Lecture 06: Discrete Mathematics

Objectives

The main aim of the lecture is to discuss about

- Propositional functions with more than one variable

References:

- S. Lipschutz and M. Lipson, Schaum's Outlines Discrete Mathematics, Third Edition, McGraw-Hil, 2007.
- K.H. Rosen, Discrete Mathematics and its Application, MeGraw-Hill, 6th edition. 2007.
- K.A. Ross, C.R.B. Wright, Discrete Mathematics, Prentice Hall. New Jersey, 2003.

Propositional Functions with more than One Variable

A propositional function (of n variables) defined over a product set $A=A_{1} \times A_{2} \times \ldots \times A_{n}$ is an expression $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, which has the property that $p\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is true or false for any n-tuple ($a_{1}, a_{2}, \ldots, a_{n}$) in A. For example,

$$
x+2 y+3 z<18
$$

is a propositional function on $\mathbf{N}^{3}=\mathbf{N} \times \mathbf{N} \times \mathbf{N}$. Such a propositional function has no truth value. However, we do have the following:
Basic Principle: A propositional function preceded by a quantifier for each variable, for example,

$$
\forall x \exists y, p(x, y) \quad \text { or } \quad \exists x \forall y \exists z, p(x, y, z)
$$

denotes a statement and has a truth value.

Examples

Let $B=\{1,2,3, \ldots, 9\}$ and let $p(x, y)$ denote " $x+y=10$." Then $p(x, y)$ is a propositional function on $A=B^{2}=B \times B$.
(a) The following is a statement since there is a quantifier for each variable:

$$
\forall x \exists y, p(x, y) \text {, that is, "For every } x \text {, there exists a } y \text { such that } x+y=10 "
$$

This statement is true. For example, if $x=1$, let $y=9$; if $x=2$, let $y=8$, and so on.
(b) The following is also a statement:
$\exists y \forall x, p(x, y)$, that is, "There exists a y such that, for every x, we have $x+y=10$ "
No such y exists; hence this statement is false.

Negating Quantified Statements with more than One Variable

Quantified statements with more than one variable may be negated by successively applying following theorem:

Theorem (DeMorgan):

(a) $\neg(\forall x \in A) p(x) \equiv(\exists x \in A) \neg p(x)$
(b) $\neg(\exists x \in A) p(x) \equiv(\forall x \in A) \neg p(x)$.

Thus each \forall is changed to \exists and each \exists is changed to \forall as the negation symbol \neg passes through the statement from left to right. For example,

$$
\begin{aligned}
& \neg[\forall x \exists y \exists z, p(x, y, z)] \\
\equiv & \exists x \neg[\exists y \exists z, p(x, y, z)] \\
\equiv & \exists x \forall y \neg[\exists z, p(x, y, z) \\
\equiv & \exists x \forall y \forall z, \neg p(x, y, z) .
\end{aligned}
$$

Naturally, we do not put in all the steps when negating such quantified statements.

Example

(a) Consider the quantified statement:
"Every student has at least one course where the lecturer is a teaching assistant."
Its negation is the statement:
"There is a student such that in every course the lecturer is not a teaching assistant."
(b) The formal definition that L is the limit of a sequence a_{1}, a_{2}, \ldots follows:

$$
\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}, \forall n>n_{0} \text { we have }\left|a_{n}-L\right|<\varepsilon .
$$

Thus L is not the limit of the sequence $a 1, a 2, \ldots$ when:
$\exists \varepsilon>0, \forall n_{0} \in \mathbb{N}, \exists n>n_{0}$ such that $\left|a_{n}-L\right| \geq \varepsilon$.

