq is a relation on any collection of sets. For, given any pair of set A and B, either $A \subseteq B$ or $A \not\subseteq B$.
- (c) A familiar relation on the set **Z** of integers is "*m* divides *n*." A common notation for this relation is to write $m \mid n$ when *m* divides *n*. Thus $6 \mid 30$ but $7 \nmid 25$.
- (d) Consider the set *L* of lines in the plane. Perpendicularity, written " \perp ," is a relation on *L*. That is, given any pair of lines *a* and *b*, either $a \perp b$ or $a \not\perp b$. Similarly, "is parallel to," written " \parallel ," is a relation on *L* since either $a \parallel b$ or $a \not\parallel b$.

Inverse Relation

Let R be any relation from a set A to a set B. The *inverse* of R, denoted by R^{-1} , is the relation from B to A which consists of those ordered pairs which, when reversed, belong to R; that is,

 $R^{-1} = \{(b, a) \mid (a, b) \in R\}$

For example, let $A = \{1, 2, 3\}$ and $B = \{x, y, z\}$. Then the inverse of

 $R = \{(1, y), (1, z), (3, y)\}$ is $R^{-1} = \{(y, 1), (z, 1), (y, 3)\}$

Clearly, if R is any relation, then $(R^{-1})^{-1} = R$. Also, the domain and range of R^{-1} are equal, respectively, to the range and domain of R. Moreover, if R is a relation on A, then R^{-1} is also a relation on A.

€.....€

THANKS FOR YOUR ATTENTION