Lecture 02: Discrete Mathematics

Course Title: Discrete Mathematics

Course Code: MTH211

Class: BSM-II

Objectives

The main aim of the lecture is to discuss about

- proposition and its truth table
- *define the notion of tautologies and contradiction.*
- *define and discuss logical equivalence.*
- *discuss algebra of propositions.*
- *define conditional and biconditional statements.*

References:

- S. Lipschutz and M. Lipson, Schaum's Outlines Discrete Mathematics, Third Edition, McGraw-Hil, 2007.
- K.H. Rosen, Discrete Mathematics and its Application, MeGraw-Hill, 6th edition. 2007.
- K.A. Ross, C.R.B. Wright, Discrete Mathematics, Prentice Hall. New Jersey, 2003.

Propositions & Truth Tables

Let P(p, q, ...) denote an expression constructed from logical variables p, q, ..., which take on the value TRUE (T) or FALSE (F), and the logical connectives \land , \lor , and \neg (and others discussed

subsequently). Such an expression P(p, q, ...) will be called a *proposition*.

For example: $\sim (p \land q) \lor r$ and $(\neg p \land q) \lor (r \lor \neg s)$.

The main property of a proposition P(p, q, ...) is that its truth value depends exclusively upon the truth values of its variables, that is, the truth value of a proposition is known once the truth value of each of its variables is known. A simple concise way to show this relationship is through a *truth table*. We describe a way to obtain such a truth table below.

For example truth tables of $p \land q$, $p \lor q$ and $\neg p$ are as follows:

р	q	$p \land q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

р	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

р	$\neg p$
Т	F
F	Т

As another example, consider proposition $\neg (p \land \neg q)$. Its truth table is as follows:

p	q	$\neg (p \land \neg q)$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

But how we come to the last column in above table for $\neg (p \land \neg q)$. One method is as follows:

Alternate Method for Constructing a Truth Table

Another way to construct the truth table of $\neg (p \land \neg q)$ as follows:

Tautologies and Contradictions

Some propositions P(p, q, ...) contain only *T* in the last column of their truth tables or, in other words, they are true for any truth values of their variables. Such propositions are called *tautologies*. Analogously, a proposition P(p, q, ...) is called a *contradiction* if it contains only *F* in the last column of its truth table or, in other words, if it is false for any truth values of its variables. **For example**: From the truth table, $p \lor \neg p$ is tautology and $p \land \neg p$ is contradiction.

p	$\neg p$	$p \lor \neg p$
Т	F	Т
F	Т	Т

p	$\neg p$	$p \wedge \neg p$
Т	F	F
F	Т	F

Logical Equivalence

Two propositions P(p, q, ...) and Q(p, q, ...) are said to be *logically equivalent*, or simply *equivalent* or *equal*, denoted by

$$P(p, q, \ldots) \equiv Q(p, q, \ldots)$$

if they have identical truth tables.

For example, Consider the truth tables of $\neg (p \land q)$ and $\neg p \lor \neg q$:

Observe that both truth tables are the same, that is, both propositions are false in the first case and true in the other three cases.

р	q	$p \land q$	$\neg (p \land q)$	 р	q	$\neg p$	$\neg q$	$\neg p \lor \neg q$
Т	Т	Т	F	Т	Т	F	F	F
Т	F	F	Т	Т	F	F	Т	Т
F	Т	F	Т	F	Т	Т	F	Т
F	F	F	Т	F	F	Т	Т	Т
	(0	$(p \land a)$	q)	I	(b) $\neg p$	$\vee \neg q$	I

Accordingly, we can write: $\neg (p \land q) \equiv \neg p \lor \neg q$.

Remark: Let *p* be "Roses are red" and *q* be "Violets are blue." Let *S* be the statement: "It is not true that roses are red and violets are blue."

Then *S* can be written in the form $\neg (p \land q)$. However, as noted above, $\neg (p \land q) \equiv \neg p \lor \neg q$.

Accordingly, *S* has the same meaning as the statement:

"Roses are not red, or violets are not blue."

Algebra of Propositions

Propositions satisfy various laws which are listed in the table below. (In this table, *T* and *F* are restricted to the truth values "True" and "False," respectively.)

Idempotent laws:	(1a) $p \lor p \equiv p$	(1b) $p \wedge p \equiv p$		
Associative laws:	(2a) $(p \lor q) \lor r \equiv p \lor (q \lor r)$	(2b) $(p \land q) \land r \equiv p \land (q \land r)$		
Commutative laws:	(3a) $p \lor q \equiv q \lor p$	(3b) $p \wedge q \equiv q \wedge p$		
Distributive laws:	(4a) $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	(4b) $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$		
Identity laws:	(5a) $p \lor F \equiv p$	(5b) $p \wedge T \equiv p$		
fucture laws.	(6a) $p \lor T \equiv T$	(6b) $p \wedge F \equiv F$		
Involution law:	$(7) \neg \neg p \equiv p$			
Complement laws:	(8a) $p \lor \neg p \equiv T$	(8b) $p \land \neg p \equiv T$		
Complement laws.	(9a) $\neg T \equiv F$	$(9b) \neg F \equiv T$		
DeMorgan's laws:	$(10a) \neg (p \lor q) \equiv \neg p \land \neg q$	$(10b) \neg (p \land q) \equiv \neg p \lor \neg q$		

Laws of the algebra of propositions

Conditional and Biconditional Statements

A statement of the form "If *p* then *q*" is called *conditional* statement and is denoted by $p \rightarrow q$. The conditional $p \rightarrow q$ is frequently read "*p* implies *q*" or "*p* only if *q*."

A statement of the form "p if and only if q" is called *biconditional* statement and is denoted by

 $p \leftrightarrow q$.

The truth values of $p \rightarrow q$ and $p \leftrightarrow q$ are defined by the following tables:

<u></u>.....€

THANKS FOR YOUR ATTENTION